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Abstract
The broad demonstration of grid-forming converters (GFMs) in microgrid applications has been well documented. Following
this, the idea of GFMwas assessed for its potential use in large-scale linked networks that include transmission and distribution
systems combined with renewable energy sources. As a result, a thorough examination of GFM performance became impera-
tive. This study provides a comprehensive examination of GFMs, encompassing fundamental principles, control mechanisms,
implementation strategies, operational aspects, and potential avenues for further research. The capacity of GFMs to withstand
system disturbances is of utmost importance for ensuring the overall stability of the system, particularly in situations where
inertial response is diminished. Classical control methods are inadequate in addressing transient stability circumstances,
necessitating the development of current control approaches to overcome these limitations. The utilization of GFM control
is becoming increasingly important in the global initiative to establish a sustainable energy system through the integration of
renewable energy. GFM control is particularly significant as it determines the level of controllability over non-dispatchable
and variable generation, especially on a larger scale, thus contributing to the practical realization of this initiative. Therefore,
an extensive and evaluative examination of many control systems, control theories, and algorithms has been conducted in
the last twenty years. This study provides a comprehensive classification of control objectives and applications, emphasizing
their importance and effectiveness. The findings of this study are equally applicable to various interdisciplinary fields such
as power system operation, power electronics, renewable energy integration, advanced control, and smart grids.
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1 Introduction

Power system is going through a transitional phase from con-
ventional generation to alternative clean generation sources.
Consequently, renewable energy (RE) sources are targeted to
be constituted as the main source of electricity production.
The integration of REs not only introduces a higher degree
of stochasticity but also reduces the inertia of the system.
The globally predominant REs technologies, namely solar
andwind energy source, are unpredictable, non-dispatchable,
and have negligible contribution toward the system’s inertia.
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Therefore, for appropriate grid integration in accordancewith
the grid standards the respective variable DC and AC output
power of the solar and wind generation system requires a
converter interface. These converter interfaces also facilitate
an opportunity to appropriately mitigate the REs’ variable
output power as well enable controllability over the RE sys-
tem.

Modern power systems must reduce system inertia, and
therefore, grid-forming converters are crucial. Inertia from
synchronous generators maintained electricity systems by
resisting frequency shifts. However, green power integra-
tion and converter-based technologies have reduced system
inertia. This problem can be solved using grid-forming con-
verters like voltage and current source converter. By injecting
synthetic inertia, these converters may mimic synchronous
generators, stabilizing the grid. Grid-forming converters
(GFM) can quickly adapt to frequency disturbances by
actively regulating the phase and voltage angle, guarantee-
ing stable power supply and integrating green power sources
into the grid. Understanding decreased system inertia and
grid-forming converters is essential to creatingmodernpower
systems and obtaining sustainable energy.

In this respect, the grid-connected inverters, therefore,
have the capability to contribute to the grid stability that
is analogous to the synchronous generators. Grid-following
converters are current-controlled, and they cannot perform
any grid parameter formation. However, the GFM does
form the voltage phasor, thereby maintaining stability and
resiliency. The GFM was conceptualized in [1, 2] as a
solution for stable interconnected power systems that expe-
rience large integration of converter-based generating units
that would suffer from degraded inertia [3]. The provision
of an inertial response to maintain rotor-angle stability or
frequency stability by GFMs is essential in interconnected
networks. Moreover, the reduced inertial in the converter-
based networks is manifested as a stability problem that must
be handled so as not to compromise network security. These
stability measures are rotor-angle stability frequency stabil-
ity, and voltage stability.

A viable solution for dynamic PLL that maximizes con-
trol efficiency in different grid circumstances is still lacking
in the available research. This study builds on by present-
ing an actual application of dynamic PLL, balancing sys-
tem resilience and control effectiveness through continuous
assessment of the impedance-based sensitivity parameter.
The system sensitivity characteristic is assessed using real-
time grid-reactance observations using PRBS techniques in
this article. Characterization methods provide quick detec-
tion and response to grid impedance shifts, ensuring consis-
tency. The suggested approaches manage PLL spectrum to
maintain a consistent optimum system sensitivity functional
value independent of grid circumstances. This ensures sys-
tem resilience by maintaining stability tolerances with the

maximum PLL frequency. A more advanced and systematic
adaptive control of the PLL is offered, focusing on both opti-
mal performance and system stability. This enhances power
quality and dq-domain control functionality according to
diverse grid settings [4].

The operability of the GFMs to maintain stability, inter-
face RE resources to grids, or provide ancillary services are
governed by several control schemes. Conclusively, GFMs
have multi-dimensional prospects of applications in the
domain ofRE integration, especially at high andvery highRE
penetration. Accordingly, many emerging solutions provided
by energy storage systems in terms of power conditioning
rely on appropriate control algorithms for the battery-coupled
converters [5, 6]. Themeta-heuristic-based solution for GFM
considering gain normalization, stability enhancement with
PV-STATCOM,andoptimization schemes for converterswas
discussed in [7–12]. Therefore, the successful integration of
REs will be governed based on the controller schemes of
GFMs. Globally, many research propositions have been cat-
egorically formulated to provide many distinct as well as
collective solutions to the challenges associatedwithRE inte-
gration. Hence, it is pertinent to quantify the capabilities and
applications of GFM achieved so as to appropriately direct
global efforts toward sustainable energy and smart grid estab-
lishment.

Indeed, the GFMs utilization requires a classification
of the different control approaches implemented. These
control schemes could be used for different power sys-
tem applications that correspond to certain equipment in
the conventional power system. In this respect, the objec-
tive of this review paper is to provide a categorized and
sub-categorized applicative scope of GFMs in renewable-
integrated and converter-dominated power grid. The aim is
to contribute toward the efforts of researcher, power system
operators, developers, and policy makers through state-of-
the-art review on current and future trends of GFMs.With the
overview of the impact on the system’s stability with reduced
inertia, this paper comprehensively expands on the numer-
ous control architecture, control theories, and algorithms
with intensive explanations on parameters that give indica-
tions of the stability performance. Accordingly, an extensive
analysis, classification, and comparison is presented to high-
light the importance and capabilities of GFMs toward system
stabilization based on different control architectures and
topologies based on their respective applications. Further-
more, different research gap areas are elaborated to have
a bird-eye view of the GFMs research direction, including
overcurrent protection, island mode transition, and synchro-
nization transient stability. Finally, theGFMs control scheme
future trend is presented in which artificial intelligence (AI)
would be the cornerstone for the GFMs operation.

The remainder of this paper is organized as follows
(Fig. 1). Section2 describes the effects on grids as a result of
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Fig. 1 Schematic overview of
this paper

reduced inertia. Section3 categorically and sub-categorically
describes various control schemes of the GFMs. Section4
presents the prevalent GFMs applications along with their
respective control configurations. The GFM future trend in
research is highlighted in Sect. 5. Finally, the main conclu-
sion is presented in Sect. 6.

2 Stability Impacts of Reduced Inertia

Many factors drive the high demand of clean energy sources,
REs in particular. This increasing demand causes mod-
ern power networks to gravitate toward converter-based
generators that lack ofmechanical inertial response that com-
promises networks’ stability [13–16]. The evolution from the
generator-based networks into the converter-based networks
is depicted in Fig. 2.

REs resources are connected to grids through power con-
verters that decouple them from the grids [17]. Consequently,
the overall power system inertia is reduced if conventional-
generating units are replaced by REs [18, 19]. Low inertia
raises several challenges in power systems that could impede
the RE utilization and growth. It is of primary objective to
ensure the system operational stability at the degraded iner-
tia scenario. The timescale of synchronous inertia is rather
small, ranging frommilliseconds to tens of seconds. Broadly
speaking, power system stability is classified into threemajor
classes: frequency stability, rotor-angle stability, and volt-
age stability. A reduction in system inertia affects transient
stability as well as small-signal stability [13]. Some of the
low-inertia challenges were highlighted in [20, 21], but they
lack of scientific foundations to approach such issues. In [22],

a thorough review was conducted on the system inertia val-
ues pertaining to power systems and wind power plants that
help estimating potential inertial degradation upon adopting
non-synchronous generation units.

Traditionally, stability measures in power system net-
works are dependent on the stored kinetic energy stored in
SMs in which it is automatically extracted in case of any
power imbalance. For example, a sudden load addition or
loss of a generating unitwould reduce the SMs speed, thereby
decreasing grid frequency [22].

Two distinct approaches are used to address the power sys-
tem stability issues, namely theoretical and computational.
The pros and cons of each method are presented in [23],
and computational (simulation-based) examples are given in
[24].

The low-inertia deterioration caused by the REs grid-
interfacing, virtual inertia (VI), known as artificial inertia
or synthetic inertia, has received lots of research and exper-
iments in literature. VI inverters strive to emulate the SM
inertia response mathematically via modulated pulse width
modulation (PWM). Some techniques used to provide VI
in power system are illustrated in Fig. 3. The VI techniques
are broadly classified as energy storage related or VI-based
converters [25].

Although many studies provide useful understanding of
the immediate stability concerns, they do not make any
contribution to the instantaneous power limits of non-
synchronous (i.e., REs) resources that a grid can take
before losing the frequency stability. Moreover, some stud-
ies focused on the power balance aspect and simplified the
problem through assumptions that ignored the stability con-
cerns [15]. The authors, also, divided the low-inertia system
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Fig. 2 Evolution toward converter-based grids [26]

Fig. 3 Virtual inertia techniques

issue into analytical questions that cover different system
levels, ranging from the device level to the whole system
limitations. Besides, a thorough review of inertia enhance-
ment approaches is discussed broadly along with potential
challenges associated with them in [16].

2.1 Grid Impedance Estimation

The stability problems related to grid impedance is twofold.
The small-signal stability measures are governed by tuning
the control parameters at the steady-state operating point

[27]. Furthermore, the active power transfer is a function
of the grid impedance [28]. Normally, an excessive active
power flow in weak grids raises large-signal stability issues
like voltage stability [29]. Consequently, the grid impedance
estimation is highly important to the controller in order to
incorporate the necessary VI value for a better stability per-
formance [28].

Different techniques of grid impedance estimation are
detailed in [28] that are more stable for grid-following
converters and cannot be directly applied to GFM. The ref-
erence proposed a grid estimation approach that suits GFM.
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It operates in four distinct points to account for different
small-signal stability conditions. The model averts the har-
monic distortion and possesses accurate estimates, too. A
novel approach was formulated in [30] that estimates the
converter-based grids’ impedance using amapping technique
that considers different converter operationmodes and states.
Various methodologies for grid security, impedance esti-
mates, vehicle-to-grid applications, fast transient and voltage
balancing, and fast transient and stability have been exten-
sively discussed in references [31–38].

2.2 Renewable Energy Integration Impact on Power
System Stability

Transient stability represents the system stability after large
disturbances, such as faults, generation loss, line switching,
etc. The classical SMs transient stability factors are elabo-
rated in [39], and the inertia contribution to these machines
transient stability is presented in [40].

REs are mainly wind power and PV, and each mani-
fests distinct performance under transient stability. The wind
power is rather similar to the conventional networks, as it
was shown in [41, 42] that doubly fed induction generators
(DFIG) can improve the synchronous generators transient
stability margin by delivering voltage and reactive power
after a fault. The anticipated pros and cons of integrating
the wind power units are demonstrated in [43].

The PV, on the other hand, has received less research
works on that field. Some researches addressed the bene-
fits and adverse impacts of adopting the PVs at a large scale
[19, 44]. The authors in [45] pointed that the PV fault-ride
through (FRT) capability is essential in determining the PV
performance during transient stability cases.

REs are characterized by intermittency in which they are
interfaced to grids via fast-responding converters, so REs are
considered as fast-dynamic systems. There are several grid
issues associated with such fast interactions that are mani-
fested as voltage amplitude stability, phase angle stability,
and frequency stability [46]. These instability problems are
aggravated during fault conditions [25].

The following subsections addresses the REs integration
effect on the three stability measures: voltage stability, fre-
quency stability, and rotor-angle stability.

2.2.1 Voltage Stability

A large PV integration is believed to affect grid voltage sta-
bility along with the effect on transmission/sub-transmission
systems’ stability were presented in [44, 45, 47]. In fact, the
PV penetration level is the main factor in having a beneficial
or detrimental effect on the system voltage magnitude [45].
Another study in [44] that was conducted on Ontario system
revealed that a centralized PV plant could be less benefi-

cial than the distributed PV arrangement in terms of voltage
magnitude stability.

A physically rotating component sets the synchronous
generator’s (SG) angular frequency, allowing it to automati-
cally synchronize with the power grid. However, converters’
static semiconductor components allow for much customiza-
tion and regulation. TheGCLuses a phase-locked loop (PLL)
to align voltage and synchronize grid frequency, SGs. A
closed-loop converter’s PLL regulates power angle and max-
imum time constant. The grid shows that this has far-reaching
impacts on input/output dynamics. Many PLLs assume con-
stant measured voltage and frequency. PLL dynamics may
be separated from the converter system under this premise.

Wind power also contributes to the voltage stability espe-
cially at large-scale integration. The wind power impact on
voltage and reactive power is investigated in [43], where two
test cases in Belgium illustrated that the wind power mode of
operation during voltage dip events is set according to the grid
short-circuit power and the X/R ratio. Generally, it is pre-
ferred to adopt wind power for voltage control especially in
remote areas that mandate additional control schemes. Volt-
age dips cases necessitate a coordinated control of the wind
power plants in order to maintain the voltage limits. Unex-
pectedly, it was proven in [41] that the converter-connected
generation units penetration level does not only depend on
the synchronous inertia; instead, it relies on the amount of
reactive power available and the grid topology. Should the
reactive power value and the FRT increased, the maximum
integration level can be achieved. Moreover, it was shown
that classical solutions work as well, like installing conven-
tional generation units to increase the inertia. An ultimate
conclusion was drawn that a grid with distributed generation
feature transmits less power than that of only conventional
generators, which benefits the network transient stability.

Voltage stability, also, is supported during transient peri-
ods. A voltage dip event in Spain tripped many wind power
units leading to a power imbalance [48]. This case urged uti-
lizing FRT capability in the wind power codes [43]. That
being said, this is not enough to guarantee a safe operation
of wind power plants, and the reactive power support is a
required service from the wind power plants [49]. The inte-
gration level of wind power at remote areas is limited by the
available reactive power, so the reactive power management
controls such wind power integration [50].

2.2.2 Frequency Stability

Traditionally, stability measures in power system networks
are dependent on the stored kinetic energy stored in SMs
in which it is automatically extracted in case of any power
imbalance. The high penetration of converter-based REs
introduces some network security issues as well as critical
frequency stability problems [51]. For example, a sudden
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Fig. 4 Multiple time-frame
frequency response in a power
system following a frequency
event [26]

load addition or loss of a generating unit would reduce the
SMs speed, thereby decreasing grid frequency [22].

Frequency must fall in a predefined range, so the system
operation security is not impaired [13, 21]. Reduced syn-
chronous inertia degrades the system frequency, as the system
cannot maintain a steady frequency in case of significant
deviations between power generation and power consump-
tion [26, 52, 53]. An independent system operator, Electricity
Reliability Council of Texas (ERCOT), reported a continual
inertial response decline in its system that is accompanied by
a conventional-generating units power loss. The recommen-
dation was to add more inertial responses to offset such a
decline [54]. In fact, low inertia affects frequency stability in
two ways: a rapid ROCOF and a large frequency deviations
(i.e., low frequency nadir) [55]. These frequency deviations
must be allayed to avoid unnecessary generation units trip-
ping and/or load curtailments. Thus, techniqueswere devised
to stabilize the frequency and then bring it back to its nominal
range value [20].

Various approaches are adopted to maintain power-
demandbalance to keep frequencywithin acceptable limits as
in Fig. 4. The primary frequency control (governor response)
takes place in the very few first seconds (10–30s) to reduce
the frequency deviations. The frequency secondary control
(automatic generation control (AGC)), on the other hand,
takes over after the primary frequency control, it lasts for
few minutes (usually 10–30min), and it aims to bring the
frequency back to its nominal value. The tertiary response is
the emergency reserve that deploys available resources upon
emergency needs. All of these actions are preceded by the
kinetic energy stored in the rotor that provides the inertial
response to counteract any power imbalance till the primary
frequency control takes over [26].

The overall inertial response is impacted badly in a
reduced synchronous inertia network. This is attributed to the
matter of fact that the converters’ generators are electrically
decoupled from the system,whichprevents the kinetic energy
delivery to the grid. This kinetic energy forms the basis
of the inertial response under investigation. Consequently,
the ROCOF and the frequency nadir are both influenced in
a way that protective devices might be adversely affected
[16, 56]. Basically, synchronous units respond rapidly to
the frequency variations through the physical inertia, while
the non-synchronous units must be forced to emulate the
inertial response by specific controllers. As a result, this
inertial response is prone to delays, malfunctioning, and
unforeseen coupling to system dynamics. This implies that
low-inertia systems are less secure than systems with high
inertial capability [15]. Furthermore, generating units are
subject to physical damages when exposed to high ROCOF,
like pole slipping that would occur if the ROCOF is within
1.5–2 Hz/s [57].

A simple simulatedmodelwas conducted in [58] to test the
frequency response of a network that has 10% power imbal-
ance of the total generation capacity for certain levels of
converter-based generators. These converters were assumed
they do not deliver any frequency support and gradually
replace the synchronous generators. The results showed that
an increase of the converter-based generation increases the
ROCOF and decreases the nadir frequency.

Non-conventional generating units have generally a slow
response time and this aggravates the nadir frequency and
the ROCOF. It was stated in [20] that the increase in ROCOF
value is one of the major obstacles against a safe operation
of a low-inertia grid. Not only does a high ROCOF affect
generating units protection schemes, but it also minimizes
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Fig. 5 Proposed solutions for
low-inertia systems [20]

the governor time window to react before exceeding the fre-
quency limits.

The frequency stability is not the only problem emerges
upon low inertia systems. Frequency control-related issues
also arise (e.g., high ROCOF). Many case studies in the
literature tried to explore this matter to come up with opera-
tional strategies to lessen the associated low-inertia potential
effects. These studies consider isolated and small systems
in which their results can be generalized to larger intercon-
nected systems. Initially, the low inertia was not seen as a
problem since most of TSOs set the converter-based gener-
ation to the maximum level, which ranges between 20 and
50% [59]. Subsequently, the rising of REs shifted the atten-
tion to the low-inertia issue which forces certain precautions
to be considered. For instance, Ireland suggested to limit the
wind power penetration level to only 30% during the day to
eschew technical and operational troubles [60].

A further increase in the penetration level introduces other
low inertia related issues, one of which is ROCOF relay set-
tings. Normally, distributed generation units are equipped
with ROCOF relays to protect against islanding [61, 62]. In
converter-based networks, the ROCOF relays are so sensitive
to loss of mains or frequency imbalance that a disconnection
of a generation unit might result in a cascaded effect that
causes a widespread outage [63]. A case study was imple-
mented in [64] concluded that ROCOF current settings in
the Irish island grid must be increased to accommodate the
expected wind power integration. It was stated in [65] that
the converter-based generators should not exceed the set limit
(65–70%). Another study on the Irish network was held in
[66], to review the IrelandGrid CodeROCOF element. It was
concluded that the ROCOF shall be increased from 0.5 Hz/s
to 1.0 Hz/s that is measured over a 500 ms period. This aids
to cope with the rising SystemNon-synchronous Penetration
(SNSP) sources that degrade the system inertia. The techni-
cal report addresses different implications in relation with

the ROCOF problem and compares the Irish case to some
European countries. A UK case study studied the effect of
GFM-based wind power farm on the turbine frequency sta-
bility [67].

Presumably, ROCOF and frequency nadir are directly
influenced by system inertia. This is a simplification to the
issue at hand, as it might yield inconsistent ROCOF results
with simulations. The authors in [21] highlighted the Nordic
HVDClinkproblem in relationwith the isolated systemsmall
inertia that impacts the frequency regulation negatively. The
ROCOF estimation was proven not to solely rely on the
available system inertia. Several factors are addressed that
would have significant effect on the ROCOF. In regard with
the frequency nadir, the so-called frequency containment
reserve (FCR) along with the system inertia determines the
frequency nadir magnitude. Distributed generation scheme
gains popularity due its reliability and flexibility in dis-
tributed generation applications despite the degraded inertial
response [68].

Many solutions were proposed in the literature to tackle
the low inertia problem, and they are summarized in
Fig. 5. These proposed techniques boil down to two main
approaches in which they aid existing grids to accommo-
date converter-based generating units. The first approach is
to accept the high ROCOF and large frequency swings by
adapting existing grids code and protection to the additional
non-conventional generation sources. The second approach,
on the other hand, adds different forms of inertia to the
grids to counteract the low-inertia issue. This extra inertia
could be a virtual inertia or an incentivized investors that can
afford the required large inertia [69]. Some studies suggest
to impose inertial constraints on unit commitment problem
so as to reserve some inertia. The isolated mode of the GFM
has limited resources available, which makes it very difficult
to maintain the operation status within the same tolerance
level as the grid-connected mode. The frequency nadir and
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Fig. 6 Electromechanical modes for a single-machine infinite-bus sys-
tem in function of inertia and operating point [20]

ROCOFs, hence, can be relaxed to account for such resource
scarcity [70, 71].

2.2.3 Rotor-Angle Stability

Rotor-angle stability is defined as the ability to keep
machines’ synchronism when a system is subjected to dis-
turbances. These disturbances could be small-signal or tran-
sient. The small-signal stability enables utilizing linearized
system equations that facilitate the analysis [20]. Eigenval-
ues of a system matrix indicates the oscillatory modes and
describes the system small-signal stability [58]. Hence, the
low-inertia effect is easily assessed through the electrome-
chanical oscillatory modes as shown in Fig. 6 that illustrates
a single-machine infinite-bus system. The graph shows an
inverse relationship between the generator inertia and the
eigenvalue imaginary part. The lower the machine inertia is,
the larger the imaginary eigenvalue, which corresponds to
more rapid oscillations and lower damping factor.

The linearized small-signal modeling is not applicable at
large signal disturbances since the linear operating point is

not valid. It is essential to maintain the GFM synchronism
with the grid during and after the disturbance events under
such transient stability conditions [58]. The transient stabil-
ity case has been receiving much attention in the literature.
The voltage sag effect onGFMcurrent saturationwas investi-
gated in [72] to analyze the droop control performance under
this transient event.Also, the droop-based control in conjunc-
tion with low-pass filter (LPF), inertia term, was considered
to study its transient stability with Lyapunov function [73].
The power synchronization control (PSC) behavior under
different fault conditions was analyzed in [74]. A common
assumption of these studies is that the transient stability is
solely dependent ondecoupling the active power control from
the reactive power control, which functions properly in stiff
grids [75]. The cross-coupling between the active control and
reactive control plays a major role in determining accurate
transient stability measures; thus, it has to be considered to
avoid inaccuracy [76]. This cross-coupling problem is shown
in Fig. 7, where the active power is not only dependent on
the dynamics of the resultant, but also the reactive power
dynamics are considered. This makes the transient stability
analysis complex. The reactive power control was studied
qualitatively by power angle curves to illustrate the link of
the reactive power control and the transient stability deterio-
ration [77]. A design-oriented analysis was conducted in [76]
to address the droop control and the PSC so as to quantify the
reactive power control loop effect on the transient stability.

The high penetration rate of the converter-connected units
and the potential impact on the system oscillatory modes are
studies in [78]. Generally, there is no agreement on the effect
of the increased number of the converter-based generating
units integrated to power systems on the electromechanical
oscillatorymodes and small-signal stability in particular. The
induction motor load and SMs rotor-angle stability can be
enhanced by reactive power injection by wind power plants
[43].

Fig. 7 Transient stability model
of GFM
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Table 1 Summary of control
techniques of GFM

Control scheme Frequency voltage regulation Transient stability References

Droop Yes Strong [86, 87]

SPC Yes Weak [88, 89]

PSC Yes Strong [90–92]

Virtual inertia Yes Weak [93–96]

Matching control [97–103]

d(VOC) Yes Strong [15, 104–106]

Model predictive control [107–111]

Optimization [112–118]

3 Control Techniques and Utilization
Architecture of Grid-Forming Converters

In MGs, different DG resources (REs, oil, gas, etc.) and a
broad category of converter types (grid-forming and grid-
feeding) might be interconnected, and hence, a structured
set of controllers should be devised so as to ensure a proper
system operation under different operation modes [79]. A
comparative study between the two converter types is given
in [80].

Several GFM control schemes were developed to over-
come the negative impacts of non-synchronous generation
units, ranging from simple and basic controls (active power
and reactive power controls) to grid-forming control, vir-
tual synchronous machine (VSM), and operating electric
networks with power electronic devices [81]. Other control
schemes were introduced for an island mode operation. They
are short-term voltage source controllers (i.e., identify how a
voltage source converter reacts to events at point of common
coupling (PCC)). In addition, the switched DC-link voltage
value is considered as the manipulated value that is realized
by a specific switching pattern of the converter legs. This
is why the converter is assumed to be a controlled voltage
source behind an inductive filter. In addition, other control
loops could be added to handle certain problems like reso-
nance damping and overlaid control loops. These additional
control loops are detached from this specific grid-forming
control scheme [82].

Some control scheme versions, like VSM, use phase-
locked loop (PLL) to estimate the grid frequency so that
the power control and the frequency control are decoupled.
This subsequently enables controller to support frequency
control compared to the PLL-free controllers that cannot do
so because of the power and frequency/power coupling. A
control model that decouples the power/frequency loops and
not PLL-based was proposed in [83]. Furthermore, inertia-
based controllers (e.g., VSM) are of a second order, while
the non-inertia controllers are first-order systems. The former
could experience power oscillations in weak grids, thereby
degrading the GFM transient stability, while the latter shows

stronger transient stability response. Nevertheless, the non-
inertia controllerswould endanger the frequency stability due
to the lack of inertial support [84].

Aside from the cascaded PI controllers, other control tech-
niques were proposed, such as linear quadratic regulator
(LQR), sliding mode control, H2/H∞, and AI. A compre-
hensive review of GFMs is provided in [85] that summarizes
the control schemes and applications. Table 1 lists different
control techniques alongwith their characteristics and related
main references.

3.1 A Generalized Control Structure

A general GFM control architecture, derived from different
control schemes, is depicted in Fig. 8 that shows different
control input signals [79]. These signals include the con-
verter current and the current/voltage at the PCC. Another
generalized control architecture incorporates different con-
trol schemes in the form of multi-variable feedback in which
the AC and DC control are coupled [119]. Other control sig-
nals are the reference active power, reference reactive power,
the reference frequency, and the reference voltage. These
control signals are allocated into two loops—namely inner
loop and outer loop, in which PI controllers form the basis for
such an approach. The coupling of both loops is elaborately
analyzed in [120].

The outer loop that is also referred to as the system-
level control acts on a higher level to tackle the system
stability measures. These controllers manage the power shar-
ing among different power converters by adopting different
controlling techniques, such as droop control and virtual
inertia emulation control techniques. Also, the system-level
controllers do not need any communication between the
interconnected converters [1]. Basically, it computes the fre-
quency, the angle, and the voltage source voltage magnitude.
The outer loop contains two sub-systems: the frequency
scheme and the angle scheme as illustrated in Fig. 8. The
interconnection between these two sub-systems, however, is
dependent on the adopted control scheme.
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Fig. 8 General control structure
of GFM [79]

On the other hand, the inner loop, known as low-level
(device level) control, does other control actions to pro-
duce the modulating signal for the PWM. The inner loop
controllers shall have a wide bandwidth and good perfor-
mance in order to a fast time response against the different
operation modes. Typically, the inner loop comprises three
topologies: inner current control, inner current control and
cascaded voltage control, and no inner current loop control.
These topologies were contrasted in [121] in terms of grid
impedance, power sharing, and electromechanical oscilla-
tions. Briefly, the inner current control with the cascaded
voltage control does not perform well in weak networks due
to the inner loop controllers’ delay, and they are more sen-
sitive to electromechanical oscillations opposed to the other
topologies.

The cascaded PI controllers implemented in the GFM
structure introduce difficulty in tuning the related parame-
ters. A self-tuning online optimization techniques are used
to tune the PI controller parameters [117]. An automatic tun-
ing procedure is devised in [122] in which a linearized model
produces parametric eigenvalues. A proportional plus reso-
nant scheme is implemented for the outer loop and the PI
scheme is for the inner loop [123]. A main disadvantage of
these methods is the necessity to have a precise GFMmodel.
Besides, they usually have a narrow-band range for stability

when switching frequency is low [122]. Similarly, a voltage
differential feedback controller in [124] for the outer loop
necessitates an accurate system modeling to design the inner
loop and the outer loop effectively. An online neural net-
work controller uses an adaptive dynamic programming to
optimize the system and minimize energy usage [125].

The LC filter is employed to counter PWM switching rip-
ples. Should the GFM not be modeled properly, the inherent
resonance of the LC filter would cause oscillation and insta-
bility in dynamic behavior [126]. Passive damping and active
damping are adopted to face the LC filter resonance, but the
passive damping is not efficient, while the active damping is
prone to parameter uncertainties [127, 128]. The following
sections address different control methods employed for the
GFM application.

3.2 Droop-Based Control

Droop control is the baseline for the GFM in which it mimics
the SM speed droop control. The droop controller, under the
assumption that the grid is inductive, is depicted in Fig. 9
whose mathematical expression is as below:

ω = ωref + mp(Pref − P) (1)
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Fig. 9 Frequency droop control

Fig. 10 Frequency droop
control with LPFs

whereω is the grid frequency,ωref is the reference frequency,
mp is the active power droop coefficient, and P is the instan-
taneous active power.

The concept of utilizing power droops to synchronize
parallel inverters was pioneered by [129]. The authors in
[130] proposed the droop control of active power and fre-
quency, and there were many modified versions as presented
in [86]. The authors in [87, 131] addressed the power sharing
problems that arise in specific applications. The droop gain
adheres to the maximum voltage deviation implemented in
the primary control and to the grid voltage characteristics
that affect the system stability [132].

An important assumption behind the droop control is the
availability of a stiff DC voltage source. The proportional
gain value and the internal frequency dynamics have to func-
tion in harmony so as to forestall the interactions with the AC
grid line dynamics; hence, the power measurement is filtered
using a LPF before the droop controller [133, 134]. Further-
more, load unbalance could cause fluctuation in themeasured
output power, so a LPF is added into the power control loops
(Fig. 10) to remove such fluctuations. Unintentionally, the
LPF introduces virtual inertia similar to the voltage source
generator (VSG) [135]. The DC voltage dynamics are con-
sidered in [136] to account for DC-link disturbances.

The analysis of such similarity is elaborated in [76, 82].
Indeed, the swing equation precise replication is not neces-
sary, as the droop control with the inertia emulation is more
flexible in implementation [137, 138]. In spite of that, the
LPF addition has a detrimental impact on the frequency con-
trol loop in which the dynamic response is compromised
once the cutoff frequency is reduced [139]. In fact, the right
cutoff frequency is a trade-off between the desired dynamic
response and the harmonic distortion level.

Island mode of MGs is not uncommon, and it needs a spe-
cial droop control configuration. Basically, the droop control
assumes an inductive grid in which the power angle/active
power and the voltage/reactive power relationships hold. This
is not the case, however, for the island mode since the given
grid is resistive in nature. The analytical aspect is addressed
in [1]. Different techniques of the droop control in isolated

MGs are presented in [140]. Besides, resistive grids do have
particular transfer functions that need to be adapted with the
control action, which is implemented using rotational matrix
T as addressed in [141]. The measured output power values
are not the inputs to the droop controllers, but virtual values
that result from the rotations in the complex plane in accor-
dance with the R/X ratio of the power lines. This increases
the effectiveness of the droop control scheme, but the load
sharing mechanism suffers.

Other supplemental components enhance the droop con-
trol performance. Differentiators improve transient response
by adjusting the corresponding reactance virtually in con-
junction with the current rate of change during transient
processes [142, 143]. Additionally, the combination of droop
control and virtual impedance loop improves the droop load
sharing while maintaining the essential control structure
[144, 145]. Weak AC grids could take an advantage of incor-
porating a PLL into the droop control without causing any
instability conditions as illustrated in [146].

3.3 Power Synchronization Control

PSC is another control scheme that was proposed in [147]
in which it synchronizes the voltage source converter with
the grid through a power synchronization loop. The model
was elaborated later in [148]. Other sources tackled the PSC
in greater details [90–92]. Figure11 shows the control block
diagramof thePSC,where the active power error is integrated
into a phase increment, which in turn is added into a static
phase (ω0t); the final outcome is θ as described in equation
(2).

The figure, also, illustrates the equivalence of the PSC and
the droop control in terms of control law. The analysis of such
equivalency is worked out in [82, 143, 149].

θ = 1

s
[ki (Pref − P)] + θref (2)

where ki is a control parameter and θref is the integral ofωref .
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Fig. 11 Power synchronization
control (PSC)

Fig. 12 Synchronous power
control (SPC)

The swing equation synchronization mechanism can help
to match the dynamic order with a given damping capability,
which was utilized to improve the PSC performance [150].

Similar to the droop control, the PSC emulates inertia by
introducing a LPF [90, 91, 137, 138, 147, 151]. Nevertheless,
this makes the resultant system of a third-order type, thereby
complicating the model design [88]. The second-order sys-
tem analysis techniques were utilized to conduct a thorough
investigation of the PSC power loop in [137, 138, 151]. The
authors observed that it is quite difficult to see an enhanced
performance except for a filter loop addition as proposed in
[152, 153]. This is attributed to the uncontrolled zero resid-
ing in the active power loop that degenerates the dynamic
response [154]. This problem was highlighted in [76], where
a controller design guideline was proposed from the transient
stability perspective. The second-order system overshoot is
notorious for the transient stability.

3.4 Synchronous Power Control

A synchronous power controller (SPC) was proposed in [88,
89] as an alternative controller that improves the power
controller performance. Unlike traditional droop/PSC con-
trol schemes that employ frequency/phase angle to regulate
the active power, the SPC uses both frequency and phase
angle to control the active power as illustrated in Fig. 12. The
model has two distinct features that make it outperform other
schemes: Virtual frequency inertia design is not linked to the
power dynamic response, and the system is reduced to a first-
order system. The angle (θ ) is expressed as in equation (3).

θ = (Pref − P) 1
Jω

s + 2ζ
√

Kp
Jω

+ ωref (3)

where J is the virtual moment of inertia, and Kp is a trans-
fer function between the varying GFM angle (�θ ) and the
injected active power (�P).

3.5 Virtual Inertia-Based Control

The frequency disturbances vary the grid frequency in accor-
dance with the variant swing equation (4).

2H

ω

dω

dt
= Pgen − Pload

Sg
(4)

where H is the inertia constant and Sg is the system apparent
power. Note the derivative term (dω/dt) that represents the
system ROCOF, discussed in Sect. 2.2.2, is inversely propor-
tional to the system inertia.

The rapid growth of REs adoption mandates the VI need,
so the VI-based controllers receive significant publications
and researches. Comparative studies of the different VI con-
trol schemes are limited, which encouraged exploring the
potentials and applicability of different VI controllers that all
make use of the swing equation with different architecture
controllers. The control schemes pertaining toGFMareVSM
and synchronverter [25]. Aside from the employed scheme,
all of them imitate SM inertial response by a special tech-
nique [25].

Apart from the droop-based and PSC that emulate VI with
LPF, all VI-based control schemes stem from the mathemat-
ical model of SM and SG [155]. Generally, SM is a term that
denotes both synchronous motors as well as SG, and hence,
the threeVI control schemes (i.e., VSM,VSG, and synchron-
verter) are identical [25]. All VSM schemes use the swing
equation, which emphasizes the importance of the virtual
mass inertia damping. A compilation of damping techniques
for VSM is given in [156].

3.5.1 Virtual Synchronous Machine

VSM is gaining attention as a solution for the degraded iner-
tia. VSM and VISMA both stand for virtual synchronous
machine, but VSM is more common. The dynamics of VSM
are represented mathematically in equation (5), which is a
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Fig. 13 Virtual synchronous
machine control

modified version of the swing equation presented in (4).
Additionally, both acronyms emulate SM with subtle differ-
ent topologies. Basically, VSM implies either a real virtual
inertia or a fast frequency response [?]. The first VSM con-
cept was formulated in [157]. VSM zero inertia (VSM0H) is
a VSM replica whose constant inertia (H) is zero, but it does
not need PLL [25, 96]. A detailed description of the VSM
is in [25], where different modes of operations that rely on
the tracking error magnitude and their applications are high-
lighted. The control block diagram is illustrated in Fig. 13,
where the frequency is regulated in the active power control
loop and the voltage magnitude is controlled from the reac-
tive power loop (not shown).A comparative analysis between
the VSM and the droop controller showed that the overall
dynamic response improves in the VSM controller although
it experiences more oscillations than the droop-based con-
trollers [158].

2H

ω

dωVSM

dt
= Pm − Pe − PD

Sg
(5)

where Pm is themechanical power, Pe is the electrical power,
and PD is the damping power.

The main objective of VSM is to equip grid-forming
inverters with frequency droop and VI. PLL estimates fre-
quency value to compute ROCOF [159]. The PLL function
is eliminated during normal operation, as VSM can synchro-
nize with the grid in accordance with the power balance
after initiation with the PLL [160]. The ROCOF value is
obtained by a derivative component that is integrated into the
control architecture in different schemes to tune the VSM
in real time—namely primary frequency droop-like con-
trol, heuristics, or optimization-based [161, 162]. Inspired
by the same approach, the so-called interval-based control
scheme emerged in which a unit mode of operation, acceler-
ation/deceleration, is determined by the sign of the trigger
signal ℘ = �w(wt). This mode of operation heuristi-
cally determines the inertial level [163]. Nevertheless, these
approaches are focused on the overall frequency enhance-
ment regardless to the costs incurred [164].

The authors in [165] addressed this problem through
incorporating an LQR adaptive virtual inertia controller that
optimizes the inertial gain provided that it meets the two
objectives. This work was extended in [164] to include the
effect of multi-machine configuration and adaptive damping.
Additionally, LQRwas used to tune PID controller gains that
adopt VI to limit overcurrent conditions [166]. The model of
discrete LQR was formulated in [167].

Different VSM architectures had been proposed in which
each type depends on the degree to which the SM is emu-
lated [93]. In fact, some architectures implement the full set
of the SM dynamic equations and some implement simpli-
fied versions [26, 95]. An underlying assumption is that the
SM can generate/absorb infinite amount of power; hence, the
limitation of the DC-link is usually omitted [168].

In [169], there is a comprehensive realization of VSM,
whereby a combined swing equation, damping factor, and
frequency droop model emulate the actual SM behavior. The
model, however, suffers from some shortcomings due to the
PLL, such as delays in performance and numerical instabil-
ity. Also, several supplement control schemes were added to
devise the full model. Apart from that, VSM still has stable
performance in weak grids [170].

3.5.2 Synchronverter

Synchronverter is a variant of the VI-based control scheme
whose algorithm mimics the SM operation as its control
block diagram is depicted in Fig. 14. It is an inverter-based
generating unit that is self-synchronizing and acts as SGs
dynamic response [171]. This is due tomaintaining the power
systemoperational structurewithoutmajor changes [26]. The
synchronverter topology is well established in the literature
as in [94, 172]. The inverter control is composed of the swing
equation along with the algebraic equations to couple virtual
rotor and stator of SGs, which is based on the second-order
to the third-order model of the SG [82, 95]. The damping
factor is achieved by taking the difference between the ref-
erence frequency and the resultant computed frequency as
a feedback signal. This implies the power–frequency droop
ratio like what was mentioned in the droop-based controller
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Fig. 14 Synchronverter control

Fig. 15 Matching control

[156]. Interestingly, the damping factor approach replaces
the interactive method to compute the controller parame-
ters through the damping correction loop, thereby improving
steady-state performance as well as transient performance
[152]. The basic equations that govern the synchronverter
control and the model is explained in [26].

The most comprehensive topology was formulated in
[95] in which the model operates with PLL. The subse-
quent models were improved significantly, including self-
synchronization capability [173] and voltage/frequency lim-
itations [174]. The synchronverter equations is considered
as an enhanced version of PLL or sinusoidal-locked loop,
thereby enabling the synchronverter to support synchronism
with the terminal voltage [175]. The single-phase model of
the synchronverter was developed in [176]. The synchron-
verter needs a PLL to synchronize to the grid at first although
the use of PLL introduces instability conditions [177]. The
self-synchronizing synchronverter version was subsequently
designed in [173]. The PLL removal enhances the develop-
ment cost, the tuning complexity, and the time needed for
computation [178].

The synchronverter implementation as a voltage source
converter removes the frequency derivative factor, which
lessens the noise significantly. The system complexity can
introduce numerical instabilities that might counter the
obtained benefits.Moreover, the voltage sourcemodelmeans
there is no inherent protection so an external protection ele-
ment is needed [26]. Robust control modeling can tackle
the uncertainties of different grid conditions, which in turn
improves the stability performance [179]. The capacitor and

inductor linked to the synchronverter went virtual in [180]
to make the synchronverter more robust against fault condi-
tions.

In [181], the authors shed some light on the potential
inherent problems accompanying the SG emulation. The
overcurrent problem results from the post-fault response, the
prolonged delay owing to the high-order nonlinear dynamics
of the SG detailed model integration, and the recommended
tuning of the virtual inertia to be much less than the damp-
ing ratio that effectively reduces the synchronverter control
to the droop controller. The synchronverter does not have an
inherent capability of current protection since it is a voltage
source converter, so an overcurrent protection is added to the
original model [182].

3.6 Matching Control

Matching control is derived from the similarity in structures
between the two-level power converters and SMs as illus-
trated in Fig. 15 [98, 99]. The DC current is an equivalent
to the SM input torque, thereby varying the AC power. The
angle dynamics are represented in equation (6). The AC volt-
age magnitude is controlled by amodulating signal (μ) using
a PI controller as in equation (7). The reference voltage in
αβ coordinates is expressed in (7).

θ̇ = kθ vdc (6)
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Fig. 16 Block diagram of VOC
[82]

where kθ is ω
vdc

μ = Kp
(
vref − ∥∥vdq

∥∥) + ki

∫ t

0

(
vref − ∥∥vdq(τ )

∥∥)
dτ (7)

vαβ = μ[− sin θ cos θ ]� (8)

Moreover, the control block diagram in Fig. 15 depicts the
matching control technique. This duality reveals a relation-
ship between the DC-link voltage and the SM rotor angular
frequency in indicating power imbalances. This means the
DC voltage drives the converter frequency to certain levels
[100]. This control scheme requires a measurement of the
DC voltage only with no other inner loop controllers, which
speeds up the control processes compared to other control
techniques. Furthermore, the GFM has an architectural fea-
ture that is independent of any control strategy and is exposed
in the matching control approach. The converter has to have
the DC voltage stabilized by a primary DC source so as to
keep power balance across the converter without compro-
mising the capacitor status. Other control techniques, on the
other hand, need a stiff DC voltage control and a separate
timescale [15].

Seemingly, this control technique structurally resembles
the differential equations of SMs. The mathematical model
and the block diagrams are explained in [97, 100, 183]?. The
matching control equations can be extended to AC filter, and
dynamics of generator stator as derivations are in [98, 184].

In [183], it was shown that the matching control suffers
from a relatively high ROCOF due to the fact that other
control approaches like droop and VSM ignore the DC-
link voltage and regulate AC quantities till reaching stability,
which in turn results in high transient peaks in the DC-link
current in order to reach stability of the DC-link voltage. The

matching control, however, does regulate theDC-link voltage
through theDC source and regulatedACquantities [97, 185].
Another important finding is that the improved ROCOF in
other control techniques could cause instabilities if the con-
verter operates near its rated DC source, thereby promoting
the matching control strategy. Also, the DC source saturation
has no impact on the DC-link stability under this scheme.

3.7 Virtual Oscillator Control

The virtual oscillator control (VOC) is not based on a pha-
sor representation as other control approaches (see Fig. 16).
Rather, it is a time representation in a sinusoidal form, where
it is related to synchronizing with other coupled oscillators in
complexgrids [104]. ThisVOCemploys avanderPol oscilla-
tor alongwith nonlinear differential equations to interactwith
the converter terminal signals and provide the virtual oscilla-
tor [15, 186]. It is suitable for networks dominated with DG
units, as the VOC is intrinsically maintains synchronism and
make load sharing [187]. The VOC concept has been verified
and experimentally implemented in [188, 189].Most of VOC
schemes ignore high-frequency dynamics that affect the har-
monic contents. This problem is resolved in [190], where the
dynamics are considered to suppress harmonic currents.

The VOC was compared to the droop controller and
refined further in [104, 133]. The power injection of the VOC
cannot be specified accurately, but the full dispatchable VOC
resolves the problem [105]. This version prespecifies an oper-
ating point, satisfying all load flow equations, and ensures
synchronism of that point [191]. It is noteworthy to mention
that the VOC reduces to the simple droop-based controller
at quasi-steady state, but with faster and more robust con-
vergence performance [104, 186]. Another VOC version is a
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Fig. 17 Dispatchable VOC
(dVOC)

unified VOC that operates in both grid-following and GFMs.
It also retains synchronization with strong and weak grids
without the need to PLL. The transition from island mode to
grid mode is seamless [192]. A hybrid control scheme merg-
ing the matching control and the VOC was devised in [185].
The control scheme achieves global stability under certain
grid conditions, and it showed an intrinsic droop behavior.

It is important to highlight the limitation of the VOC
scheme in regulating active and reactive power, thereby
restricting its capabilities. An alteration to the VOC has
been proposed as dispatchable VOC (dVOC) in [105, 106]
to resolve this limiting factor in which both active power and
reactive power control follow the scheme in Fig. 17.

3.8 Model Predictive Control

Model predictive control (MPC) is capable of handlingmulti-
objective optimization problems in constrained systems; this
makes it a proper control scheme in many fields [193]. MPC
regulator could optimize power flow betweenMGs [194]. An
optimal energy management that is dependent on distributed
MPC is addressed in [195], while a central MPC regulator
is proposed for the dynamic optimal power flow between
energy storage systems [196]. A more detailed analysis per-
taining to islandmode is shown in [197]. The authors in [107]
developed an MPC model that controls the output voltage of
converters in islanded MGs.

A simpler method was initiated in [108], where MPC pre-
diction horizon is minimized to simplify the associated cost
function. Additionally, an MPC method for the output volt-
age control of the GFM was considered in [109], but it has
to have a precise system modeling. It struggles to tune the
weighing factors in the objective function, too.

Finite control is widely used in many applications, one of
which is the grid-connected application [198]. In [199], dif-
ferent algorithms are analyzed in terms of performance for
the grid-connected applications. Basically, the finite/MPC
control scheme utilizes a discrete model of power converters
with filters to predict the behavior of all related input signals
and select the one that yields the optimal result of the objec-
tive function [199].Mainly, all inner control loops are limped
into an algorithm that considers the converter model and its
filters [200]. This structure makes the converter control more
flexible and rapid response, especially for the power bal-
ance between converters. Usually, short-horizon prediction
encounters difficulties in controlling high-order converters;

this problem is resolved in [201] by analyzing all orders
to decouple variables and control them separately, thereby
eliminating the need for heavy computation as compared to
long-horizon prediction. Another problem associated with
finite/MPCcontroller is the variable switching frequency that
makes it difficult to design LC filters. The authors in [202]
approach this problem through obtaining a feasible solution
in order to have a fixed switching frequency and a simple
filter design. An enhanced finite/MPC control is proposed in
[203], where it is adopted for the GFM mode along with LC
filter modeling. The scheme is based on a short-horizon pre-
diction that tracks the referenced voltage signal. The model
works to reduce the harmonic distortion and prevent the vari-
able switching experienced in other models.

An interesting strategy in [111] aims to adopt MPC to
force converters act in the grid-forming mode. The authors
explained the limitations of the conventional PI controllers
used in the GFMs in terms of current saturation issue and
the mismatch between the voltage control loop and the cur-
rent control loop, which in turn hinders the overall converter
operability. In addition, the conventional GFM has two con-
trol loops composed of four PI controllers, so there are eight
parameters to set. In the proposed scheme, the equality and
inequality constraints reduce these parameters to only three
in which the controller selects the parameters in the objec-
tive function. This strategy permits the controller to define
the optimal controlling action that tracks the desired refer-
ence signal within the formulated constraints. The problem
formulation and validation are elaborately explained in the
reference.

3.9 Optimal Control

In [112], the sliding mode control was employed to con-
trol the GFM current on a hysteresis-band method. This
approach, however, results in variable switching frequency
that causes undesirable stability performance [204]. This
method was improved to be a variable hysteresis-band
method that has a fixed switching frequency [113]. The com-
putation cost is high, and the controller suffers with high
computational burden. The proposed model in [117] over-
comes these drawbacks through utilizing the sliding mode
control in the d-q synchronous domain. Also, it circumvents
the LC filter resonance without the passive filter or the active
filter. A sliding mode controller in the inner loop and the
H2/H∞ optimal controller in the outer loop are adopted. The
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sliding mode control is known for its robustness to system
parameter variations and fast-dynamic response [205]. Nev-
ertheless, the H2 control and the H∞ control cannot support
the system disturbances independently. Each control method
has some drawbacks that impede the controller robustness
[114, 206]. In fact, the H2/H∞ control technique does opti-
mality and robustness into the controller [115, 116, 118, 207,
208]. The advantages and disadvantages of the different con-
trol theories are presented in Table 2.

4 Grid-Forming Converter Power System
Applications

Modern energy storage systems need grid-forming con-
verters to work inside the grid and enable a variety of
applications to improve grid dependability, stability, and
resilience as shown in Table 3. GFM has many applications
in power system. TheGFM functions as an interface between
these applications and the grid. The applications include RE
grid integration [209], energy storage system, MG [210],
electric vehicle charger [211], static synchronous compen-
sator (STATCOM) [212], high-voltage direct transmission
(HVDC) [213], and many others. Table 4 summarizes some
of GFM applications along with references.

4.1 On-Grid Renewable Energy

Distributed generation characterizes MGs that adopts REs
resources. The corresponding outputs have different fre-
quencies, phase angles, and amplitudes, thereby contributing
to the overall system instability [26]. Therefore, GFM is
necessary to interface the REs into grids and contribute to
the system stability by regulating voltage stability and fre-
quency stability. Ancillary services could be delivered to
grids, including harmonics reduction, dynamic power sup-
port, reactive power compensation, or even a VI to stabilize
the grid. The VI-based GFMs are usually used for REs
resources, solar PV and wind power in particular [219]. For
example, a wind power that is interfaced with the grid the
GFM delivers VI to dampen oscillations [220]. The wind
power source is interfaced properly to grid through GFM
[221]. Currently, wind farms have to have inertial support as
an ancillary service [222]. Some commercial wind turbine
manufacturers like WindINERTIA and ENERCON already
incorporate VI response in their products [223, 224].

PV farms are mandated in some countries to provide
frequency regulations (primary or secondary), or to have
an inertia support [225]. There are different technologies
to achieve these requirements, but GFM shows promising
results. The PV inverter providing inertia support is analyzed
in [226]. Existing PV farms that utilize grid-following con-
verters could be transformed into GFM without investing

in hardware or software [227]. The references sowed that
employing supercapacitor as an energy storage system can
make the transformation easily.

4.1.1 High-Voltage Direct Current Transmission

HVDC with GFM is another application in which the com-
bined system serves as standby for blackstart of onshore
AC grid [228]. The HVDC/GFM formed a basic transmis-
sion infrastructure for offshore wind power plants between
Denmark and Norway [229]. Additionally, it demonstrated
a capability to energize Belgium from the UK side [230].A
detailedUK report addressed the essential problemofHVDC
system inertia support. Maintaining grid stability and inertia
when renewable energy sources are integrated into the sys-
tem becomes harder. The paper investigates whether HVDC
systems can sustain inertia, a service normally handled by
synchronous generators. The UK is taking a major step in
adapting its power infrastructure to the changing energy envi-
ronment to ensure a dependable and sustainable electricity
supply by exploring the technical feasibility and economic
viability of this novel strategy [231].

HVDC/GFM can respond to load changes and contribute
to load restoration without the need for details of transformer
or cable transient responses [232]. Simulations in [233]
demonstrated that HVDC/GFM ability to perform black-
start whereby the HVDC/GFM sequentially energizes the
AC grid, followed by the HVDC link energizing and the
onshore converter pre-charging. That being said, the onshore
converter pre-charging process causes considerable HVDC
voltage dip and transients in the offshore and onshore con-
verters [92].

The authors in [216] introduced the so-called synchron-
verter/HVDC transmission. The sending-end rectifier mim-
ics SM functionality, while the receiving-end inverter acts as
a SG. The DC-link connects the two units forming the syn-
chronverter/HVDC transmission. Buffering AC disturbances
from traversing into theDCside is critical in theHVDCappli-
cation, which was formulated in [234].

4.1.2 Communication Delays Between Grid-Forming
Converters

Stability and communication delays between grid-forming
converters are crucial in low-inertia power systems, which
cannot absorb unexpected generation or load changes. These
situations depend on grid-forming converters to emulate syn-
chronous machines and stabilize the grid. Communication
delays from network congestion, signal processing, or data
transfer might be significant. Delays can slow reactions, fluc-
tuate frequency, cause voltage instability, and reduce oscil-
lation damping. Minimizing delays, establishing adaptive
control algorithms, redundancy in communication routes,
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Table 3 Critical component of
modern energy storage systems
in grid-forming converters

Application Description

Voltage and frequency support During disruptions and quick load shifts, grid-forming
converters can stabilize voltage and frequency. Regu-
lating voltage and frequency within safe levels helps
grid stability. This is essential for energy storage sys-
tem reliability

Grid Integration Energy storage systems are seamlessly integrated into
the electrical grid via grid-forming converters. They
help the grid be reliable and resilient by effectively
injecting or withdrawing energy from the system

Black Start Capability Black start capability allows grid-forming converters
to resume the grid after a blackout or shutdown. They
can start synchronization and progressively restore
grid functionality by stabilizing voltage and frequency

Microgrid Operation Microgrids function autonomously or with the main
grid thanks to grid-forming converters. They stabi-
lize microgrids and enable smooth grid-connected-
islanded transitions

Energy Management These converters are crucial to energy storage sys-
tem energy flow management. They ensure effective
storage system charging and discharging, grid com-
pliance, energy optimization, and grid disturbance
reduction

Table 4 Selected GFM
applications

Application Configuration References

DC microgrid VSM [214]

Microgrid VSM/Energy storage system [215]

HVDC Synchronverter [216]

Smart grid VSM [169]

Renewable generation Synchronverter [137, 217]

Transmission system VSC [218]

thorough testing, and regulatory frameworks that address
these difficulties can help solve these problems. Low-inertia
power systems need these precautions for dependability and
stability [235, 236].

4.1.3 Miscellaneous Applications

GFM applications cover a wide range in power systems.
Transmission systemmodelingwith voltage source converter
was detailed in [218]. The authors divided the converter
control into three levels: system control, firing control,
and converter state. Then, they derived transmission sys-
tem models with GFM, which in turn gave different models
for different applications. These applications include shunt
static synchronous compensator (STATCOM), asynchronous
back-to-back interconnector, and hybrid compensators (e.g.,
UPFC).

GFM, moreover, can interface energy storage system to
provide ancillary services in electricity market, such as fre-
quency control and power balance regulation [25, 237].

Electric vehicles (EVs) can provideVI through their inverters
using VSM control strategy [238]. Apart from some tech-
nical limitations that could be overcome with a stabilizer
algorithm, the VI is provided with the bidirectional power
flow concept through the EVs plug, which is also known as
a vehicle-to-grid approach [239].

5 Future Research Directions

Although GFMs stability control received much attention,
transient stability performance has limitations due to the
reactive power control omission in some of the proposed
schemes. Moreover, the PI controller-based are not robust,
which limits their effectiveness. Besides, the mathematical
modeling and numerical computation that form the bases
for VI-based controllers suffer from instability issues that
hamper their transient stability performance. The PI con-
trollers are well established for industry, but they are not
adaptive, nor do they adopt self-learning capability. This,
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Table 5 Technical gaps of GFM
implementation

Area Challenge

Current limitation Stability status during/after faults

Accommodate different fault types

Synchronization with grid Inner Loop outer loop interaction causing instability

Uncertainty in stiff grid characteristics

Island-to-grid-connected transition Frequency voltage mismatch with grid

Large-signal stability Cross-couple of active power reactive power control loops

hence, put limitations and restrictions against utilizing the
GFM capability under transient event. AI control techniques
are promising in the transient stability events in which the PI
controller shortcomings are likely to beovercome.TheGFMs
encounter difficulties in replicating the conventional power
systemoperation, such as frequency regulation, voltage regu-
lation, harmonics compensation, inertial response, and many
others. These unexplored areas are still to be resolved.

Specifically, there are three main areas that are critical to
theGFMsoperation, yet they are not fully explored.These are
the current limitation, synchronization stability, and island to
grid-connected transition. Table 5 lists some of the technical
gaps of the GFM implementation.

5.1 Current Limitation and Fault Ride Through

Intrinsic characteristics of voltage source converter behind
impedance make GFM sensitive to network disturbances
that might provoke unwanted overcurrent conditions. Many
current-limiting techniques were proposed in the literature
[240–243]. The easiest technique is to switch the GFM into
a vector-controlled mode during fault conditions [147].

Mainly, two main solutions were suggested to resolve the
high current problem: current saturating algorithm [240, 242]
and virtual impedance implementation [244, 245]. The latter
is an effective approach inwhich the virtual impedance limits
the generation of high current in the inner current control or
limits the reference AC voltage in case of omitting the inner
control loop [95, 173, 180].

This current-limiting concept seems simple, but it is chal-
lenging to maintain the GFM stability during this faulty
condition, especially when paralleling with SM [246]. Fur-
thermore, post-fault synchronization of the GFM is an
important concept that needs elaborate analysis. The current-
limiting strategies effect against transient stability receives
little attention in the literature [72, 76, 247, 248].

VSM has techniques to implement fault-ride through for
GFMs that are mainly related to synchronverter [249]. A
control strategy in [250] modified the synchronverter control
structure by adding an inner current generator as well as an
inner current control loop to compute the GFM current value
during normal operation and during fault conditions. This

approach does not exploit theGFMcapabilities, as there is no
consideration for fault type or magnitude. This problem was
overcome in [251] that accounts for symmetrical fault and
asymmetrical faults in which the model abides by published
codes.

5.2 Synchronization Transient Stability

GFMs makes synchronized status with grids in accordance
with the output active power, resembling the SGs behavior.
This synchronization technique and the voltage control at
PCC enable GFMs to maintain synchronism in grids with
low short-circuit ratio (SCR) [147]. In contrast, stiff grids
(high SCR), there is a tendency of GFMs to lose synchro-
nism due to the fact that a large active power variation can
result from a small phase difference between the GFMs and
the grid [252]. Consequently, an urgent need to adopt a robust
control for GFMs that operate in networks is characterized
with large SCR [91]. The line impedance characteristics are
important in stability topic, which was analyzed in [253].
Reactive power synchronization is also employed as elabo-
rated in [254].

The GFMs synchronism transient stability has been
receivingmuch attention in the literature [255, 256]. ThePSC
shows a superior performance under such conditions owing
to its first-order dynamic behavior. In fact, system stability is
guaranteed provided that an equilibriumpoint exists after dis-
turbances [74]. In case there is not an equilibrium point, the
critical clearing time can be easily computed. It was shown
in [257] that dVOC is more superior to droop-based control
schemes since it can re-synchronize after fault events even
if the fault clearing time exceeds that of the critical clearing
time. The response of VI-based control scheme compared to
non-VI control schemes is compared in [84]. Although the
non-VI controllers are stronger than their counterpart VI-
based controllers, the need for the VI-based controllers is
essential due to the lack of inertial support in which the fre-
quency stability is jeopardized.

Furthermore, the inner control loop interaction with the
outer control loop could adversely affect the GFMs syn-
chronization stability because of the timescale coupling of
both control loops. Two factors could lead to this coupling:
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strength of the grid and the inner current control scheme
[258].

5.3 IslandedMode to On-grid Mode Transition

Technical problems might arise upon transition between
island mode and grid-connected mode. The frequency and
voltage magnitude mismatches cause deviations and oscilla-
tions in the transition from island mode to grid-connected
mode, while a significant value of through power would
impair the GFM during the grid-connected mode to island
mode transition [259]. It is required to design the GFMs
control scheme so that they perform the transitional phases
smoothly. Particularly, the GFMs shall make an automatic
connection and have stable frequency and voltage measures
in the island mode. In grid-connected mode, on the other
hand, the GFMs should control the injected power into grid
as per demand. It is extremely important to guarantee the sta-
bility of GFMs before/after transitional periods. The droop
control scheme was used to perform such transitional pro-
cess [260]. However, the disadvantages of the droop control
outweigh its utilization.

5.4 Artificial Intelligence and Optimization Control

The increasing complexity of power system raises uncer-
tainty and data magnitude substantially, leading to a trans-
formation into smart grids. The bidirectional power flow and
information flow between end-users, system operators, and
aggregators characterize the smart grid concept [261]. The
two main problems arisen are the uncertainty resulted from
the RE penetration and the difficulty in finding optimal solu-
tions due to complexity of deregulated electricity market
[262–264]. The decision-making process thus is more dif-
ficult compared to conventional control methods [265].

Therefore,more effectivemethods are needed to face these
challenges. Data-driven control methods that are based onAI
are proposed to determine power system states accurately and
efficiently [266]. Particularly, the system variables and the
stability parameters relationships are modeled to forecast the
system states after disturbances [267]. The authors in [268],
used recurrent neural network, used for the same purpose,
that is based on long short-term memory cells for training.
Besides, the damping state is predicted with decision tree
[269].

The VI-based controllers have variant AI algorithms
imposed to encounter the uncertainty conditions [88]. Self-
adaptive VI control is addressed in [163], whereas fuzzy-VI
controller and hold-filter VI controller are proposed in [153].
A fuzzy neural network control for the GFM with an output
LC filter was suggested; however, the learning rate param-
eters are difficult to tune, which in turn impact the system
performance adversely [270]. A combined AI techniques are

employed to capitalize on the strengths of the combined tech-
niques. The authors in [271] used an adaptive fuzzy logic
controller that is based on differential evolution algorithm to
regulate frequency.

A more efficient machine learning technique is the deep
reinforcement learning (DRL) [272]. Reinforcement learn-
ing method has become popular owing to its effectiveness
in sequential problems [273]. Hence, the DRL is well suited
to many of power system applications provided that they
are transformable into sequential domain. The DRL is a
derivative method that combines the deep learning with the
reinforcement learning that excelled in games [274], natural
language processing [275], robotics [276], finance and busi-
ness management [277]. In [278], a comparative analysis
is accomplished between DRL and the conventional opti-
mization methods mentioned earlier. Fundamentally, DRL
does not require an exact objective function expression.
Rather, it uses the reward function to assess the decision sce-
nario. Compared to the convex optimization method, DRL
can take higher-dimensional data. In relation to the pro-
gramming methods, DRL uses the current state to make
decision, thereby making real-time decisions. The DRL con-
vergence is more stable and robust than its heuristic methods
[279]. A thorough description of the DRL and its power
system applications are reviewed in [279]. Many references
in the literature focus on the small-signal stability, but only
few consider the large-signal (transient) stability cases. The
cross-coupling between the active/reactive power loops has
not received much attention because it is difficult to acquire
analytical solutions due to high nonlinearity of the resulted
equations that govern this cross-coupling case. The authors
in [280] developed a model to address quantitative anal-
ysis. The AI techniques could contribute effectively and
efficiently to improve the transient stability controlling and
obtain enhanced performance.

Mathematical modeling of optimization problems take
several forms—namely convex optimization, programming,
and heuristic approaches [279]. These traditional methods
have their shortcomings. The traditional convex optimiza-
tionmethods like Lyapunov algorithmhave an advantage that
their mathematical representation is so rigorous that the real-
time problems could be realized easily [281, 282]. Despite
that, they need explicit cost function to be expressed well,
which is fairly difficult in many application decision. The
Lyapunov condition is far-fetched in complicated and high-
dimensional problems [279].

The programming methods, including mixed integer
programming [283], stochastic programming [284], and
dynamic programming [285], are good tools for solving
sequence optimization models, but they do the computation
process of each iteration from the beginning. Consequently,
the computation cost is too high to realize for real-time
applications. Other programming methods are dependent
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on accurate modeling and prediction of renewable genera-
tion/load, which is infeasible [279].

The heuristic methods like particle swarm [286], genetic
algorithm [287], and ant colony [288] are capable of finding
local optima for non-convex problems, so they suit problems
that are large scale. Nevertheless, they are not robust enough
to tackle complex real-time problems and cannot be proven
mathematically [279].

6 Conclusion

This paper provides a comprehensive review of the iner-
tia reduction resulted from integrating distributed energy
resources, which is manifested as the frequency stability, the
rotor-angle stability, and the voltage stability. The GFM does
contribute into stabilizing electric networks using appro-
priate control schemes. The paper, also, discusses different
control techniques that are tweaked to the GFM applications.
The applicability, advantages, and disadvantages are elabo-
rated critically. A selected topics of the GFMapplications are
presented, such as HVDC, REs integration, and STATCOM.
Some of challenges related to the GFM implementation are
addressed like overcurrent protection, synchronization sta-
bility, and island-to-on-grid transition stability. The GFM
has the potential to increase the practical controllability over
the challenges related to RE sources. Moreover, the solu-
tions facilitated through GFM form the potential viability
of many domains of upcoming research, especially virtual
inertia. The estimation of virtual inertia that is non-constant
as opposed to conventional power grids is a pertinent topic.
Seemingly, with the commercialization of distributed gener-
ation and the emergence of prosumers, virtual inertia as an
ancillary service and its subsequent incorporation with the
market structure will be highly dependent on the degree of
controllability and security the GFM provides. Similarly, the
cross-coupling of the transient stability events is an inter-
esting topic that is open for new techniques using AI-based
schemes. This review paper has given a detailed conceptual
understanding of GFMs, their categorized applications, con-
trol theories, and future research directions, which will serve
as an insight for upcoming researchers, industrial experts,
power system planners, prosumers, and policymakers toward
addressing and utilizing the potentiality of GFM toward the
global efforts of viable renewable energy integration.
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