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Abstract
This article addresses the challenging problem of identifying unstable system dynamics with time delay. In the proposed
novel scheme, a recurrent neural network (RNN) with parallel delayed architecture in closed-loop has been employed, which
is referred to as closed-loop-delayed-RNN (CLDRNN). The systematic mathematical formulation is done in easy to follow
steps to calculate all the parameters of unstable delayed process models. Interestingly, in proposed algorithm, all model
parameters are directly estimated in terms of the optimized CLDRNNweights only, without using any prior knowledge about
the unknown process dynamics. The Lyapunov theory is incorporated to get efficient learning, and an accurate condition is
derived to achieve guaranteed global convergence of the proposed algorithm. Various identification experiments are conducted
on benchmark unstable process examples to show the efficacy of the proposed approach.

Keywords System identification · Unstable system · Time delay · Recurrent neural networks · Parameters estimation ·
Optimization and convergence
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F Cost function
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ε(n) Difference error
Ξ Difference error vector
n Discrete time

d(n) Disturbance signal
e(n) Error signal
Ĝ Estimated model

ŷ(n) Estimated output signal
θ̂ f Fractional delay
β Filter coefficient
K̂ Gain
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g Gradient vector
I Identity matrix

r1(n) Input at controller’s output
u(n) Input signal

θ̂I Integer delay
Ki Integral gain
J Jacobian matrix

L(.) Laplace transform
V Lyapunov function

�V Lyapunov function deviation
kmax Maximum epochs
gmin Minimum gradient
m Noise mean

Pnoise Noise power
Psignal Noise power

σ 2 Noise variance
N Number of training samples

y(n) Output signal
∂ Partial derivative operator

Gp Process model
Kp Proportional gain

r(n) Reference input
μ Scalar coefficient

μmax Scalar’s maximum limit
μ f Scalar multiplier
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Σ Summation operator
τ̂ Time constant
θ̂ Time delay
k Training epoch
T Transpose
w Weight

�W Weight deviation vector
W Weight vector
M Weight vector length
Z [.] Z-transform

1 Introduction

The data-driven system identification has been extensively
used tomodel systems having complex and nonlinear dynam-
ics [1, 2]. The time delay occurs naturally in almost all
industrial process models, where the material or information
takes some time to travel between source and destination [3].
The problem with time delay estimation is that it produces
multiple minima in the cost function, which makes global
minima hard to reach [4].

In general, many industrial processes are preferred to
be identified as lower order models with time delays [5–
10]. There are various model-based techniques are available
which uses identified lower-order (mostly first- or second-
order) time delay models to design and tune regulators
[11–19]. Therefore, an accurate model estimation plays a
key role in the success of these model-based techniques.

The literature studies suggest that the identification of
stable delayed dynamics is relatively easy and extensively
available in various papers (see [20] and references therein).
The advantage associated with the stable delayed process is
that the identification canbeperformed in open-loopwith less
concern on the predictor’s stability. On the other hand, the
identification of unstable delayed dynamics is a challenging
task, which should be carried out in closed-loop to keep the
output bounded. In general, identification with a controller
in the loop is referred to as closed-loop identification [21].
More specifically, a regulator is needed to stabilize unsta-
ble dynamic systems, which also helps to ensure the safety
concerns and in generating stable predictors [22]. Moreover,
most of themethods that are useful for stable delayed process
identification may not be suitable for unstable counterparts
and hence the availability of such methods is limited.

Although neural networks have been used in various mod-
eling and control-related tasks [23, 24] and, also, in handling
time delays effectively as well [25–30], however, the existing
contributions that uses neural networks for estimating system
models are nonparametric due to uncertainty in selecting lay-
ers, number of neurons and type of activation functions [31,
32]. Another limitation associated with the neural networks
is that it may produce overfitted models [33]. An identified

model is considered to be overfitted if it captures the local fea-
tures (noisy trends) present in the identification data instead
of the desired global characteristics (useful system dynam-
ics) [34]. In this work, it is demonstrated that by carefully
choosing the network’s (model’s) complexity, which is suit-
able enough to capture the useful desired dynamics only, the
problem of identifying unstable delayed systems can be per-
formed. Furthermore, the accuracy of estimated parameters
can be enhanced based on a guaranteed convergence crite-
rion, which is demonstrated in the simulation studies.

Themanuscript is organized as follows: In next Sect. 2, the
related works, problems and the objectives of proposed work
have been discussed. In Sect. 3, the concept, challenges, and
advantages of closed-loop identification have been discussed.
In Sect. 4, the formulation of proposed technique has been
presented. TheSect. 5 is devoted for the detailed development
of proposed identification algorithm. The results are included
in Sect. 6. The manuscript is concluded with possible future
directions in Sect. 7.

2 RelatedWorks, Problems and Objectives

In recent studies, it is shown that the weights of neural net-
works can also be related to the actual system parameters
[35–37]. In this context, some modeling and identification
approaches are developed, where it is demonstrated that by
using some reduced or simplified neural network architec-
tures parametric identification can be performed.

The work presented by Ho et al. [38] uses artificial neural
networks to identify unknown systems as first order plus time
delay models. The authors demonstrated that the controller
tuned based on the identified model performed better than
the conventional methods. However, the limitation of this
method is its limited scope where only stable delayed pro-
cess dynamics can be identified. In [39], authors performed
a neural network based technique for the identification of
stable-FOD (first-order delayed) processes. However, the
main drawbacks of this method is that only stable systems
can be estimated and the identified parameters are biased in
the presence of measurement noise.

Other useful contributions can be found in [40, 41], where
discrete transfer function models are identified in terms of
trained neural network weights. However, this method is not
suitable for time delay estimation. Chon and Cohen [42]
presented an approach to estimate time-series model using
trained network employing polynomial activation. However,
the choice of polynomial orders is critical for accurate esti-
mation.

In [43], a linear recurrent neural is proposed for identify-
ing delay-free systems. In this approach, they demonstrated
that the distributed parallel neural structure can be used for
identifying multiple transfer functions together. However,
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this approach cannot be used for identifying unstable sys-
tems having time delay. A simplified block-oriented RNN
is designed in [44], to extract the delay-free, stable Wiener
model, directly in the form of trained network weights. It
is also demonstrated that a neural proportional, integral,
and derivative (PID) controller designed using this identi-
fied model gives better performance on the actual system as
compared to the conventional PID controller.

The above discussions shows that the neural networks are
capable to interpret parametric models and can outperform
the conventional techniques. However, in the existing liter-
ature the parametric identifiability of RNNs are limited to
stable delayed dynamics only, where the time delay estima-
tion is not efficient. This was the main motivation behind
the proposed approach to utilize RNNs for parametric iden-
tification of unstable time delayed systems, which is more
challenging and has not been reported yet. Hence, in this
work, a new method is proposed to identify an unknown
unstable delayed dynamics of any order to its equivalent
unstable first- or second-order delayed (FOD or SOD)model
for improved controller design and model analysis purposes.
Also,where all themodel parameters as: gain, time constants,
and time delay can be derived in terms of the neural network
weights.

The conventional contributions that deals with the prob-
lem of unstable delayed process identification are also
reported in literature. The reaction curve based methods are
developed in [45–47] for unstable-FOD (UFOD) process
modeling, which is simple, but the time delay estimation
is inaccurate. In [48], a closed-loop step response method
is developed. However, a suitable choice of step length and
damping factor is needed for convergence. A curve fitting
approach is proposed in [49] to estimate unstable systems
with delay. However, this approach is practically limited as
the rational model is needed in advance.

The relay feedbackmethods are also found to be useful for
estimating unstable models with time delay [50–58]. How-
ever, their success relay upon the existence of limit cycles,
which is hard to get for unstable systems. Furthermore, in
most of the relay-based techniques, the limit cycles corrupted
bymeasurement noise are required to be cleanedfirst byusing
someFourier series based curve fittingmethods before apply-
ing the relay identification techniques to it [52, 54]. However,
the proposed work does not impose any limiting conditions
on parameters, and the noisy data can be directly used for
model identification.

More literature works that deal with unstable system iden-
tification are included here. The reference [21], talks about
the modified Box–Jenkins models for unstable systems. In
[59, 60], a virtual control method was developed to recover
model of an unstable system through closed-loop data. In
[61], an impulse response approach was adapted for estimat-
ing unstable dynamics. However, in all these references, the

Fig. 1 Closed-loop identification system

time delays are not included in the model structure, which
makes it relatively simpler problem.

From these existing contributions, one can infer that the
estimation of unstable dynamics with time delay is a chal-
lenging area of research. Also, due to various issues like
plant’s safety, predictor’s stability, input’s correlation and
nonlinear optimization, the problem of identifying unstable
delayed systems is less reported in the literature. It is also
discussed that the neural network with its various attractive
features can be a better alternative in solving such problems.

This work proposed a novel closed-loop identification
approach, where the closed-loop data (which is uncorrelated
to noise disturbance) and the controller information (which
is used to ensure predictor’s stability) is utilized in proposed
CLDRNN architecture, to identify the unknown unstable
delayed process. The developed CLDRNN structure is fully
parametric and transparent to carry out the closed-loop iden-
tification of unstable time delay models with more accuracy
and guaranteed convergence.

The main objectives and contributions of this work are
outlined as:

1. An RNN based, closed-loop identification technique is
proposed to identify the unstable process models with
time delay, which can also handle controller complexity
and long process time delays.

2. The mathematical relationships are formulated to get
model and timedelayparameters usingCLDRNNweights.

3. Theorems are proved to obtain the theoretical conditions
on convergence and adaptive learning for the proposed
algorithm, along with the Monte-Carlo experiments to
show the convergence for practical examples.

4. The convergence and parameter initialization issues are
discussed under model uncertainty and noisy datasets.

5. Extensive simulations are performed to demonstrate that
the proposed method can produce robust and unbiased
parameter estimates with excellent convergence.

3 Closed-Loop Identification

Identification in closed-loop has gained a lot of attention
in recent years as most of the industrial systems operate in
closed-loop [22, 34, 62]. Also, the unstable systems cannot
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operated in open-loop because of safety issues. Further, it has
been observed that, formodel-based control relevant applica-
tions the closed-loop configuration is often considered to be
the optimal experimental setup [59, 63]. Additionally, iden-
tifying the closed-loop behavior of the unstable systems is
important as they are ultimately going to be operated in a
closed-loop only [21].

A closed-loop identification system is presented in Fig. 1,
where n is discrete time the reference signal r(n) and an addi-
tional signal r1(n) act as inputs at set-point and at controller’s
C output. The input, output and disturbance signals for the
process Gp are defined as u(n), y(n) and d(n), respectively.

The direct, indirect and joint approaches are popular for
closed-loop identification [34, 62]. In the direct approach,
the open-loop identification techniques can be used directly
by using input u(n) and output y(n) data. The advantage of
this technique is that the knowledge of feedback mechanism
and controller is not required. Still, the limitation is that the
biased estimates are obtained in the presence ofmeasurement
noise due to the correlation between input u(n) and noise
disturbance d(n) [60]. One more disadvantage of a direct
approach is that the user has little control over input design
because the controller derives the process. Therefore, it is not
easy to design inputs,which can produce persistent excitation
and information-rich data [34]. It is mentioned in [21] that,
without ensuring the predictor’s stability the direct closed-
loop identification can not be applied for unstable systems.

In the indirect approach, the overall system relating ref-
erence input r(n) to output y(n) is identified first. Then the
process model for Gp is recovered from the overall closed-
loop system with the knowledge of the controller C . The
main benefits of this approach are uncorrelated input, stable
predictor and any open-loop identification techniques can
be used to identify the overall closed-loop system [22]. The
major drawback of the indirect method is that the recovery
of an equivalent model for process Gp becomes difficult and
requires further model reductions [62].

The joint input–output approach uses the identification of
two separate systems by relating set-point input r(n) with
output y(n) and input u(n), respectively. Then, the equiv-
alent process model for Gp can be recovered by dividing
the first system to the second system. The advantage of this
approach is that the controller is not required to be known.
Still, the drawback associated with this technique is that the
denominator parts (poles) of both identified systems should
be identical for accurate estimation [34, 62].

The objective of this manuscript is to perform improved
closed-loop identification, especially for unstable processes
with time delays and to overcome the limitations associated
with the closed-loop identification approaches, as pointed out
in the above discussion. The proposed technique is presented
in the next section, which can produce unbiased parameter
estimates in a noisy environment, with an added advantage

to directly recover an unknown unstable delayed dynamics
in terms of UFOD and USOD models.

The proposed method has following assumptions for per-
forming identification experiment:
A1: The data generation for identification is performed in
closed-loop with a known controller.
A2:The reference input is piecewise constant andpersistently
exciting to get information-rich data.
A3: The initial conditions are taken as zero for both input as
well as output signals.
A4: A zero mean and finite variance white noise is used as
disturbance signal.

Remark 1 The above assumptions are the standard consid-
erations which are adopted in most of the identification
techniques. The assumption in A1 is essential to perform
identification of unstable systems in closed-loop. Otherwise,
in open-loop, the output would be unbounded resulting in
safety concerns of the plants. Also, in cases where the con-
trollers are not known the joint input–output approach can
be employed. Furthermore, the applicability of proposed
approach method will still be valid if the assumptions in A2,
A3 & A4 are relaxed. However, in that situation it might have
an impact on convergence, accuracy and consistency of the
estimated parameters.

4 Proposed CLDRNN Identification Approach

This section is devoted in developing the following novel
concepts of the proposed work.

1. A novel CLDRNN architecture is proposed to enable
closed-loop identification.

2. The unique thing about CLDRNN is that the time delayed
process model can be directly extracted from its network
weights.

3. New mathematical formulation has been developed in
Theorems 1 and 2 for computing unstable delayed model
parameters.

4. The adaptive learning rate criterion for CLDRNN train-
ing is obtained by Lyapunov theory in Theorem 1.

5. An original condition has been derived for fractional
delay, which ensures the guaranteed convergence of the
proposed algorithm.

The proposed CLDRNN based closed-loop identification
and modeling scheme is shown in Fig. 2, where it can be
observed that the CLDRNN mimics the complete closed-
loop system. The CLDRNN consists of three layers. The first
layer referred to the error layer,which calculates the error sig-
nal e(n) between reference input r(n) and estimated output
ŷ(n). The second layer is called the controller layer, whose

123



Arabian Journal for Science and Engineering (2024) 49:7487–7505 7491

Fig. 2 The proposed closed-loop identification and modeling scheme
using CLDRNN

structure and weights are selected according to a known con-
troller, which is used to stabilize the actual unstable process.
The last layer is referred to as the process layer, which is
responsible for capturing the unknown unstable delayed pro-
cess dynamics in terms of its optimized weights.

The proposed CLDRNN is trained with closed-loop data,
and during training weights of error and controller layer are
kept fixed. In contrast, weights of process layer are altered to
reduce the difference error ε(n) between actual output y(n)

and estimated output ŷ(n). Finally, the process model can
be recovered directly through the process layer weights of
CLDRNN as suitable UFOD or USOD process models.

A more detailed CLDRNN architecture, utilizing the par-
allel connection mode, is shown in Fig. 3, which includes
three layers whose connection weights are w and activation
functions denoted by f (

∑
). The proposed CLDRNN con-

tains all the components of a typical closed-loop system,
i.e., error computation part, controller part, and the process
identifier part within its architecture. The advantage of the
CLDRNN structure is that it is trained with closed-loop data
to directly identify the unknown unstable delayed dynamics
in terms of UFOD and USOD model parameters. In the fol-
lowing subsection, a method is demonstrated, to include a
PID-type controller in the controller layer of the CLDRNN.

4.1 Inclusion of the PID-Type Controller in the
CLDRNN

It is clearly mentioned in the literature [22, 34, 62] that a
pre-stabilizing controller of some kind is essentially required
for the identification of unstable system dynamics. Also,
the identification experiment for unstable processes cannot
be performed, without ensuring the stability of the overall
closed-loop system [21, 48]. The authors in [59, 60] recom-
mended the use of stabilizing controller as virtual controller
to demonstrate its utility in identifying unstable systems. In
general, the PID-type (P, PI, PD, or PID) controllers are com-
monly employed to stabilize the unstable dynamics in order

to generate bounded data for identification [36]. In the pro-
posed approach, this controller information has been utilized
in the CLDRNN structure as virtual controller [59, 60], to
gain the following advantages:

1. It helps the CLDRNN structure to mimic the complete
closed-loop system, from which the equivalent models
(UFOD or USOD) of actual unstable delayed processes
can be directly extracted in terms of the process model
layer weights.

2. It helps in utilizing the reference (set point) input r(n)

directly for identification, which is uncorrelated to the
noise disturbances d(n).

3. It helps in keeping the CLDRNN structure stable (gen-
erates stable output ŷ(n) predictions) during training, as
we are identifying unstable systems.

In the CLDRNN architecture of Fig. 3, for error calcula-
tion, the reference signal r(n) is subtracted from estimated
output ŷ(n) by setting the weights we

0 = 1 and we
1 = −1. To

set the weights in the second layer of the CLDRNN, consider
the parallel form of PID controller in terms of unit sample
delay (USD) operator z−1 with uniform sampling time Ts as

C(z−1) = Kp + KiTsz−1

1 − z−1 + Kdβ(1 − z−1)

1 − (1 − βTs)z−1 , (1)

where Kp is proportional gain, Ki is integral gain, Kd is
derivative gain, and β represents the filter coefficient of the
derivative term. The PID controller presented in (1), is pop-
ular and extensively used in various industrial applications.
The reason is its simplicity and easy implementation on dig-
ital hardware in almost all computer-aided controllers, with
the additionof holddevice such as the zero-order hold (ZOH),
to generate analog control signals for the actual process. If
the error signal e(n) is the input and u(n) is the output of the
CLDRNN’s controller layer then according to (1), one can
have the following difference equation representation as

u(n) =(2 − βTs)u(n − 1) + (βTs − 1)u(n − 2)

+ (Kp + Kdβ)e(n) + (KiTs − Kp(2 − βTs)

− 2Kdβ)e(n − 1) + (Kdβ + Kp(1 − βTs)

− KiTs(1 − βTs))e(n − 2), (2)

where the weights of the controller layer of CLDRNN are
computed by using known controller parameter values in (2)

123



7492 Arabian Journal for Science and Engineering (2024) 49:7487–7505

Fig. 3 The proposed CLDRNN architecture for the closed-loop process identification as UFOD and USOD models. Delay represents unit sample
delay. Note that, the terms with dashed lines are used for USOD system modeling

as:

wc
0 = Kp + Kdβ, (3)

wc
1 = KiTs − Kp(2 − βTs) − 2Kdβ, (4)

wc
2 = Kdβ + Kp(1 − βTs) − KiTs(1 − βTs), (5)

wc
3 = 2 − βTs, (6)

wc
4 = βTs − 1. (7)

Therefore, for any combinations like P, PI, PD, or PID, the
controller layer weights of the CLDRNN can be calculated
by using expressions from (3) to (7).

Remark 2 It is also possible to consider a more sophisticated
PID-type controller structure that includes nonlinearities,
integral windups, and saturation terms in the controller layer
of the proposed CLDRNN, by incorporating separate train-
ing of controller layer with suitable activation functions [23,
44]. However, to keep the analysis fully parametric, we have
restricted the proposed work to a PID controller of type (1)
with a linear activation function only.

The following subsections used to develop a new methodol-
ogy to obtain the parameters of UFOD and USOD system
models in terms of the CLDRNN weights. The main attrac-
tion of the developed mathematical formulation is that the
integer and non-integer (fractional) parts of the time delay
can also be computed along with other rational parameters,
directly from the process model layer of the CLDRNN.

4.2 UFOD System Identification Using CLDRNN

Let the UFOD system models G(s) to be identified is repre-
sented as:

Ĝ (s) = K̂ e−θ̂s

τ̂ s − 1
, (8)

where K̂ is the gain, θ̂ is the time delay and τ̂ is the time
constant of the identified UFOD model. In the proposed
technique the unknowns (K̂ , θ̂ and τ̂ ) of (8) are determined
through closed-loop training of the CLDRNN. Considering
that the time delay θ̂ is expressed in discrete domain as the
combination of integer θ̂I and fractional θ̂ f ;−1 < θ̂ f < 1,

delay terms as θ̂ =
(
θ̂I + θ̂ f

)
Ts, then for UFOD modeling

the typical estimated output of the process model layer of the
CLDRNN is given by:

ŷ (n) = wl
1 ŷ (n − 1) + wi

θ̂I+1
u
(
n − θ̂I − 1

)

+ wi
θ̂I+2

u
(
n − θ̂I − 2

)
, (9)

where the terms wl
1, w

i
θ̂I+1

and wi
θ̂I+2

in (9) are the associ-

ated weights of ŷ(n − 1), u(n − θ̂I − 1) and u(n − θ̂I − 2),
respectively. Now by using the USD operator z−1 such that
z−1u(n) = u(n − 1) in (9), one can have an equivalent
discrete-time transfer function model corresponding to the
continuous-time UFOD model of (8) as:

Ĝ(z−1) =
wi

θ̂I+1
z−1 + wi

θ̂I+2
z−2

1 − wl
1z

−1
z−θ̂I . (10)
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To recover the model in (8), in terms of the trained
CLDRNN’s process layer weights present in (10), a ZOH
based modified Z-transform [34, 64, 65] approach is uti-
lized, which is written and proved in Theorem I outlined as:

Theorem 1 Consider the modified Z-transform of UFOD
system with ZOH = (

1 − e−sTs
)
/s, to have the following

relations as:

Z
⎡

⎣L−1

⎧
⎨

⎩

(
1 − e−sTs

)

s

K̂ e
−s
(
θ̂I+θ̂ f

)
Ts

(
τ̂ s − 1

)

⎫
⎬

⎭

⎤

⎦ ;−1 < θ̂ f < 1

=
wi

θ̂I+1
z−1 + wi

θ̂I+2
z−2

1 − wl
1z

−1
z−θ̂I , where

K̂ =
(
wi

θ̂I+1
+ wi

θ̂I+2

)
/(wl

1 − 1), τ̂ = Ts/log
(
wl
1

)
,

θ̂ f = 1 − log

(
wi

θ̂I +2
+wi

θ̂I +1
wl
1

wi
θ̂I +1

+wi
θ̂I +2

)

/log(wl
1), θ̂ = (θ̂I + θ̂ f )Ts .

(11)

Proof Let us consider the left hand side term of the Theorem,
with substitution z−1 = e−sTs as

Ĝ(z−1) = (1 − z−1)z−θ̂IZ
[

L−1

{
K̂

s(τ̂ s − 1)
e−sθ̂ f Ts

}]

,

(12)

where denoted byL−1 is the inverse Laplace transform. Now
by using partial fraction computation in (12), to get

Ĝ(z−1) = (1 − z−1)z−θ̂I ×

Z
[

L−1

{
K̂ τ̂e−sθ̂ f Ts

τ̂ s − 1

}

− L−1

{
K̂ e−sθ̂ f Ts

s

}]

.

(13)

The subsequent Lemma andCorollary are proved to simplify
the expression in (13) as:

Lemma 1 For the following unstable transfer function the
modified Z-transform is computed as:

Z
[

L−1

{
τ̂e−sθ̂ f Ts

τ̂ s − 1

}]

;−1 < θ̂ f < 1 = e−(θ̂ f −1)Ts/τ̂ z−1

1 − eTs/τ̂ z−1
.

(14)

Proof Considering the LHS of (14) with the time-shifting
property of Laplace transform, to get:

Z
[

L−1

{
τ̂e−sθ̂ f Ts

τ̂ s − 1

}]

= Z
[
e(t−θ̂ f Ts )/τ̂1(t − θ̂ f Ts)

]
,

(15)

where 1(t − θ̂ f Ts) represents an unit step signal delayed by
θ̂ f Ts .

Now, computing the sum of geometric progression with

infinite terms and |z| >

∣
∣
∣eTs/τ̂

∣
∣
∣, to have

e−θ̂ f Ts/τ̂
∞∑

n=1

enTs/τ̂ z−n = e−(θ̂ f −1)Ts/τ̂ z−1

1 − eTs/τ̂ z−1
. (16)

Corollary 1 For a delayed integral transfer function the mod-
ified Z-transform is given as:

Z
[

L−1
{
1

s
e−sθ̂ f Ts

}]

;−1 < θ̂ f < 1 = z−1

1 − z−1 . (17)

Proof To proof this, do the substitution of 1/τ̂ = 0, in (14),
to get

Z
[

L−1
{
1

s
e−sθ̂ f Ts

}]

= z−1
(
1 − z−1

) . (18)

Now, applying the outcomes of Lemma 1, and Corollary 1,
in (13), to get

Ĝ(z−1) = (1 − z−1)z−θ̂I K̂

[
e−(θ̂ f −1)Ts/τ̂ z−1

1 − eTs/τ̂ z−1
− z−1

1 − z−1

]

(19)

on simplifying (19), one can have

Ĝ(z−1) =K̂

(
e−(θ̂ f −1)Ts/τ̂ − 1

)
z−1

1 − eTs/τ̂ z−1
z−θ̂I

+ K̂

(
eTs/τ̂ − e−(θ̂ f −1)Ts/τ̂

)
z−2

1 − eTs/τ̂ z−1
z−θ̂I (20)

if in (20), each individual z−1 power coefficients are assigned
in terms of the CLDRNN’s process model layer weights, to
have

Ĝ(z−1) =
wi

θ̂I+1
z−1 + wi

θ̂I+2
z−2

1 − wl
1z

−1
z−θ̂I , (21)

where the coefficients of (21) and (20) are related by

wi
θ̂I+1

= K̂
(
e−(θ̂ f −1)Ts/τ̂ − 1

)
, (22)

wi
θ̂I+2

= K̂
(
eTs/τ̂ − e−(θ̂ f −1)Ts/τ̂

)
, (23)

and

wl
1 = eTs/τ̂ . (24)
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The model parameters of UFOD system in (8) can be com-
puted from (22), (23) and (24) as:

K̂ =
(
wi

θ̂I+1
+ wi

θ̂I+2

)
/(wl

1 − 1), (25)

τ̂ = Ts/log
(
wl
1

)
, (26)

θ̂ f = 1 − log

⎛

⎝
wi

θ̂I+2
+ wi

θ̂I+1
wl
1

wi
θ̂I+1

+ wi
θ̂I+2

⎞

⎠ /log(wl
1), (27)

and

θ̂ = (θ̂I + θ̂ f )Ts . (28)

Remark 3 Note that, the parameters in the expressions of
(25), (26) and (27) can easily be recovered from optimized
CLDRNN weights. However, the parameter θ̂I is estimated
by an iterative algorithm, whose details are presented in the
next section.

4.3 USOD System Identification Using CLDRNN

Now, consider the case when an unknown unstable process
dynamics identified as the following USOD process model
given by:

Ĝ (s) = K̂ e−θ̂s
(
τ̂1s − 1

) (
τ̂2s + 1

) , (29)

where the notations K̂ , θ̂ and τ̂1 & τ̂2 are used to represent
gain, time delay and time constants of the model. The typ-
ical CLDRNN’s output response for identifying systems as
USOD model in (29) is given by

ŷ (n) = wl
1 ŷ (n − 1) + wl

2 ŷ (n − 2) + wi
θ̂I+1

u
(
n − θ̂I − 1

)

+ wi
θ̂I+2

u
(
n − θ̂I − 2

)
+ wi

θ̂I+3
u
(
n − θ̂I − 3

)
,

(30)

rewrite the expression in (30), to its equivalent discrete time-
delayed transfer function form as:

Ĝ(z−1) =
wi

θ̂I+1
z−1 + wi

θ̂I+2
z−2 + wi

θ̂I+3
z−3

(
1 − α1z−1

) (
1 − α2z−1

) z−θ̂I , (31)

where the terms α1 and α2 in (31) are defined as:

α1 = 0.5(wl
1 + ((wl

1)
2 + 4wl

2)
0.5), (32)

α2 = 0.5(wl
1 − ((wl

1)
2 + 4wl

2)
0.5). (33)

The identification formulation of USOD model of (29), in
terms of the CLDRNN process layer weights is presented as
following:

Theorem 2 Consider the modified Z-transform of USOD
system as:

Z
[

L−1

{(
1 − e−sTs

)

s

K̂
(
τ̂1s − 1

)
(τ̂2s + 1)

e
−s
(
θ̂I+θ̂ f

)
Ts

}]

;

− 1 < θ̂ f < 1 =
wi

θ̂I+1
z−1 + wi

θ̂I+2
z−2 + wi

θ̂I+3
z−3

(
1 − α1z−1

) (
1 − α2z−1

) z−θ̂I ,

wi th α1 in (32) and α2 in (33), then

K̂ =
wi

θ̂I +1
+wi

θ̂I +2
+wi

θ̂I +3

(α1−1)(1−α2)
, τ̂1 = Ts

log(α1)
, τ̂2 = − Ts

log(α2)
,

θ̂ f = τ̂1
Ts
log

⎛

⎝ K̂ τ̂1α1(α2−α1)

(τ̂1+τ̂2)

[

wi
θ̂I +3

−wi
θ̂I +1

α1+K̂α1(α2−1)

]

⎞

⎠ ,

θ̂ = (θ̂I + θ̂ f )Ts .

(34)

Proof Let us consider the LHS term of Theorem 2, by replac-
ing z−1 by e−sTs , to get the expression

Ĝ(z−1) = (1 − z−1)z−θ̂I ×

Z
[

L−1

{
K̂

s(τ̂1s − 1)(τ̂2s + 1)
e−sθ̂ f Ts

}]

, (35)

on employing partial fraction computation in (35), to get

Ĝ(z−1) = (1 − z−1)z−θ̂I K̂
(
τ̂1 + τ̂2

) ×

Z
[

L−1

{(
τ̂ 21(

τ̂1s − 1
) + τ̂ 22(

τ̂2s + 1
) −

(
τ̂1 + τ̂2

)

s

)

e−sθ̂ f Ts

}]

(36)

by applying Lemma 1 and Corollary 1, in (36), to compute
the following terms:

Z
[

L−1
{

τ̂1

τ̂1s − 1
e−sθ̂ f Ts

}]

= e−(θ̂ f −1)Ts/τ̂1 z−1

1 − eTs/τ̂1 z−1
;−1 < θ̂ f < 1, (37)

Z
[

L−1
{

τ̂2

τ̂2s + 1
e−sθ̂ f Ts

}]

= e(θ̂ f −1)Ts/τ̂2 z−1

1 − e−Ts/τ̂2 z−1
;−1 < θ̂ f < 1, (38)

and

Z
[

L−1

{
K̂

s
e−sθ̂ f Ts

}]

= K̂ z−1

1 − z−1 ;−1 < θ̂ f < 1, (39)
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on substituting (37), (38) and (39) into (36), then after simpli-
fication and collecting different z−1 power coefficients terms,
to have

Ĝ(z−1) =
wi

θ̂I+1
z−1 + wi

θ̂I+2
z−2 + wi

θ̂I+3
z−3

(
1 − α1z−1

) (
1 − α2z−1

) z−θ̂I , (40)

where the coefficient terms are given by

wi
θ̂I+1

= K̂

[
τ̂1e−(θ̂ f −1)Ts/τ̂1 + τ̂2e(θ̂ f −1)Ts/τ̂2

τ̂1 + τ̂2
− 1

]

, (41)

wi
θ̂I+2

= K̂
(
eTs/τ̂1 + e−Ts/τ̂2

)

− K̂

(τ̂1 + τ̂2)

[
τ̂1e

−(θ̂ f −1)Ts/τ̂1
(
1 + e−Ts/τ̂2

)]

− K̂

(τ̂1 + τ̂2)

[
τ̂1e

(θ̂ f −1)Ts/τ̂2
(
1 + eTs/τ̂1

)]
, (42)

wi
θ̂I+3

= K̂

(τ̂1 + τ̂2)

[
τ̂1e

−(θ̂ f −1)Ts/τ̂1e−Ts/τ̂2
]

+ K̂

(τ̂1 + τ̂2)

[
τ̂2e

(θ̂ f −1)Ts/τ̂2eTs/τ̂1
]

− K̂ eTs/τ̂1e−Ts/τ̂2 , (43)

and

α1 = eTs/τ̂1 , α2 = e−Ts/τ̂2 . (44)

Now, add (41), (42) and (43) with substitution from (44), to
have

K̂ =
wi

θ̂I+1
+ wi

θ̂I+2
+ wi

θ̂I+3

(α1 − 1) (1 − α2)
, (45)

from (44), one can have

τ̂1 = Ts/log (α1) , τ̂2 = −Ts/log (α2) , (46)

on multiplying (41), with eTs/τ̂1 and subtracting it from (43),
with substitutions from (44), to have

θ̂ f = τ̂1

Ts

log

⎛

⎝ K̂ τ̂1α1 (α2 − α1)

(τ̂1 + τ̂2)
[
wi

θ̂I+3
− wi

θ̂I+1
α1 + K̂α1 (α2 − 1)

]

⎞

⎠ , (47)

also, the estimated time delay parameter θ̂ is computed by
θ̂ = (θ̂I + θ̂ f )Ts , as in (28).

Based on the formulation done in this section, a guar-
anteed convergence condition has been proposed and an
iterative learning algorithm is developed in following section

to solve the nonlinear optimization problem for identifying
time-delayed systems.

5 Guaranteed Convergence Condition and
Learning of CLDRNN

On the basis of the formulations done in the previous sec-
tion, it can be inferred that the guaranteed convergence for
obtaining optimal model parameters can only be obtained if
the following condition is satisfied as:

− 1 < θ̂ f < 1. (48)

Hence, by monitoring a single parameter value only, one can
ensure the optimal model estimation and algorithms conver-
gence at the same time. Also, for identifying the time delay
θ̂ , there is no direct formula for computing the integer part
θ̂I ; therefore, it is recommended to extract it from the non-
integer part iteratively until the convergence condition given
in (48) is satisfied.

The proposed iterative process for CLDRNN training is
begin with the initial choice of the parameter θ̂I = 0, where
an arbitrary choice of integer time delay can also be consid-
ered based on some intuitive knowledge. After each iteration,
the following expression is used to update the integer part θ̂I
from the estimated fractional part θ̂ f as:

θ̂I (present) = θ̂I (previous) + θ̂ f (present)

− rem
{
θ̂ f (present), 1

}
, (49)

the updated value θ̂I (present) is then used in next iteration
and the same updation is repeated until the guaranteed global
convergence condition −1 < θ̂ f < 1 is satisfied.

Remark 4 Note that, the approach discussed above plays an
instrumental role in estimating unbiased parameters and in
achieving global convergence even if the measurement noise
severely corrupts the identification data or the modeling
uncertainties are present. The reason behind this is the identi-
fication of θ̂ f , that enables an accurate estimate of θ̂I , which
then further improves the identification of the other model
parameters as well.

Let the cost function Fk at kth (used as subscript k in all
subsequent representations) training epoch is minimized to
train the proposed CLDRNN as:

Fk = 1

2N

N∑

n=1

ε2k (n). (50)
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where N denotes the number of training samples and εk(n)

is the difference error at kth epoch, computed by:

εk(n) = y(n) − ŷk(n). (51)

The terms y(n) and ŷk(n) in (51) are true and identifiedmodel
outputs. If all errors are accumulated in a single difference
error vector Ξk as:

Ξk = [ εk(1) εk(2) ... εk(N ) ]T, (52)

where T denotes the transpose operation. For updating net-
work weights of CLDRNN following rule is used

Wk+1 = Wk − (J Tk Jk + μI )−1gk, (53)

where W is the weight vector, J represents Jacobian matrix,
μ denotes the scalar coefficient, which controls learning, I
represents identity matrix, and the term g represents the gra-
dient vector.

If the following terms are introduced in (53) as:

�Wk = Wk+1 − Wk, (54)

and

ηk =
(
J Tk Jk + μI

)−1
, (55)

where �W is the weight deviation vector and η represents
learning rate. Now, substituting the expressions of (54) and
(55) in (53), to get

�Wk = −ηkgk . (56)

At kth epoch CLDRNN weight vector is defined as:

Wk = [w1
k , w

2
k , ..., w

M
k ]T, (57)

where M represents weight vector length. For each network
weight, the Jacobian and gradient are computed by:

J j
k = ∂Ξk

∂w
j
k

, (58)

and

g j
k = 1

N

N∑

n=1

(

εk(n)
∂εk(n)

∂w
j
k

)

, (59)

by using (55), (56) and (59), one can compute weight devia-
tion in each weight as:

�wk = −ηk
1

N

N∑

n=1

(

εk(n)
∂εk(n)

∂wk

)

. (60)

In following discussion, a suitable choice of leaning rate η

is computed to speedup CLDRNN training. The concept of
Lyapunov theory [23, 44, 66, 67] is adapted here to derive
and prove the following Theorem 3.

Theorem 3 During CLDRNN training, at kth epoch, the
learning rate ηk should met the following condition to reduce
cost function value:

0 < ηk <
2

1
N

N∑

n=1

(
∂ ŷk (n)
∂wk

)2
. (61)

Proof To prove this, define a Lyapunov function as

Vk = N × Fk = 1

2

N∑

n=1

ε2k (n), (62)

let the Lyapunov function deviation is defined as:

�Vk = Vk+1 − Vk = 1

2

N∑

n=1

(
ε2k+1(n) − ε2k (n)

)
. (63)

If the difference error deviation is defined as:

�εk(n) = ∂εk(n)

∂wk
�wk, (64)

where ∂ is the partial derivative operator. Now by using (60),
the expression in (64) can be rewritten as

�εk(n) = −ηk
∂εk(n)

∂wk

1

N

N∑

n=1

(

εk(n)
∂εk(n)

∂wk

)

, (65)

since

εk+1(n) = εk(n) + �εk(n), (66)

by putting (65) and (66) into (63), to have

�Vk = 1

2

N∑

n=1

(εk+1(n) + εk(n)) (εk+1(n) − εk(n))

�Vk = 1

2

N∑

n=1

(2εk(n) + �εk(n)) (�εk(n)) ,

�Vk =
N∑

n=1

(

εk(n)�εk(n) + 1

2
(�εk(n))2

)

�Vk =
N∑

n=1

(

εk(n)
∂εk(n)

∂wk
�wk + 1

2

(
∂εk(n)

∂wk
�wk

)2
)

(67)
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by substituting (60) in (67), one can have

�Vk = −ηk
1

N

(
N∑

n=1

εk(n)
∂εk(n)

∂wk

)2

+(ηk)
2 1

2

N∑

n=1

(
∂εk(n)

∂wk

)2
(
1

N

N∑

n=1

εk(n)
∂εk(n)

∂wk

)2

�Vk = ηk

N

(
N∑

n=1

εk(n)
∂εk(n)

∂wk

)2 (
ηk

2N

N∑

n=1

(
∂εk(n)

∂wk

)2

− 1

)

.

(68)

Now, observe the three terms ηk , 1
N

N∑

n=1

(
∂εk (n)
∂wk

)2
and

(
ηk
2N

N∑

n=1

(
∂εk (n)
∂wk

)2 − 1

)

, in (68), where the learning rate in

the first term should be ηk > 0. The second term will remain

positive 1
N

N∑

n=1

(
∂εk (n)
∂wk

)2 ≥ 0.

Therefore, to satisfy the Lyapunov criterion to achieve
�Vk < 0, which is also equivalent to get

Vk+1 < Vk or Fk+1 < Fk . (69)

The third term in (68), must be negative as(
ηk
2N

N∑

n=1

(
∂εk (n)
∂wk

)2 − 1

)

< 0. Hence, by considering

these facts, and using the relation in (51), as ∂εk (n)
∂wk

=
− ∂ ŷk (n)

∂wk
, one can have the condition for adaptive learning

rate as

0 < ηk <
2

1
N

N∑

n=1

(
∂ ŷk (n)
∂wk

)2
. (70)

Remark 5 Note that, the condition of Theorem 3 on the
adaptive learning rate ηk is not sufficient to achieve global
convergence condition −1 < θ̂ f < 1. This is due to
the multi-model nature of the cost function optimized for
the identification of time-delayed systems. However, the
global convergence can be obtained by utilizing an itera-
tive approach presented in the proposed Algorithm 1 with
adaptive training of the CLDRNN until satisfying the global
convergence condition −1 < θ̂ f < 1.

The complete proposed methodology is summarized as
sequential steps in Algorithm 1. Moreover, a connection
architecture is presented in Fig. 4, which shows the detailed
interactionbetween theproposed algorithmand theCLDRNN
to identify and model an unknown unstable delayed dynam-
ics models.

Algorithm 1: Proposed Identification Algorithm using
CLDRNN
Define:
kmax : maximum epochs,
μ: scalar coefficient
μ f : scalar multiplier
μmax : scalar’s maximum limit
F∗: Cost function goal
gmin : minimum gradient
1. Select a PID (Kp, Ki , Kd , β) controller to generate
identification data;
2. Construct the CLDRNN architecture according to Figure 3;
3. Use PID controller gains (Kp, Ki , Kd , α) to set the weights in
the CLDRNN’s controller layers using (3) to (7) and disable their
learning;
for Iteration i = 1 : converge do

(a) Use θ̂ iI = 0, for the 1st iteration otherwise, use the value
computed in step (c) to update CLDRNN’s architecture.
Initialize μ and set the process model layer weights to ’zero’.
for Epoch k = 1 : kmax do

I. Compute Fk , Ξk , Jk and gk using (50), (52), (58) and
(59);
II. Compute ηk using (55), while validating Theorem 3 in
(61);
III. If {(μ = μmax ) or (Fk ≤ F∗) or (gk ≤ gmin)} ;
Then break ;
IV. Update Wk+1 by (53) and compute Fk+1 by (50);
V. If (Fk+1 < Fk) Then Update: μ = μ × μ f ; Else
Update: μ = μ/μ f and go to step II;

end
(b) Compute θ̂ f using (27) or by using (47);
(c) If Global convergence (−1 < θ̂ f < 1) of (48) is met;
Then break ;
Else Compute: θ̂ i+1

I = θ̂ iI + θ̂ f − rem(θ̂ f , 1) using (49);
end
4. Use the optimized CLDRNN weights to return the UFOD
model using (11) or the USOD model using (34).

6 Simulation Study

In this section, some examples of unstable process dynamics
are used for validating the proposed identification method.
The proposed Algorithm 1 is applied to the CLDRNN archi-
tecture, which is then trained with closed-loop identification
data to model the unstable time-delayed systems.

The MSE (mean square of errors) criteria for closed-loop
data has been adapted here for the identified models compar-
ison as:

MSE = 1

2N

N∑

n=1

(
y (n) − ŷ (n)

)2 (71)

where y(n) is the actual output, ŷ(n) is the output of the
identifiedmodel, and N is the number of training samples. To
test the identification robustness of proposed method a white
Gaussian noise as disturbance signal d(n) is added in the
true output. The mean value of noise signal is (m) considered
‘zero’, while variance (σ 2) is ’nonzero’. The resulting signal
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Fig. 4 Connection architecture for the closed-loop time-delayed process identification using CLDRNN

to noise ratio (SNR) is expressed in dB scale in terms of
signal power (Psignal) and noise power (Pnoise) as

SNR = 10log10

(
Psignal
Pnoise

)

dB. (72)

Some random experiments as Monte-Carlo tests are
performed for analyzing the ability of the identification tech-

nique to handle the uncertainties caused due to measurement
noise. Therefore, for a given SNR, total 100 Monte-Carlo
tests where each simulation is performed with different noise
seeds to test the accuracy and convergence of the proposed
approach, where to represent the identification results each
estimated parameter’s mean and standard deviation values
are computed. All the simulation experiments of this section
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Table 1 CLDRNN’s training parameters

Training parameters Value

Maximum number of epochs (kmax) 50

Initial value of scalar coefficient (μ) 10−4

Scalar multiplier (μ f ) 0.1

Scalar’s maximum limit (μmax) 108

Cost function goal (F∗) 0.0

Minimum gradient (gmin) 10−6

Table 2 Comparison of the identified model parameters for Example 1

Method K̂ τ̂ θ̂ MSE

Proposed 4.0001 −4.0002 2.0001 1.32 × 10−8

Ananth et al. [45] 4.0110 −4.0690 2.0000 2.12 × 10−3

Pandey et al. [57] 4.0018 −4.0033 2.0006 9.61 × 10−7

Park et al. [50] 4.0100 −3.3250 2.0400 7.45 × 10−1

Padhy et al. [16] 4.0051 −3.9997 2.0013 3.54 × 10−5

True values 4.0000 −4.0000 2.0000 −

are performed using the MATLAB (Version R2018b) soft-
ware.

6.1 Example 1

The first-order unstable process with time delay commonly
used to model bio-reactors and chemical process plants. In
this example, we consider an unstable first-order process,
studied in [16, 45, 50, 57], as

G (s) = 4

4s − 1
e−2s . (73)

A PI controller with Kp = 0.5 and Ki = 0.004 is used
to ensure the closed-loop stability of the system in (73). The
closed-loop system is simulated with pseudo-random binary
sequence (PRBS) input having 5000 samples each at 0.12 s
interval and the clockperiod is 20 samples. This identification
data is then used in the proposed CLDRNN identification
Algorithm 1, with training parameters given in Table 1. The
fixed controller layer weights computed by (3) to (7) aswc

0 =
0.5, wc

1 = −0.9995, wc
2 = 0.4995, wc

3 = 2, and wc
4 = −1.

The identified model using the proposed approach compared
with other literature methods in Table 2. All the identified
models in Table 2 are validated using the MSE criterion in
(71), for a closed-loop unit step response of 50 s duration.
The identification results of Table 2 show that the model
estimated by proposed approach produces minimum error
compared to other methods.

The proposed method is also validated when the identifi-
cation data is corrupted by the measurement noise with three

different cases of SNR’s of 20-dB, 30-dB, and 40-dB, respec-
tively. A total of 100Monte-Carlo simulations are performed
with different noise seeds for each SNR value. The identifi-
cation results presented in Table 3, where all the estimated
process parameters are written in terms of their mean and
standard deviation values. It is observed in Table 3, that the
proposed method is robust and maintains identification con-
sistency even in the presence of highmeasurement noisewith
accurate mean parameter and less standard deviation values.

Furthermore, in order to visualize the consistent identi-
fication accuracy of the proposed method, the case of 100
Monte-Carlo simulations with 20 dB SNR is considered. The
results of all 100 simulations are plotted as theNyquist graphs
and the evolution of the CLDRNN weights with iterations in
Figs. 5 and 6. The Nyquist plots in Fig. 5 show that all the
identified model’s frequency responses accurately follow the
true one. The evolution of the CLDRNNweights is shown in
Fig. 6, where it can be observed that the weight correspond-
ing to the unstable pole (wl

1 > 1) has small deviation and fast
convergence, while the weights wi

θ̂I+1
and wi

θ̂I+2
has more

deviation and takes more iterations to converge.
The evolution of the MSE cost function Fk with train-

ing epochs (k) is depicted in Fig. 7, where one can observe
that for all the 100 Monte-Carlo simulations, the MSE (Fk)
value decrease with each training epoch by using the adap-
tive learning rate as described in Theorem 3 and converges
to a value nearer to zero.

To include the case of identifying time varying system a
situation is considered,where it is assumed that the timedelay
of the system in (73) is changed from 1 s second to 2 s at time

Fig. 5 Nyquist plots of the identified models for the 100 Monte-Carlo
simulations of Example 1, with 20 dB SNR. Identified models (yellow
line), actual process (blue line)
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Fig. 6 Evolution of the CLDRNN’s process layer weights for the 100
Monte-Carlo simulations of Example 1, with 20 dB SNR

Fig. 7 Evolution and convergence of the MSE (Fk ) for the 100 Monte-
Carlo simulations of Example 1, with 20 dB SNR

1200 s. The identification experiment is performed for 2400 s
with same settings. The proposed identification Algorithm 1
is applied on batch data and the evolution of estimated param-
eters are shown in Fig. 8. As one can observe in Fig. 8 that the

Fig. 8 Evolution of estimated parameters for varying time delay in
Example 1, with 20 dB SNR

Table 4 Comparison of the identified UFOD and USOD models for
Example 2

Model Identified model MSE

Example 2 1.0e−0.5s

1.0s2+1.5s−1
–

Proposed USOD 1.0001e−0.5004s

1.0003s2+1.5001s−1
1.67 × 10−7

USOD of [52] 1.0000e−0.5001s

1.0000s2+1.5020s−1
9.15 × 10−7

USOD of [54] 1.0e−0.5s

1.0191s2+1.5095s−1
8.72 × 10−5

USOD of [48] 0.9999e−0.4999s

1.0000s2+1.5000s−1
2.23 × 10−7

USOD of [55] 1.0e−0.5s

1.3925s2+1.4195s−1
3.56 × 10−2

USOD of [56] 1.0e−0.5s

1.3793s2+1.4137s−1
3.46 × 10−2

Proposed UFOD 0.9768
2.1735s−1 e

−1.0074s 3.06 × 10−3

UFOD of [47] 0.9657
2.4278s−1 e

−1.0416s 2.05 × 10−2

UFOD of [46] 1.061
2.545s−1 e

−1.06s 1.34 × 10−2

UFOD of [50] 1.002
2.347s−1 e

−1.067s 5.43 × 10−3

UFOD of [17] 0.7534
2.1642s−1 e

−1.0412s 5.12 × 10−1

Table 3 Results of 100
Monte-Carlo simulation for
Example 1

SNR Example 1
(

4.0
4.0s−1 e

−2.0s
)

Identified parameters

Gain (K̂ ) Time constant (τ̂ ) Delay (θ̂ )

20-dB 4.0049(±0.0175) − 4.0091(±0.0255) 2.0027(±0.0051)

30-dB 4.0011(±0.0112) − 4.0064(±0.0142) 2.0021(±0.0032)

40-dB 4.0008(±0.0061) − 4.0063(±0.0078) 2.0021(±0.0017)

True Parameters 4.0000 − 4.0000 2.0000
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Table 5 Identified model
parameters’ mean and standard
deviation values for 100
Monte-Carlo simulation of
Example 2, with different SNR

SNR Example 2
(

1.0
(2.0s−1)(0.5s+1) e

−0.5s
)

Identified parameters
K̂ τ̂1 τ̂2 θ̂

20 dB 1.0001(±0.0015) − 2.0007(±0.0041) 0.5005(±0.0051) 0.4995(±0.0076)

30 dB 1.0001(±0.0009) − 2.0004(±0.0025) 0.5003(±0.0032) 0.4999(±0.0045)

40 dB 1.0000(±0.0005) − 2.0002(±0.0013) 0.5001(±0.0016) 0.5001(±0.0024)

True 1.0000 2.0000 0.5000 0.5000

Fig. 9 Nyquist plots of the identified models for the 100 Monte-Carlo
simulations of Example 2, with 20 dB SNR. Identified models (yellow
line), actual system (blue line)

proposed method accurately tracks the changed time delay
θ̂ , without affecting the estimates of other model parameters.

6.2 Example 2

In general, the industrial food processing and biochemical
units show the characteristics similar to a second-order unsta-
ble process with time delay. The following process model
studied in literature by [46, 52, 55], used to test and validate
the proposed technique as:

G (s) = 1

(2s − 1)(0.5s + 1)
e−0.5s . (74)

A PI controller with Kp = 2 and Ki = 0.01 is used to keep
output bounded. A PRBS input is used having 5000 sam-
ples with 0.04 s sample time and clock period of 2.0 s for
data generation. The proposedCLDRNN identificationAlgo-
rithm 1 is used with same training parameters as in Example

Fig. 10 Evolution of the CLDRNN’s process layer weights for the 100
Monte-Carlo simulations of Example 2, with 20 dB SNR

Fig. 11 Evolution and convergence of theMSE (Fk ) for the 100Monte-
Carlo simulations of Example 2, with 20 dB SNR
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1, having fixed controller layer weights computed by (3) to
(7) as: wc

0 = 2, wc
1 = −0.0026, wc

2 = 0.0069, wc
3 = 2, and

wc
4 = −1. In Table 4, the identified models are compared

with other methods based on the MSE criterion described in
(72). From the results of Table 4, one can say that the pro-
posed approach is more accurate with lesser MSE values. In
addition, for each noisy measurement of 20 dB, 30 dB, and
40 dB SNR, 100 random Monte-Carlo identification experi-
ments are conducted. The simulation results are summarized
in Table 5, where it is observed that the estimated parameters
have accurate mean values with small deviations.

Moreover, for 20 dB SNR case, the 100 Monte-Carlo
simulations are considered to visualize the consistent identi-
fication accuracy of the proposed method. The simulation
results of all 100 identification experiments are depicted
as the Nyquist graphs and evolution of network weights
with iterations in Figs. 9 and 10, respectively. The Nyquist
plots in Fig. 9 show that all the identified model’s fre-
quency responses accurately follow the true one. From the
CLDRNN’s weights evolution in Fig. 10, one can observe
that the recurrent weights wl

1 and wl
2 have less deviation and

fast convergence, while the weightswi
θ̂I+1

,wi
θ̂I+2

andwi
θ̂I+3

have more deviation and takes more iterations to converge.
The evolution of the MSE cost function Fk with training
epochs (k) are depicted in Fig. 11, where one can observe
that for all the 100 Monte-Carlo simulations, the MSE (Fk)
value decrease with each training epoch by using the adap-
tive learning rate as described in Theorem 3 and converges
at the proximity to zero.

6.3 Example 3

In this example, the proposed method is tested under the
condition of model mismatch. A 3rd -order unstable delayed
system studied by [58] is considered as:

G(s) = 1.0e−0.5s

(5.0s − 1)(2.0s + 1)(0.5s + 1)
(75)

A PID-type regulator having parameters Kp = 1.5, Ki =
0.05, Kd = 0.6 and β = 10, is used for the system in (75)
to keep the output bounded. The closed-loop system is sim-
ulated to generate identification data using a PRBS input of
200 s duration with 0.08 s sampling interval and 4 s clock
period. This identification data is then used in the proposed
CLDRNN identification algorithm for systemmodeling with
fixed controller layerweights computedusing expressions (3)
to (7) aswc

0 = 7.5,wc
1 = 0.0043,wc

2 = −0.0077,wc
3 = 1.2,

andwc
4 = −0.2. The identified models are included for com-

parison and presented in Table 6. All the identified models in
Table 6 are validated usingMSE criterion in (72), for a closed
loop unit step response of 50 s duration. The results shown

Table 6 Comparison of identified UFOD andUSODmodels for Exam-
ple 3

Model Identified model MSE

Example 3 1.0e−0.5s

(5.0s−1)(2.0s+1)(0.5s+1) –

Proposed UFOD 0.9757e−3.1356s

5.4691s−1 1.12 × 10−2

Proposed USOD 1.0002e−0.9765s

10.2665s2+2.9684s−1
1.63 × 10−5

UFOD model [53] 1.0000e−1.9683s

5.7671s−1 3.28 × 10−1

USOD model [58] 1.001e−0.938s

10.354s2+2.932s−1
2.58 × 10−5

Fig. 12 Identified models responses in comparison to the measured
response having 25 dB SNR for Example 3

in Table 6 indicate that the accuracy of proposed technique
is better than other techniques.

In addition, the proposed algorithm is tested when the
identification data is noisy with 20 dB SNR. The identified
UFOD and USOD models for a case of noisy measurements
are presented as follows:

ĜUFOD(s) = 0.9759e−3.1378s

5.4719s − 1
, (76)

and

ĜUSOD(s) = 1.0018e−0.9775s

10.3214s2 + 2.9603s − 1
. (77)

Themeasured output and the identifiedmodel’s responses for
a single simulation run are plotted in Fig. 12, which shows
that both identifiedUFODandUSODmodels follow themea-
sured output, with the latter one being more accurate than
the former one. The Nyquist plots of the identified model are
depicted in Fig. 13, for a particular case of noisy measure-
ments. In Fig. 13, it can be observed that the USOD model
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Fig. 13 Nyquist plots of identified models in comparison to the true
system of Example 3

closely follows the actual system for all frequencies as com-
pared to the UFOD model, which is accurate only nearer to
the critical point of (−1 ± 0 j) in the Nyquist plot.

7 Conclusion

For solving the problem of closed-loop identification of
unstable delayed dynamical systems has been reported here.
A neural architecture with delayed links is proposed which
iteratively trains to ensure guaranteed convergence even
with noisy measurements. The proposed CLDRNN archi-
tecture can mimic the complete closed-loop system within
its architecture, including the controller information. The
unknown unstable delayed system parameters can be directly
extracted through CLDRNN. The benchmark unstable pro-
cess model examples are incorporated for validating the
algorithm,where the effects ofmeasurement noise andmodel
mismatch are also considered. The simulated experiments
confirm that the proposed method is more general, accurate,
robust and consistent as compared to the existing literature
methods.

The directions for future work will be to extend the
proposed concept to model time-delayed deep neural archi-
tectures to include further complex system dynamics with
unknown time delays. Furthermore, the proposed idea could
also be combined with the model reference adaptive con-
trol (MRAC) approach to carry out both identification and
controller design simultaneously using the same neural net-
work architecture. Also, the proposed concept will be more
prominent in large-scale networked systems,where each sub-

system operating in closed-loop required to be identified and
controlled.
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