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Abstract
The Transmission welding using incremental scanning technique (TWIST) combines linear feed with an oscillating laser
beam to enhance weld quality and expand the process window. However, TWIST welding is influenced by nonlinear process
variables, and achievingmultiple objectives concurrently is challenging due to conflicting performance attributes. In industrial
practice, time constraints and project specifications limit the effectiveness of methodologies tailored to specific workpiece
materials or single performance optimization. The present study employs an artificial neural network (ANN) to establish a
correlation between TWIST welding parameters and desired performance attributes. Various ANN model architectures are
evaluated, with the 5-11-6-2 architecture achieving the highest accuracy (correlation coefficient of 0.998). For multi-objective
optimization, the non-dominated sorted genetic algorithm (NSGA-II) and non-dominated sorted teaching learning-based
optimization (NSTLBO) algorithm are employed, utilizing the ANN model’s fitness function as the objective. The newly
developed two-step model provides operators with the flexibility to prioritize factors based on project requirements, resulting
in improved outcomes. Comparative analysis of the algorithms using seven metrics demonstrates that NSGA-II outperforms
NSTLBO in solution prediction, albeit with slightly increased computing time. NSGA-II offers a broader range of Pareto
optimumsolutions compared toNSTLBO,which converges narrowly and restricts non-dominated sets. Validation experiments
confirm the adequacy of both algorithms, supporting the effectiveness of the two-step model. The proposed methodology
enables practitioners to achieve better weld quality, accommodate conflicting performance attributes, and effectively optimize
multiple objectives in industrial applications.

Keywords Laser transmission welding · TWIST · Artificial neural network · Evolutionary algorithm · Machine learning ·
Multi-objective optimization

1 Introduction

Polymers have a significant role in our daily life,
which is difficult to comprehend. Nowadays, polymers
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are employed everywhere, from essential everyday items
to very complicated industrial goods. The fabrication of
well-designed electronic products and microfluidic devices
is made possible by the wide variety of polymeric
materials that are now readily available [1–3]. Poly-
mers are widely used due to their low weight, durability,
and ease of manufacturing and recycling. Increasing the
use of polymer composites in the automotive and aviation
sectors helps to improve fuel economy and thereby reduce
greenhouse gas emissions, making it more fuel efficient
and environmentally friendly [4]. For polymers and polymer
composites to have a broader range of applications in many
sectors, high-quality joining is necessary. Although there
have been decades of traditional polymer welding options
available, laser transmission welding (LTW) is gradually
taking the place of friction, electromagnetic, and thermal tra-
ditional polymer welding processes in industrial applications
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Fig. 1 Operational strategy of a LTW, and b TWIST welding processes

due to its unique process advantages. LTW involves using a
laser beam to join two thermoplastic parts with distinct opti-
cal properties in an overlap configuration, as shown inFig. 1a.
One of the parts is made to be transparent to the laser wave-
length, while the other part is designed to absorb the laser
radiation. When the laser beam is directed onto the absorb-
ing part by transmitting through the top transparent part, the
energy is absorbed in the absorbing part and converted into
heat, depending on the thickness and absorption coefficient
of thematerial. This heat is then transferred to the transparent
part, causing both parts to melt at the interface where they
are joined together. As a result, a strong joint is created at the
weld seam [5]. LTW is not just restricted to the automotive
and aviation sectors but is also found in other sectors such as
textile, medical, packaging, and electronics [6]. This technol-
ogy has a promising future andwill continue to advance since
using this method is far less expensive than other methods,
including adhesive bonding. Thewidespread usage ofLTWis
still constrained by material issues, albeit [7]. TWIST (trans-
mission welding using incremental scanning technique) is a
promising technology for welding dissimilar polymers and
the newest innovation in the field of LTW. In TWIST weld-
ing, the laser beam moves incrementally along the welding
linewhile alsomaking rapid circular oscillations, partly over-
lapping neighboring circles, at a high velocity [8], as shown
in Fig. 1b. TWIST welding solves the drawbacks of LTW
by allowing for micro-welding and enhanced joint strength
[9, 10]. The wobbling modes used in TWIST welding cause
turbulence inside the weld pool and increase weld strength
by boosting material intermixing. In addition to the standard
LTW process parameters like laser power, pulse frequency,

scanning speed and clamping pressure, wobble amplitude
and wobble frequency, which regulate the circular over-
lap, also impact the performance of TWIST welding [11].
The beam wobbling parameter may be adjusted to control
the weld width. TWIST welding finds widespread industrial
application in the automotive, aerospace, battery, micro com-
ponents, and food packaging industries for seaming, sealing,
and welding [12]. TWIST welding produces narrower heat
affected zone and much more uniform welded zone [13].
Weld strength and weld width are two performance metrics
that are commonly used to gauge the effectiveness of the
TWIST process, while a defect-free seam, minimal distor-
tion, and pleasing seam appearance are indicators of weld
quality [14].

The manufacturing sector faces the significant challenge
of balancing economic objectives like increased production
rates, improved product quality, and lower production costs
with environmental concerns by reducing industrial waste,
maximizingmaterial utilization, and conserving energy [15].
However, optimizing all these objectives simultaneously is
practically unattainable, necessitating trade-offs to determine
the overall best solution. Process modeling and optimization
have therefore, grown in significance during the past few
decades. However, optimizing process performance based
on individual process features has limited applicability and
impracticality. Furthermore, concurrently optimizing multi-
ple objectives is challenging due to their frequent incompat-
ibilities. This has led to extensive research on determining
the ideal process variables for joining processes with con-
flicting objectives. Consequently, there has been a rise in
interest in methods like machine learning and evolutionary
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algorithms for multi-objective optimization and data-driven
process modeling [16].

Machine learning is a data analytics approach that enables
computers to acquire the ability, akin to humans and ani-
mals, to learn from experience [17]. Machine learning, deep
learning, and neural networks all fall under the category of
artificial intelligence (AI) as sub-fields. Notably, within this
framework, machine learning serves as the parent category,
with neural networks as a sub-field, and further special-
ization is found in deep learning [18]. Commonly utilized
machine learning algorithms encompass neural networks,
linear regression, logistic regression, clustering, decision
trees, and random forests [19]. Neural networks, emulat-
ing the intricate workings of the human brain, consist of
numerous interconnected processing nodes. Their profi-
ciency lies in pattern recognition, image recognition, speech
recognition, natural language translation, etc. Linear regres-
sion algorithms find utility in predicting numerical values,
leveraging a linear relationship among different variables.
Conversely, logistic regression algorithms specialize in fore-
casting outcomes for categorical response variables, notably
including "yes/no" answers to questions. Clustering algo-
rithms exhibit the ability to identify patterns within data,
enabling effective grouping. In this regard, computers play
a significant role in assisting data scientists by uncovering
overlooked distinctions between data items. Decision trees
serve a dual purpose by predicting numerical values (regres-
sion) and categorizing data into distinct groups. These trees
rely on a branching sequence of interconnected decisions,
often depicted visually through tree diagrams. Lastly, the
random forests algorithm predicts values or categories by
amalgamating outcomes from multiple decision trees, thus
enhancing predictive accuracy.

Artificial neural networks (ANN) have emerged as one of
the most successful empirical modeling tools, particularly
for nonlinear systems [20]. ANNs are highly flexible but
powerful deep learning models inspired by biological neural
networks that is used to approximate functions with sev-
eral variables. Alakabri et al. [21] employed support vector
regression with response surface methodology to accurately
predict the critical total drawdown in sand production from
gas wells. They also utilized AI techniques such as ANN and
Fuzzy logic to develop a highly accuratemodel for predicting
bubble point pressure (BPP) in the petroleum industry [22].
Ayoub et al. [23] took a different approach by using the group
method data handling (GMDH) evolutionary algorithm to
achieve a correlation coefficient of 0.995when predicting the
oil formation volume factor. GMDH, unlike ANN, does not
require a predefined network structure and converges after
a set number of trials. Ayoub et al. [24] further employed
the adaptive neuro-fuzzy inference system (ANFIS) model-
ing method to accurately determine the solution gas-oil ratio,
achieving a correlation coefficient of 0.9904. Baarimah et al.

[25] optimized fuzzy logic parameters anddeveloped amodel
for predicting BPP in the petroleum industry using published
data. The accuracy of the model was evaluated using correla-
tion coefficient, standard deviation, and absolute percentage
relative error. Gaussian process regression (GPR) is found
to be a powerful tool for modeling complex problems in the
field of machine learning, outperforming existing models in
various petrochemical engineering issues [26]. Hassan et al.
[27] demonstrated the effectiveness of the ANN machine-
learning algorithm in modeling and predicting the contact
angle in oil and gas applications, specifically in the con-
text of smart water-assisted foam technology. Jeng et al. [28]
employed an ANN with back propagation and learning vec-
tor optimization to reliably predict weld quality, such as weld
width, undercut, and distortion as a function of laser welding
parameters with minimal error. Nagesh et al. [29] employed
back propagation ANN to establish the relationship between
weldgeometry andprocess factors and showed that the result-
ingmodel accurately predicts bead and penetration geometry
in shielded metal arc welding, which was confirmed by
test data. Okuyucu et al. [30] employed ANN to estimate
tensile strength, yield strength, weld zone hardness, and heat-
affected zone as a function of process factors in friction stir
welding of aluminum. Researchers used ANN for empiri-
cal modeling of several manufacturing process applications
such as laser transmission welding [31], electro-discharge
machining [32–34], etc., to predict intended responses as
a function of process parameters, with excellent prediction
accuracy recorded. When comparing prediction capability
for non-linear process modeling, such as manufacturing pro-
cesses, the ANNoutperforms response surfacemethodology,
the most extensively used conventional empirical modeling
tool [31, 35].

The shortcomings of traditional optimization techniques
such as the Taguchi method, desirability function analy-
sis, iterative mathematical search technique, etc., as they
frequently get stuck at the local optima, have increased inter-
est in using heuristic search methods to reach the global
optima in process optimization [36]. Evolutionary algorithms
and, more broadly, nature-inspired metaheuristics are gain-
ing popularity as computational intelligence approaches have
been successfully used to address optimization issues in var-
ious disciplines, including manufacturing. Chandrasekaran
et al. [37] reviewed the use of genetic algorithms (GA), ant
colony optimization, and fuzzy sets in variousmanufacturing
processes and showed their capacity to cope with compli-
cated optimization issues. GA is a popular and well-tested
optimization approach because it can handle both discrete
and continuous variable objective functions and automati-
cally searches for a non-linear relationship between process
variables and responses [38, 39]. It is a simple optimiza-
tion approach that uses a derivative-free method to find
a point that is near to optimum [40, 41]. The teaching
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Fig. 2 General framework of the
proposed method in the form of a
flowchart
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learning-based optimization (TLBO) algorithm is a novel
metaheuristic algorithm whose superiority over simulated
annealing and artificial bee colony in terms of accuracy
and convergence rate is well-tested [42, 43]. The absence
of method-specific tuning factors, such as acceleration con-
stants in particle swarm optimization algorithms, and the
absenceof gradient computation are significant advantages of
using the fast-converging TLBO algorithm [44]. Venkatarao
[45] conducted experiments and numerical simulations to
optimize weld bead geometry and reduce power consump-
tion in wire arc additive manufacturing. The implementation
of the TLBO technique successfully identified the optimal
working conditions, resulting in improved bead geometry
and reduced power usage. Figure 2 represents the general
framework of the proposed method used in this paper in the
form of a flow chart.

The non-linear relationship between welding parameters
and weld quality in TWIST welding presents a challenging
task in predicting appropriate parameter values for desired
weld quality attributes. Additionally, the contradicting nature
of process outputs necessitates an effective multi-objective
optimization approach that can provide trade-off solutions in
a single simulation run for optimizing the TWIST welding
process. To address these challenges, the utilization of non-
linear empirical modeling tools like ANN and metaheuristic
optimization algorithms such asGAandTLBOcan be advan-
tageous.

This research aims to develop and evaluate two distinct
optimization strategies for the modeling and optimization
of the TWIST welding process. The proposed approach
involves the sequential integration of an ANN model, data-
driven non-dominated sorting GA (NSGA-II), and a poste-
riori version of the non-dominated sorting TLBO algorithm
(NSTLBO). An ANN-based surrogate model is employed
as the objective function, and different ANN architectures,
including single and multiple hidden layers, are evalu-
ated to determine the optimal architecture with the lowest
coefficient of variance. The developed ANN-NSGA-II and
ANN-NSTLBO approaches are then compared to determine
their relative superiority in handling the complexities of the
TWISTwelding process. The performance of these optimiza-
tion strategies is assessed based on their ability to search for
Pareto solutions in multi-objective optimization.

This research addresses the existing research gap in the
utilization of advanced optimization techniques for TWIST
welding, considering the highly non-linear nature of the pro-
cess and conflicting objectives. The outcomes of this study
will provide insights into the effectiveness and comparative
performance of ANN-NSGA-II and ANN-NSTLBO, facil-
itating the selection of an appropriate optimization strategy
for TWIST welding in industrial applications.

2 Methodologies

2.1 Artificial Neural Network

The artificial neural network is a soft computing technique
that simulates the human brain in information processing
functions such as reasoning, studying, and remembering.
This ismade possible by interconnected structures composed
of several basic processing neurons capable of doingmassive
parallel computations for data processing and information
representation. Figure 3 displays the architecture of an arti-
ficial neural network, which has three layers: an input layer,
one or more hidden layers, and an output layer.

The circle symbolizes the neurons thatmake up each layer,
and the lines that link the neurons depict the flow of infor-
mation. ANNs are taught by using a learning method like
back-propagation with an optimization approach like gradi-
ent descent. Neurons in one layer are connected to those in
the next layer via weighted connections. An activation func-
tion in one neuron combines and elaborates the signals from
the incoming connections. The weights and biases of the
architecture become stable after numerous presentations of
the training data patterns to the ANN, and the ANN is con-
sidered to be trained [31]. The phases of ANN modeling are
depicted in Fig. 4, including the steps for initializing the neu-
ral network and obtaining the best ANN architecture for this
study. ANN emerged as a widely used deep learning tool due
to its unique characteristics, including non-linearity, adapt-
ability, feature learning, parallel processing, generalization,
and the ability to handle high-dimensional and large datasets.

2.2 Genetic Algorithm

Genetic algorithms, originated from John Holland’s research
at the University of Michigan in the 1960s, surged in popu-
larity during the 1990s owing to advancements in computing
power and their effective application to diverse optimiza-
tion problems. A genetic algorithm is a sort of evolutionary
computing and the solutions it provides are subject to
recombination and mutation processes, which produce new
offspring and continue the process for numerous genera-
tions [46]. Consequently, the population’s fitness improves
over time as people inherit their parent generation’s pre-
ferred designs. GA is implemented in three stages: selection,
crossover, and mutation [47]. Figure 5 is a representative
depiction of GA operations.

The schematic flow diagram of the GA is presented in
Fig. 6, which includes the following operating paradigms.

i. A simulation of the natural genetic process
ii. Randomly generation of an initial population
iii. Exploitation of parent solution
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Fig. 3 An ANN model
architecture

Fig. 4 Schematic flow diagram of
ANN
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Fig. 5 Representative depiction
of GA operations

Fig. 6 Schematic flow diagram of
GA

iv. The survival of the fittest for the creation of the next
generation

v. Generation of better offspring

2.3 Teaching Learning-Based Optimization
Algorithm

The teaching–learning-based optimization (TLBO) algo-
rithm is a relatively recent optimization method that was
proposed by Rao in 2011 [42]. The TLBO algorithm is built
upon the concept of classroom learning, specifically focus-
ing on the interaction between teachers and learners and how
teachers influence learner performance [45]. The algorithm
consists of two key components: teachers and learners. Each
learner is considered as a member of the population, with

the subjects they learn representing distinct variables. The
teacher is identified as the best solution among the entire
population. The design variable is utilized to create the objec-
tive function for the optimization problem, and the optimal
solution is determined based on the best value of the objec-
tive function. Figure 7 depicts the operating principle of
non-dominated sorted TLBO in the form of a flow diagram
employed in this study.

3 Experimental Work

Laser transmission welding is conducted between clear
acrylic and polycarbonate plaques measuring 80 mm ×
40 mm × 4 mm, using an Nd:YVO4 laser (EMS 100; Elec-
trox Ltd.) equipped with galvo scanning systems. The galvo
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Fig. 7 Schematic flow diagram of NSTLBO

mirror system employs mirror technology to manipulate the
laser beam by rotating and adjusting mirror angles, caus-
ing the beam to wobble. Wobble welding is achieved by
superimposing the laser beam’s rapid circular motion along
the welding contour. The laser operates at a wavelength of
1064 nm, with a pulse width of 4.2 ns. It has an average

power output of 9.28 W and a beam spot diameter of 50 µm.
A schematic representation of the experimental setup utilized
in this study is shown in Fig. 8.

The acrylic plaque is positioned on top in a lap joint con-
figuration, while the polycarbonate plaque is placed at the
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Fig. 8 Schematic diagram of the experimental setup

bottom in the overlapping region. Since both parts are trans-
parent to the laser’s wavelength, a black strip is marked on
the bottom plaque using a black marker pen. This black strip
absorbs the laser beam at the interface, converting it into
the necessary heat to melt the joint interface for welding
purposes. The process parameters involved in this technique
include laser power, pulse frequency, scanning speed, wob-
ble width, and wobble frequency. Key factors for achieving
desired weld quality include weld strength and weld seam
width. Throughout the experiment, the laser spot diameter,
pulse repetition rate, and stand-off distance remain consis-
tent. To ensure proper alignment and prevent misalignment
during the process, mechanical clamping is applied to secure
the overlapping parts in close contact at the interface. Figure 9
provides both a pictorial view and a schematic representation
of the welded sample.

The experimental plan is carried out using the central
composite design of response surface methodology. The
experimental scheme employs a five-factor three-level face-
centered cubic form of the central composite design. The
chosen experimental design required the execution of fifty
experimental runs, consisting of 32 factorial points, 10-star
points, and 8 center points. Based on the literature review
and the limits of the machine, preliminary trial experiments
are carried out to determine the suitable ranges of process
parameters for experimental work, as shown in Table 1 [14].
The lap shear tests of thewelded samples are performed using
an Instron universal tensile testing equipment (Model 8801)
(Fig. 10a). In this study, the strength of a welded joint is
determined by the maximum load that a welded sample can
bear before it fails in a lap shear test. This maximum load (N)
is known as the joint strength and is specifically referred to
as the weld shear strength. Figure 10b illustrates the stress–s-
train relationship, depicted as a load versus extension graph,
obtained from the tensile testing of a welded sample. This
graph portrays the material’s deformation as the applied load
increases, reaching a peak point that signifies the maximum
load the material can endure.

A 3-dimensional optical measuring microscope (STM-6,
OLYMPUS) is used tomeasure the seamwidth of the welded
sample. For all measurements, a 5X magnification objective
lens is utilized. Multiple measurements of the weld width are
taken at different locations along the weld line, ensuring a
minimum of three measurements. The average weld width
(mm) is then determined by calculating the mean value of
these three measurements. Table 2 displays the experimen-
tally measured values of weld shear strength and weld seam
width in relation to the experimental design [14].

PMMA PC

(a) (b)

Fig. 9 a Pictorial view and b schematic diagram of the welded sample
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Table 1 Process control
parameters and their levels Controllable Parameters Units Notations Levels

- 1 0 + 1

Laser power W LP 7.89 8.12 8.35

Pulse frequency kHz PF 25 30 35

Scanning speed mm/s SS 2 3 4

Wobble width mm WO 0.4 0.6 0.8

Wobble frequency kHz WF 1 3 5

Fig. 10 a Lap shear testing of
weld samples, and b load versus
extension graph during ap shear
testing (Exp. No. 34)
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3.1 Performance Evaluation of TWISTWelding

Weld strength and weld width are critical performance met-
rics inTWISTwelding,where their significance is underlined
by their direct influence on joint reliability and load-carrying
capacity. These metrics are intricately tied to the selection of
process variables and experimental setup, further emphasiz-
ing the need for precise control and optimization to achieve
superior weld quality. The graphs are plotted which serves as
a visual representation of the intricate relationship between
process variables and their impact on desired performance
parameters in TWIST welding. It emphasizes the neces-
sity for identifying the optimal range of process variables
to ensure a defect-free seam with maximum weld strength,
providing essential insights for achieving superior weld qual-
ity and mechanical integrity. Figure 11 depicts the influence
of laser power on weld strength and weld seam width, as
the scanning speed is varied. The dotted line showcases the
behavior of weld strength, while the solid line captures the
trends in weld seam width, providing insights into the com-
plex interplay between laser power, scanning speed, and
the resulting weld characteristics. It is evident that weld
strength exhibits a discernible pattern with respect to the
variation in laser power. Initially, as laser power increases,
weld strength shows a progressive trend until reaching amid-
point. Beyond this critical threshold, however, weld strength
begins to decline. The rationale behind this trend lies in the

Fig. 11 Effect of laser power on performance parameter at varying scan
speed

intricacies of heat input during TWIST welding. At the mid-
range of laser power, the material experiences sufficient heat
input, enabling proper interfusion and resulting in higher
weld strength. Deviating from this mid-value, either towards
lower or higher laser power, leads to adverse effects on the
joint. Insufficient heat input at lower laser powers hampers
proper material bonding, while excessively high laser pow-
ers degrade the material, leading to weakened joints. The
observed phenomenon of weld width increasing with higher
laser power can be attributed to the substantial increase in line
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Table 2 Design matrix and
measured experimental result Experimental information Results

Exp.
No

Welding parameters Weld shear
strength (N)

Weld seam width
(mm)

LP
(W)

PF
(kHz)

SS
(mm/s)

WO
(mm)

WF
(kHz)

1 7.89 25 2 0.4 1 471.24 0.479

2 8.35 25 2 0.4 1 487.23 0.619

3 7.89 35 2 0.4 1 474.38 0.403

4 8.35 35 2 0.4 1 488.87 0.589

5 7.89 25 4 0.4 1 446.08 0.443

6 8.35 25 4 0.4 1 462.18 0.507

7 7.89 35 4 0.4 1 461.72 0.359

8 8.35 35 4 0.4 1 476.22 0.515

9 7.89 25 2 0.8 1 475.44 0.543

10 8.35 25 2 0.8 1 487.43 0.643

11 7.89 35 2 0.8 1 465.08 0.546

12 8.35 35 2 0.8 1 483.57 0.710

13 7.89 25 4 0.8 1 429.78 0.519

14 8.35 25 4 0.8 1 439.77 0.602

15 7.89 35 4 0.8 1 431.92 0.509

16 8.35 35 4 0.8 1 445.41 0.654

17 7.89 25 2 0.4 5 543.24 0.634

18 8.35 25 2 0.4 5 562.98 0.681

19 7.89 35 2 0.4 5 552.13 0.586

20 8.35 35 2 0.4 5 572.37 0.668

21 7.89 25 4 0.4 5 495.33 0.529

22 8.35 25 4 0.4 5 513.08 0.495

23 7.89 35 4 0.4 5 522.72 0.453

24 8.35 35 4 0.4 5 539.97 0.508

25 7.89 25 2 0.8 5 479.69 0.577

26 8.35 25 2 0.8 5 500.00 0.548

27 7.89 35 2 0.8 5 477.03 0.587

28 8.35 35 2 0.8 5 497.32 0.682

29 7.89 25 4 0.8 5 402.28 0.493

30 8.35 25 4 0.8 5 419.03 0.422

31 7.89 35 4 0.8 5 417.17 0.526

32 8.35 35 4 0.8 5 434.41 0.553

33 7.89 30 3 0.6 3 497.65 0.531

34 8.35 30 3 0.6 3 517.77 0.642

35 8.12 25 3 0.6 3 616.82 0.618

36 8.12 35 3 0.6 3 646.59 0.587

37 8.12 30 2 0.6 3 607.47 0.613

38 8.12 30 4 0.6 3 566.94 0.487

39 8.12 30 3 0.4 3 541.29 0.452

40 8.12 30 3 0.8 3 498.12 0.475

41 8.12 30 3 0.6 1 507.71 0.682
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Table 2 (continued)
Experimental information Results

Exp.
No

Welding parameters Weld shear
strength (N)

Weld seam width
(mm)

LP
(W)

PF
(kHz)

SS
(mm/s)

WO
(mm)

WF
(kHz)

42 8.12 30 3 0.6 5 524.71 0.739

43 8.12 30 3 0.6 3 582.43 0.591

44 8.12 30 3 0.6 3 577.43 0.602

45 8.12 30 3 0.6 3 580.12 0.579

46 8.12 30 3 0.6 3 574.43 0.574

47 8.12 30 3 0.6 3 579.23 0.613

48 8.12 30 3 0.6 3 582.58 0.598

49 8.12 30 3 0.6 3 578.57 0.585

50 8.12 30 3 0.6 3 572.41 0.583

Fig. 12 Effect of laser power on performance parameter at varying pulse
frequency

energy delivered to the material. As the laser power is raised,
a greater amount of energy is imparted to the material, result-
ing in increased heat input and awiderweld seam. The results
reveal a decline in both weld strength and weld width as the
scanning speed increases. These results can be attributed to
the inverse relationship between line energy and scanning
speed; higher scanning speeds result in reduced line energy,
leading to insufficient heat input during the welding process
[13]. Consequently, inadequate heat input adversely affects
material fusion, contributing to diminishedweld strength and
narrower weld seams.

Figure 12 shows the impact of varying pulse frequency on
weld strength andweld seamwidth. The dotted line illustrates
the variation in weld strength, while the solid line repre-
sents the changes in weld seam width, presenting insights
into the interplay of pulse frequency and its effects on the
mechanical properties and dimensions of the weld joint. A

striking resemblance is observed between the trends of weld
strength concerning the change in pulse frequency and laser
power. In both cases, weld strength demonstrates an initial
increase, reaching a critical threshold, beyond which it starts
to decline. This intriguing similarity suggests a potential
connection between pulse frequency and laser power in influ-
encing the welding process and its impact on weld strength.
Initially, as pulse frequency and laser power increase, the
heat input to the material intensifies, resulting in improved
material fusion and interfacial bonding, which contributes to
higherweld strength.However, beyond a certain point, exces-
sively high pulse frequency and laser power can lead to an
overabundance of heat, causing adverse effects like increased
material degradation, porosity, or overheating. These unfa-
vorable conditions weaken the joint, leading to a decline in
weld strength. The observed trend shows that at lower laser
power, low pulse frequency results in higher weld width,
while at higher laser power, higher pulse frequency leads
to higher weld width. At lower laser power settings, low
pulse frequencies provide longer pulse durations, resulting
in greater heat input to the material, leading to a wider
weld. Conversely, at higher laser power settings, higher pulse
frequencies deliver shorter pulse durations but with higher
energy per pulse. This concentrated and intense heat input
facilitates more material melting, leading to wider welds.

In Fig. 13, the impact of scanning speed on weld quality
characteristics in TWIST welding is investigated by vary-
ing the pulse frequency. The dotted line represents the weld
strength, while the solid line represents the weld seamwidth.
The trends for both weld strength and weld width exhibit a
similar pattern, indicating a decrease in values with increas-
ing scanning speed. This consistent behaviour suggests that
higher scanning speeds are associated with reduced weld
strength and narrower weld seams in TWIST welding [13].
The observed decrease in weld strength and weld width with
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Fig. 13 Effect of scanning speed on performance parameter at varying
pulse frequency

Fig. 14 Effect of wobble width on performance parameter at varying
wobble frequency

increasing scanning speed can be attributed to the inverse
relationship between scanning speed and laser heat input.
The observed effect of increasing welding speed with higher
pulse frequency is a reduction inweld strength. The combina-
tion of higher pulse frequency and faster welding speed leads
to insufficient heat input, resulting in inadequate material
fusion andweaker bonding at theweld interface. On the other
hand, the impact on weld width varies when welding speed
is combined with a higher pulse frequency. At lower welding
speeds, increasing the pulse frequency results in wider welds
due to a longer heat exposure time and more thorough mate-
rial melting. However, at very high welding speeds, the heat
input becomes insufficient to produce a wider weld, leading
to a decrease in weld width.

In Fig. 14, the relationship between wobble width and
weld quality characteristics in TWIST welding is depicted
through the variation of wobble frequency. The study

explores how changes inwobblewidth andwobble frequency
influenceweld quality and provides valuable insights into the
impact of these TWISTwelding parameters on weld strength
and weld width.

The observed trend in the effect of wobble width on weld
strength and weld width follows a consistent pattern: an
increase with wobble width up to a mid-point, beyond which
both metrics decline. Wobble width contributes to widen-
ing the seam through the circular oscillation of the beam,
promoting better material intermixing within an expanded
turbulence zone in the weld pool, thereby enhancing weld
shear strength. However, when the wobble width becomes
too wide, it scatters the line energy, leading to a reduced
heat input to the fusion zone, which subsequently affects
both weld strength and width negatively. The observed trend
where the mid value of wobble frequency consistently yields
higher weld strength across the entire range of wobble width
can be attributed to the synergistic effect of these param-
eters on the welding process. The mid value of wobble
frequency ensures that the heat input to the fusion zone
remains balanced and sufficient for proper material fusion
without excessive scattering of line energy. This precise bal-
ance between heat input andmaterialmixing at themid-range
ofwobble frequency contributes to higherweld strength com-
pared to both lower and higher wobble frequency values. The
observations indicate that, at lower wobble width settings,
increasing the wobble frequency results in more frequent
oscillations of the laser beam, which in turn leads to a wider
weld seam. On the other hand, at higher wobble width set-
tings, lowering thewobble frequency allows for extended and
spaced-out circular oscillations, providing sufficient time for
the material to spread out and flow, resulting in a wider weld
seam.

3.1.1 Microstructural Analysis

Conducting a microstructural study near the fusion zone can
provide valuable insights into the process mechanics of the
TWIST welding process, further enhancing the understand-
ing. Figure 15 displays SEM micrographs that reveal the
presence of numerous bubbles or voids on the weld’s top
surface. Remarkably, these bubbles play a crucial role in rein-
forcing the micromechanical joining at the interface, thereby
contributing to the observed increase in weld strength. Fur-
thermore, the formation of small bubbles can also initiate
the creation of cracks and pits, as evident from the figures
below, activating the micro-anchor mechanism. This mecha-
nism significantly enhances the bonding strength at the joint
interface, further improving the weld’s overall mechanical
integrity. A key aspect of the TWIST welding process lies in
the fast oscillation of the laser beam during welding. The ini-
tial oscillations of the laser beam trigger the preheating of the
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PMMA PC

Weld Zone

Fig. 15 SEM micrograph of PMMA/PC weld zone at 100 × magnifi-
cation

polymers, thus preparing the material for subsequent oscil-
lations. These subsequent oscillations augment the laser’s
absorptivity, resulting in the formation of a higher molten
region in the weld zone that surpasses the laser spot diameter
of 50 µm. This expansion of the molten region profoundly
influences the material bonding and overall weld quality,
playing a crucial role in achieving superior weld character-
istics.

4 Modeling of TWIST Process Using ANN

The TWIST welding process is modeled using a multilayer
feed-forward neural network with a back-propagation algo-
rithm. In this study, a network with an input layer with five
neurons, one or two hidden layers with varying numbers
of neurons in each hidden layer, and an output layer with
two neurons is employed. The number of hidden layers and
the number of neurons in each layer both affect how well
a neural network performs. As a result, several combina-
tions are tested to select an optimum architecture, as shown
in Table 3. The majority of the researchers utilized RMSE
(Root mean square error) as a neural network performance
metric to choose the optimum architecture.

RMSEi �
√∑n

k�1

(
Targeti , k − Outputi , k

)2
n

(1)

However, as the output distribution values are completely
different in terms of magnitude order and unit of measure-
ment, a direct comparison of the RMSE values is inadequate.
Because of this, the coefficient of variance (CV) is employed
as a statistical indicator parameter for evaluating the error,
which is independent of the distribution [48]. It is defined as

the ratio of the standard deviation (σRMSEi ) to the distribu-
tion’s average value (μRMSEi ) multiplied by 100.

CVi � σRMSEi

μRMSEi
× 100 (2)

The lower total CV that results in the lowest error when
comparing targets and outputs determines the best ANN
architecture.

4.1 Definition of Input and Output Layers

The number of input nodes is the same as the number of
process parameters. Using activation functions and weighted
connections, the input layer processes information from
external sources before adding it to and transmitting it to
the neurons of the hidden layer. Eventually, the resulting sig-
nals are sent to the output layer, where the training phase
assesses the difference between the expected and desired
outputs (called targets). There is the same number of output
nodes as response parameters. The number of output nodes
is equal to the number of response parameters. Five process
parameters are considered inputs, while weld shear strength
and weld seam width are considered outputs in a single net-
work to create the logical link between inputs and outputs.

4.2 Definition of Hidden Layers

Unlike input and output layers, the number of neurons and
hidden layers may be changed. In ANNs, one or two hidden
layers are often used to compute the best approximation.
Given that having too many or too few hidden neurons might
result in over-fitting or under-fitting problems, the number of
hidden neurons needs to be determined with caution. This is
achieved by changing the number of neurons in a range, with
the upper and lower numbers chosen via a heuristic method.
Here, four heuristic approaches are applied in order to define
the upper and lower threshold.

The lower boundof hidden neurons is heuristically defined
by Her Majesty’s Department of Trade and Industry (MTI)
[49]:

(3)

MTI � IN + ON

2
� 3.5,

this can be taken as 3 (Lower Bound)

where IN and ON denotes the input and output nodes. Fur-
thermore, a hidden neuron (HN) is added in the hidden layer
until the upper threshold of HN is reached. For this pur-
pose, three alternative heuristic approaches are considered
for determining the maximum number of HN.
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Table 3 Comparing CVs for
ANNs with different
architectures

Sl. No Network architecture CVWS CVWW CVtotal

1 5-3-2 1.1825 1.3137 2.4961

2 5-4-2 1.2078 1.8539 3.0616

3 5-5-2 0.9542 1.6897 2.6439

4 5-6-2 0.4474 1.6640 2.1113

5 5-7-2 0.5613 0.5614 1.1227

6 5-8-2 0.6893 0.7435 1.4328

7 5-9-2 0.9715 0.5508 1.5222

8 5-10-2 0.8721 0.4270 1.2991

9 5-11-2 1.5634 0.6070 2.1704

10 5-12-2 1.5506 0.5891 2.1396

11 5-3-3-2 0.5049 1.1135 1.6184

12 5-3-4-2 1.1567 0.5236 1.6803

13 5-3-5-2 0.7261 2.6386 3.3647

14 5-3-6-2 0.6882 0.7098 1.3980

15 5-3-7-2 1.6153 2.4195 4.0348

16 5-3-8-2 1.3118 1.7937 3.1055

17 5-3-9-2 1.7717 1.5561 3.3278

18 5-3-10-2 1.0723 2.1253 3.1976

19 5-3-11-2 1.0982 2.0738 3.1720

20 5-3-12-2 1.4883 1.1486 2.6370

21 5-4-3-2 0.7244 1.0519 1.7764

22 5-4-4-2 0.6379 1.0487 1.6865

23 5-4-5-2 1.0888 0.8291 1.9179

24 5-4-6-2 1.3218 0.8324 2.1543

25 5-4-7-2 1.0169 0.8226 1.8395

26 5-4-8-2 1.6664 0.6814 2.3478

27 5-4-9-2 0.7696 1.9954 2.7649

28 5-4-10-2 1.5619 1.1803 2.7423

29 5-4-11-2 0.8066 1.0700 1.8766

30 5-4-12-2 1.1394 2.2526 3.3919

31 5-5-3-2 1.2995 1.7011 3.0006

32 5-5-4-2 1.6345 1.8346 3.4690

33 5-5-5-2 0.8369 0.8691 1.7059

34 5-5-6-2 1.2410 1.1727 2.4137

35 5-5-7-2 1.0579 1.0487 2.1067

36 5-5-8-2 1.0162 2.4857 3.5019

37 5-5-9-2 0.9632 1.2237 2.1870

38 5-5-10-2 0.8803 0.6236 1.5039

39 5-5-11-2 0.8026 0.6467 1.4493

40 5-5-12-2 1.0040 0.8730 1.8770

41 5-6-3-2 0.6215 0.6644 1.2859

42 5-6-4-2 1.3828 1.3705 2.7533

43 5-6-5-2 0.6140 0.8084 1.4224

44 5-6-6-2 1.2248 0.5245 1.7493

45 5-6-7-2 0.5217 2.2500 2.7717
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Table 3 (continued)
Sl. No Network architecture CVWS CVWW CVtotal

46 5-6-8-2 1.1985 1.3182 2.5167

47 5-6-9-2 0.9505 1.0382 1.9886

48 5-6-10-2 1.3501 0.7427 2.0927

49 5-6-11-2 1.3439 0.6632 2.0071

50 5-6-12-2 0.8336 0.5503 1.3839

51 5-7-3-2 1.9447 1.3359 3.2806

52 5-7-4-2 1.1872 2.4746 3.6618

53 5-7-5-2 0.7056 0.5280 1.2336

54 5-7-6-2 0.9607 0.7376 1.6983

55 5-7-7-2 1.2958 1.9017 3.1976

56 5-7-8-2 1.6699 0.4835 2.1534

57 5-7-9-2 0.6598 0.6305 1.2904

58 5-7-10-2 0.6037 0.7946 1.3983

59 5-7-11-2 1.0523 1.1255 2.1778

60 5-7-12-2 1.0180 0.5691 1.5871

61 5-8-3-2 0.4619 0.6636 1.1255

62 5-8-4-2 1.2374 0.8585 2.0959

63 5-8-5-2 0.5985 1.6165 2.2150

64 5-8-6-2 1.6142 0.7142 2.3284

65 5-8-7-2 0.6727 0.7994 1.4722

66 5-8-8-2 0.9088 0.4907 1.3995

67 5-8-9-2 1.1113 0.6009 1.7122

68 5-8-10-2 0.8152 0.5807 1.3959

69 5-8-11-2 0.7992 0.9211 1.7203

70 5-8-12-2 1.1163 0.4967 1.6130

71 5-9-3-2 0.6821 0.9234 1.6055

72 5-9-4-2 0.7604 1.0380 1.7983

73 5-9-5-2 0.8286 1.1999 2.0285

74 5-9-6-2 1.6480 0.5834 2.2314

75 5-9-7-2 0.7446 0.5664 1.3110

76 5-9-8-2 0.6780 0.6906 1.3686

77 5-9-9-2 1.0211 0.6261 1.6472

78 5-9-10-2 0.5834 0.3598 0.9433

79 5-9-11-2 0.7266 0.5265 1.2531

80 5-9-12-2 1.3567 0.7417 2.0984

81 5-10-3-2 1.3052 0.6117 1.9169

82 5-10-4-2 0.9865 1.8162 2.8027

83 5-10-5-2 1.2469 0.5521 1.7990

84 5-10-6-2 0.9133 0.8587 1.7720

85 5-10-7-2 0.5127 0.5025 1.0152

86 5-10-8-2 0.7371 0.5179 1.2549

87 5-10-9-2 1.2460 0.5637 1.8097

88 5-10-10-2 0.6239 0.4193 1.0433

89 5-10-11-2 0.7981 0.4607 1.2587

90 5-10-12-2 0.5605 1.0780 1.6385
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Table 3 (continued)
Sl. No Network architecture CVWS CVWW CVtotal

91 5-11-3-2 1.4104 1.0206 2.4311

92 5-11-4-2 0.6891 1.1584 1.8474

93 5-11-5-2 0.5770 0.5483 1.1253

94 5-11-6-2 0.5111 0.4319 0.9429

95 5-11-7-2 0.9266 1.5998 2.5264

96 5-11-8-2 0.7156 0.8613 1.5769

97 5-11-9-2 0.7583 0.4120 1.1703

98 5-11-10-2 1.5884 1.4558 3.0442

99 5-11-11-2 1.0725 0.5930 1.6654

100 5-11-12-2 1.1589 0.8543 2.0131

101 5-12-3-2 0.7518 1.0201 1.7720

102 5-12-4-2 0.9498 0.8136 1.7634

103 5-12-5-2 0.4875 0.9490 1.4365

104 5-12-6-2 1.1584 0.6122 1.7706

105 5-12-7-2 0.7175 0.8238 1.5413

106 5-12-8-2 1.2633 1.0428 2.3061

107 5-12-9-2 1.0933 0.7268 1.8202

108 5-12-10-2 0.7999 0.4680 1.2678

109 5-12-11-2 0.9129 0.5110 1.4239

110 5-12-12-2 1.1202 0.8612 1.9814

Theupper boundof hiddenneurons is heuristically defined
by Kolmogorov (KOL) [50]:

KOL � 2(IN) + 1 � 11 (4)

Theupper boundof hiddenneurons is heuristically defined
by Lippmann (LIP) [51]:

LIP � ON × (IN + 1) � 12 (5)

Theupper boundof hiddenneurons is heuristically defined
by Kudrycky (KUD) [52]:

KUD � 3 × ON � 6 (6)

Max (11, 12, 6) � 12(Upper Bound)

TheCV is determinedby taking the lower (MTI�3nodes)
and upper bounds (LIP � 12 nodes) into account in order to
produce the optimal configuration, as shown in Table 3. The
ANN model with 11 hidden neurons in the first hidden layer
and 6 hidden neurons in the second hidden layer is found
to produce the least error. The chosen architectural model is
shown in bold, and it has the lowest CV of any architecture.

4.3 Training, Validation, and Test of the ANNModel

The experimental data are used to train the ANN for pre-
dicting weld shear strength and weld seam width. The
ANN employs the Levenberg–Marquardt Learning Algo-
rithm along with a feed-forward and back-propagation net-
work. The architecture of theANNmodel is shown in Fig. 16.
The MATLAB 2019 platform is used for ANN modeling,
training, validation, and testing. During training, the fifty
experimental input–output datasets are divided into three
sets: 70% for training, 15% for cross-validation, and 15%
for testing. This division allows the network to learn from
the majority of the data and evaluate its performance on sep-
arate validation and testing sets to assess its generalization
abilities. A normalization technique is applied to standard-
ize the input and output variables by scaling them between 0
and 1. This ensures that all variables fall within a consistent
range, aiding in the convergence and stability of the training
process.

The ANN architecture consists of different layers, includ-
ing the input layer, hidden layers, and output layer. Neurons
in the input layer do not use a transfer function, while
neurons in the hidden layers and output layer employ a log-
sigmoid transfer function. This choice of transfer function
allows the neurons to produce outputs ranging from 0 to 1,
which is appropriate for the prediction task. Figure 17 shows
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Fig. 16 ANN architecture used
for predicting weld shear
strength and weld seam width

Fig. 17 Convergence diagram of
the 5-11-6-2 network architecture

the performance convergence diagram of the ANN archi-
tecture after training. This diagram illustrates the progress
of the network’s performance during training epochs. The
best validation performance achieved is 335.0634 at epoch
14, indicating that the network’s performance, as evaluated
on the validation set, is optimal at this stage of training.
The utilization of the Levenberg–Marquardt Learning Algo-
rithm, along with the specific ANN architecture and training

methodology, enables the accurate prediction of weld shear
strength and weld seam width.

The regression plots shown in Fig. 18 are used to evaluate
the fitness of the ANN model. Figure 18a shows a compari-
son of anticipated and actual data for the training patterns. It
is evident from this figure that the predicted values have little
error, demonstrating a remarkable level of accuracy in captur-
ing the underlying patterns in the training dataset. Figure 18b
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Fig. 18 Actual and predicted data
regression plots for weld shear
strength and weld seam width

and c present the comparison of actual and predicted data for
the validation and testing patterns, respectively. These plots
reveal a close agreement between the ANN predictions and
the actual response values. The close agreement of the data
points in both the validation and testing plots indicates the
model’s exceptional ability to generalize and yield precise
predictions.

The efficacy of the developed ANN model is further
assessed by an impressive R-squared value of 0.99, as shown
in Fig. 18d. This confirms the predictability and robustness
of the developed ANN, putting confidence in its capability
to deliver precise predictions for both weld shear strength
and weld seam width. Tables 4 and 5 supplement the regres-
sion plots by displaying the prediction error percentages for
the chosen ANN architecture across all test samples. These
tables give a summary of the prediction errors pertaining to
weld shear strength and weld seam width, allowing for a
thorough inspection of the model’s performance. Together,
the regression graphs, R-squared value, and prediction error
percentages highlight the excellent prediction ability of the
developed ANN model.

Figure 19a and b provides a comparison of actual and
predicted weld shear strength and weld seam width for test
data, respectively, and show that they are in good agreement.

Figure 20a and b presents the comparison of actual and
predicted weld shear strength, and actual and predicted weld
seam width, respectively, for training patterns. It can be
clearly observed from the line diagram that most of the pre-
dicted data points match with the actual fitted data points,
which confirms the adequacy of the developed model.

The weights and biases are now extracted from the trained
model, and the predicted values are obtained. The inputs are
normalized and fed into the mathematical equation for ANN.
The outputs are then de-normalized to get the predicted val-
ues.

Y � b0 +
h∑

k�1

[wk × fsig(bhk +
m∑
i�1

wik Xi )] (7)

where bo is the output bias;wk is theweight of the connection
between the kth of the hidden layer and the single output
neuron; bhk is the bias in the kth neuron of the hidden layer; n
is the number of neurons in the hidden layer;wik is theweight
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Table 4 Comparison of actual and predicted outputs for test data of weld shear strength

Sl. No Welding parameter Weld shear strength (N)

LP (W) PF (kHz) SS (mm/s) WO (mm) WF (kHz) Actual ANN output Error Error %

1 7.89 35 2 0.8 1 465.08 465.12 0.04 0.0087

2 7.89 35 2 0.8 5 477.03 477.02 0.01 0.0017

3 8.35 35 4 0.8 5 434.41 434.59 0.18 0.0419

4 8.35 30 3 0.6 3 517.77 517.94 0.17 0.0329

5 8.12 30 4 0.6 3 566.94 566.78 0.16 0.0289

6 8.12 30 3 0.6 5 524.71 483.88 40.82 7.7807

7 8.12 30 3 0.6 3 577.43 579.01 1.58 0.2743

8 8.12 30 3 0.6 3 574.43 579.01 4.58 0.7979

Table 5 Comparison of actual and predicted outputs for test data of weld seam width

Sl. No Welding parameter Weld seam width (mm)

LP (W) PF (kHz) SS (mm/s) WO (mm) WF (kHz) Actual ANN output Error Error %

1 7.89 35 2 0.8 1 0.546 0.577 0.031 5.681

2 7.89 35 2 0.8 5 0.587 0.567 0.019 3.351

3 8.35 35 4 0.8 5 0.553 0.491 0.061 11.164

4 8.35 30 3 0.6 3 0.642 0.617 0.025 3.940

5 8.12 30 4 0.6 3 0.487 0.506 0.019 3.914

6 8.12 30 3 0.6 5 0.739 0.656 0.083 11.231

7 8.12 30 3 0.6 3 0.602 0.587 0.015 2.544

8 8.12 30 3 0.6 3 0.574 0.587 0.012 2.210

Fig. 19 Actual and ANN
prediction of a weld shear
strength and b weld seam width
for test data
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of connection between the ith input parameter and the hidden
layer; X i is the input variable, while Y is the response.

The de-normalized ANN value is plotted against the
experimental value to perform a comparison analysis for
weld shear strength and weld seam width, as illustrated in
Fig. 21a and b.

Linear regression analysis is applied to find the correlation
coefficient (CC) of the developed ANNmodel. CC is utilized
to establish the relationship between actual and predicted
output values. The developed ANN model for weld shear
strength and weld seam width has a correlation coefficient

near 1, which yields minimal error as shown in Fig. 21a and
b. As a result, the developed neural network is found to be
suitable for predicting the outputs of the TWIST process with
significant accuracy.
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Fig. 20 Line diagram with best fit of actual and ANN prediction of a weld shear strength and b weld seam width, for training patterns

Fig. 21 Scatter diagram with the
best fit of ANN prediction
(de-normalized value) versus
actual a weld shear strength and
b weld seam width
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5 Multi-objective Optimization of the TWIST
Process

The selection of appropriate process parameters is critical
in any welding process since it impacts weld quality, asso-
ciated costs, and productivity. Multi-objective optimization
of process parameters is pertinent to achieve overall desir-
ability by simultaneously optimizing desired responses to
produce better quality, enhanced productivity, and reduced
costs. Both priori and posteriori methods can be used to solve
amulti-objective optimization problem. In the priori method,
a multi-objective problem is reduced to a single objective
problem by weighting each goal, and then solved as a single
objective optimization problem, yielding a unique optimum
solution. The disadvantage of the priori technique is likewise
solved by the posterior approach since the multi-objective
problem is not reduced to a single objective problem, and
hence no weighting is used. In this case, the Pareto optimum
solution is obtained, which allows the freedom to choose
one solution from the collection of Pareto points depending
on the objective criterion. Due to its adaptability, the pos-
teriori strategy is therefore considered to be more suited for
tacklingmulti-objective optimization problems. Several opti-
mization techniques based on genetic algorithms have been

developed over the years. The non-dominated sorting algo-
rithm, NSGA-II, is one of the finest genetic algorithm-based
optimization algorithms ever developed. The non-dominated
sorting TLBO algorithm has also emerged as a popular meta-
heuristic algorithm formulti-objective optimization due to its
low computing cost and freedom from any algorithm param-
eters. The produced ANN model expression serves as the
fitness function for the optimization algorithms.

Weld shear strength

� bs0 + {lws21 × tanh(a21)} + {lws22 × tanh(a22)}
+ {lws23 × tanh(a23)} + {lws24 × tanh(a24)}
+ {lws25 × tanh(a25)} + {lws26 × tanh(a26)} (8)

Weld seam width

� bw0 + {lww21 × tanh(a21)} + {lww22 × tanh(a22)}
+ {lww23 × tanh(a23)} + {lww24 × tanh(a24)}
+ {lww25 × tanh(a25)} + {lww26 × tanh(a26)} (9)

The hyper-parameter values for both algorithms used are
presented in Table 6.
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Table 6 Hyper-parameter values of NSGA-II and NSTLBO algorithms

Constant
parameters

Laser power (lower
bound—upper bound)

7.89–8.35

Pulse Frequency (lower
bound—upper bound)

25–35

Scanning Speed (lower
bound—upper bound)

2–4

Wobble Width (lower
bound—upper bound)

0.4–0.8

Wobble Frequency (lower
bound—upper bound)

1–5

NSGA-II Population size 50

Maximum number of
generations

100

Crossover rate 0.8

Mutation rate 0.01

Selection function Tournament

Mutation function Adaptive
feasible

NSTLBO Population size 50

Maximum number of
generations

100

Teaching factor 1 to 2

5.1 Optimization Using NSGA–II

Deb et al. initially presented NSGA-II, which is frequently
used to solve optimization problems because of its excellent
performance and low computing cost [53]. Initially, multi-
objective evolutionary algorithms based on non-dominated
sorting lack computational complexity and a non-elitism
approach. However, Multi-objective optimization based on
NSGA-II overcomes the drawback associated with evolu-
tionary algorithms. The Posteriori method is used for multi-
objective optimization based on NSGA-II, which optimizes
each objective simultaneously without being dominated by
another solution. Formost situations, NSGA-II can identify a
significantly wider range of solutions and better convergence
at the actual Pareto optimum front.

5.1.1 Objective Function Definition and NSGA–II
Application

When employed as objectives in multi-objective optimiza-
tion, the performance characteristics of the TWIST welding
process, the weld shear strength and the weld seam width,
are in conflict with one another. Weld shear strength must
be increased while weld seam width must be reduced to
achieve better weld quality. For the multi-objective NSGA-
II, a posteriori strategy is employed to provide a collection
of Pareto optimum solutions. The fitness function is derived
from an artificial neural network [Eq. (8) and (9)] using five

Fig. 22 Pareto front obtained from NSGA-II

process variables. The problem spacemust be constrained by
establishing upper and lower limits on each process variable,
specified as inputs from Table 1. The bounds are defined in
normalized units ranging from 0 to 1, and the population
size is fixed at 50. The selection function is set to Tourna-
ment, with a reasonable crossover percentage of 0.8, and the
mutation function is set to Adaptive Feasible. The NSGA-II
algorithm is implemented in the MATLAB code to maxi-
mize and minimize the fitness function, which is derived
based on the output values from the ANN. Table 7 shows
the collection of Pareto optimum solutions produced by the
NSGA-II algorithm. Among the obtained set of solutions,
solutions no. 4 and 5 represent themaximumweld strength of
678.2 N at higher line energy (ratio of laser power to welding
speed).Whereas, solution no. 1 and 2 represent theminimum
weld seam width of 0.36 mm at lower heat input. Higher line
energy candegrade thematerial and lower line energy leads to
insufficient penetration. It is observed that better weld qual-
ity is achieved at the mid value of heat input (solution no.
7). The optimal parameter settings at which the highest weld
shear strength and theminimumweld seamwidth are attained
simultaneously are shown in bold. Depending on the propor-
tional relevance of responses, the decision-maker can use any
optimum option.

The collection of Pareto optimum solutions is depicted
in Fig. 22. The graphic depicts several optimal points from
which weld shear strength and weld seam width can be
obtained based on the decision-maker’s desired relevance of
the response.

5.1.2 Validation Experiment

The confirmation experiment has been conducted at opti-
mal parameter settings (solution no. 7) in order to validate

123



Arabian Journal for Science and Engineering (2024) 49:2411–2441 2433

Table 7 Non-dominated set of
solutions obtained using the
NSGA-II algorithm

S. No LP (W) PF (kHz) SS (mm/s) WO (mm) WF (kHz) WS (N) WW (mm)

1 8.07 34.97 3.94 0.47 1.05 450.07 0.360

2 8.07 34.97 3.94 0.47 1.05 450.07 0.360

3 8.13 34.16 3.20 0.55 2.40 654.74 0.573

4 8.21 34.72 2.88 0.53 3.43 678.21 0.592

5 8.21 34.72 2.88 0.53 3.43 678.21 0.592

6 8.10 33.83 3.40 0.50 1.81 541.30 0.456

7 8.09 33.14 3.33 0.49 2.05 581.46 0.498

8 8.08 33.60 3.45 0.51 1.80 549.14 0.465

9 8.10 33.74 3.31 0.50 1.80 567.27 0.486

10 8.08 34.31 3.65 0.49 1.30 468.99 0.381

11 8.08 34.66 3.75 0.48 1.35 458.22 0.369

12 8.26 33.66 3.64 0.51 1.83 519.42 0.429

13 8.22 33.53 3.17 0.54 2.14 616.07 0.530

14 8.18 34.11 3.31 0.60 1.90 602.40 0.522

15 8.13 34.86 3.44 0.50 2.16 537.42 0.448

16 8.13 34.06 3.20 0.52 2.44 651.03 0.566

17 8.28 33.64 3.09 0.58 2.22 618.45 0.540

18 8.09 33.68 3.42 0.52 1.77 561.85 0.479

Table 8 Confirmation tests

Experiment Actual value Weld shear
strength (N)

Weld seam
width (mm)

At NSGA-II
optimal
parameter
(Sol. No. 7)

Actual value 606.27 0.523

NSGA-II
results

581.45 0.477

|Error| % 4.09 8.79

the optimal solution obtained from the NSGA-II algorithm.
Table 8 presents the confirmation test and shows that very
minimal error has been found out.

5.2 Optimization Using the NSTLBO Algorithm

The NSTLBO algorithm is an extension of the TLBO algo-
rithm, which solves multi-objective optimization problems
using the posteriori method, yielding a diversified range of
Pareto optimum solutions. The NSTLBO algorithm func-
tions similarly to the TLBO algorithm and includes both a
teacher and a learner phase. To solve multi-objective prob-
lems effectively, Rao et al. [14] presented the NSTLBO
method, which employs a non-sorting technique and crowd
distance computation. TheNSTLBO algorithm’s teacher and
learner phases enable extensive exploration and exploitation
of the search space, and the non-dominated sorting strategy
assures that the selection process is always toward the best

solutions and that the population is driven to the Pareto-front
in each generation.

5.2.1 Objective Function Definition and the NSTLBO
Algorithm Application

The fitness function for the NSTLBO algorithm is derived
from the ANN model [Eq. (8) and (9)], and the lower and
upper ranges of process variables in the design space act as
constraints. A MATLAB code has been constructed to solve
the optimization problemusing theNSTLBOalgorithm,with
the learner population set to 50, with the number of subjects
set to the number of input variables. The teaching factor can
vary from one to two, and the number of iterations is decided
to be 100. Table 9 shows the collection of Pareto optimum
solutions obtained using the NSTLBO algorithm.

Among the obtained non-dominated set of solutions, all
pareto optimal point represent the almost same response,
such as maximum weld shear strength of 466.4 N and mini-
mum weld seam width of 0.689 mm. Although, Solution no.
3 is selected because correct amount of heat input is required
in order to obtain simultaneously the maximum weld shear
strength andminimumweld seamwidth. The optimal param-
eter setting at which the maximum weld shear strength and
the minimum weld seam width are attained simultaneously
is shown in bold. The collection of Pareto-optimal solutions
found by the NSTLBO algorithm is shown in Fig. 23. It is
obvious that the majority of the optimum points converge at
one value, and that value represents themost favorable result.
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Table 9 Non-dominated set of
solutions obtained using the
NSTLBO algorithm

S. No LP (W) PF (kHz) SS (mm/s) WO (mm) WF (kHz) WS (N) WW (mm)

1 8.32 35.00 3.82 0.40 1.00 466.40 0.689

2 8.28 33.08 3.82 0.40 1.47 466.40 0.689

3 8.35 35.00 3.83 0.40 1.00 466.40 0.689

4 8.35 35.00 4.00 0.40 1.00 466.40 0.689

5 8.30 35.00 3.71 0.40 1.00 466.40 0.689

6 8.35 35.00 4.00 0.40 1.00 466.40 0.689

7 8.35 35.00 4.00 0.40 1.00 466.40 0.689

8 8.35 35.00 3.82 0.40 1.00 466.40 0.689

9 8.35 35.00 4.00 0.40 1.00 466.40 0.689

10 8.35 35.00 3.93 0.40 1.00 466.40 0.689

11 8.35 35.00 3.98 0.40 1.00 466.40 0.689

12 8.35 35.00 4.00 0.40 1.00 466.40 0.689

13 8.35 35.00 3.94 0.40 1.00 466.40 0.689

14 8.35 35.00 3.94 0.40 1.00 466.40 0.689

15 8.35 35.00 3.95 0.40 1.00 466.40 0.689

16 8.35 35.00 4.00 0.40 1.00 466.40 0.689

17 8.32 35.00 3.75 0.40 1.00 466.40 0.689

18 8.34 35.00 3.83 0.40 1.00 466.40 0.689

19 8.35 35.00 3.82 0.40 1.00 466.40 0.689

20 8.34 35.00 4.00 0.40 1.00 466.40 0.689

21 8.34 35.00 3.82 0.40 1.00 466.40 0.689

22 8.34 35.00 3.82 0.40 1.00 466.40 0.689

23 8.31 35.00 3.81 0.40 1.00 466.40 0.689

24 8.33 35.00 3.82 0.40 1.00 466.40 0.689

25 8.33 35.00 3.83 0.40 1.00 466.40 0.689

26 8.32 35.00 3.82 0.40 1.00 466.40 0.689

27 8.33 35.00 3.83 0.40 1.00 466.40 0.689

28 8.30 35.00 3.82 0.40 1.00 466.40 0.689

29 8.32 35.00 3.82 0.40 1.00 466.40 0.689

30 8.32 35.00 3.82 0.40 1.00 466.40 0.689

5.2.2 Validation Experiment

The confirmation experiment has been conducted at opti-
mal parameter settings (solution no. 7) in order to validate
the optimal solution obtained from the NSGA-II algorithm.
Table 10 presents the confirmation test and shows that very
minimal error has been found out.

5.3 Comparison of Performance of NSGA-II
and NSTLBO

The multi-objective optimization algorithms, NSGA-II and
NSTLBO, are put to the test to evaluate their effective-
ness using a range of performance metrics. These metrics,
namely computational time (CT), uniform distribution (UD),
error ratio (ER), overall non-dominated vector generation

(ONVG), maximum spread (MS), generational distance
(GD), and maximum Pareto front error (MPFE) [54, 55], are
carefully considered for the comparison. The comparisons
are conducted across five independent trials, and the average
values are used for the comparative study.

Computational time metric, which measures the time
required by each algorithm to perform a computational
process. In Fig. 24, it becomes evident that theNSGA-II algo-
rithm takes more computational time compared to NSTLBO.
This can be attributed to the intricate nature of NSGA-II’s
evolutionary process, which demands greater computational
resources. However, lower CT generally indicates better per-
formance when this is used as a metric for the evaluation of
algorithm performance.
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Fig. 23 Pareto front obtained from NSTLBO

Table 10 Confirmation tests

Experiment Actual value Weld shear
strength (N)

Weld seam
width (mm)

At NSTLBO
optimal
parameter
(Sol. No. 3)

Actual value 497.49 0.617

NSTLBO
results

466.4 0.689

|Error| % 6.25 11.67
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Fig. 24 Comparison of NSGA-II and NSTLBO in terms of computa-
tional time

The uniform distribution metric evaluates how solutions
are distributed along the approximation front within a pre-
determined parameter range. A higher UD value signifies
a more evenly distributed set of solutions, indicating better
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Fig. 25 Comparison of NSGA-II and NSTLBO in terms of uniform
distribution
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Fig. 26 Comparison of NSGA-II and NSTLBO in terms of error ratio

algorithm performance. Figure 25 presents the comparison
between NSGA-II and NSTLBO in terms of UD. Notably,
NSGA-II exhibits a greater UD compared to NSTLBO. This
suggests that NSGA-II is capable of generating a more uni-
formly distributed set of solutions across the Pareto front,
enabling it to explore a broader range of trade-off solutions.

The error ratio metric assesses the quality of the approxi-
mation front by considering the proportion of non-true Pareto
points relative to the population size. A lower ER value indi-
cates a superior non-dominated set, implying that a larger
portion of the solutions in the front are truly Pareto-optimal.
InFig. 26, it becomes evident thatNSGA-II boasts a lowerER
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Trials
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Fig. 27 Comparison of NSGA-II and NSTLBO in terms of ONVG

value compared to NSTLBO, underscoring its superior per-
formance in generating a higher proportion of non-dominated
solutions. This showcases NSGA-II’s ability to provide a
more accurate representation of the Pareto front.

Theoverall non-dominated vector generationmetric refers
to the number of non-dominated individuals found in the
approximation front. It is crucial to strike a balance, avoiding
an excessive or inadequate number of non-dominated solu-
tions based on the specific problem and context. Figure 27
showcases an intriguing finding: while NSGA-II managed
to discover a non-dominated set, NSTLBO failed to find
any non-dominated individuals during its evolution. While
ONVG alone does not guarantee algorithm performance, this
outcome highlights NSGA-II’s superiority in generating a
diverse and well-balanced set of non-dominated solutions.

The maximum spread metric evaluates how well the
approximation set covers the true Pareto front. A higher MS
value indicates better performance, as it signifies a broader
coverage of the true Pareto front by the approximation set.
Figure 28 presents the comparison between NSGA-II and
NSTLBO in terms ofMS, unveiling NSGA-II’s achievement
of a higher MS value relative to NSTLBO. This suggests that
NSGA-II can cover a larger area of the true Pareto front,
thereby providing a more comprehensive set of trade-off
solutions.

The generational distance metric measures the distance
between the evolved solution set and the true Pareto front.
A lower GD value implies a closer approximation to the
true front. As depicted in Fig. 29, NSGA-II outperforms
NSTLBO with a lower GD value. This indicates NSGA-II’s
superior performance in terms of proximity to the true Pareto
front. Consequently, NSGA-II excels at finding solutions that
closely resemble the optimal solutions on the Pareto front.
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Fig. 28 Comparison of NSGA-II and NSTLBO in terms of maximum
spread
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Fig. 29 Comparison of NSGA-II andNSTLBO in terms of generational
distance

Lastly, we consider the maximum Pareto front error met-
ric, which focuses on the largest distance between individuals
on the evolved solution set from the true Pareto front. In
Fig. 30, it becomes evident that NSGA-II exhibits a lesser
MPFE compared to NSTLBO. This finding suggests that
NSGA-II surpasses NSTLBO in terms of minimizing the
error between the approximation front and the true Pareto
front.

The comprehensive analysis of multiple performance
metrics highlights NSGA-II’s superior performance over
NSTLBO. NSGA-II excels in various aspects, including
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Fig. 30 Comparison of NSGA-II and NSTLBO in terms of maximum
Pareto front error

uniform distribution, error ratio, overall non-dominated vec-
tor generation, maximum spread, generational distance, and
maximum Pareto front error. The only area where NSTLBO
outperforms NSGA-II is computational time, with NSGA-II
requiring more time to obtain optimal solutions. NSGA-II
emerges as the stronger algorithm based on this thorough
examination of performance metrics.

The study has limitations regarding the accuracy of model
predictions and the confined search range within the experi-
mental design space,whichmay result in errorswhenpredict-
ing beyond this space. Additionally, the employed modeling
and optimization techniques, such as ANN, NSGA-II, and
NSTLBO, have their inherent limitations. ANNs require a
significant amount of labeled training data, are susceptible
to overfitting, and can be computationally expensive. Select-
ing appropriate architecture and parameters for ANNs can be
challenging and time-consuming. NSGA-II requires setting
various parameters, and its reliance on Pareto dominance
may not accurately capture the preferences of decision-
makers. NSTLBO faces challenges in balancing exploration
and exploitation of the search space, which may lead to pre-
mature convergence or inadequate exploration. However, the
studymitigated these limitations by employingproper valida-
tion techniques and rigorous testing. Despite the limitations,
the results obtained from the ANN, NSGA-II, and NSTLBO
algorithms are excellent in terms of accuracy and precision,
providing reliable outcomes.

6 Conclusion

This study proposed and evaluated two optimization strate-
gies: an ANN-NSGA-II approach and an ANN-NSTLBO
approach for modeling and optimizing the TWIST welding

process. The following conclusions can be drawn from this
study:

1. ANN with double hidden layers yields lower variance
and better predictability than single hidden layer.

2. Graphical representation of actual vs. predicted weld
shear strength and weld-seam width results shows good
agreement between actual and predicted weld quality.

3. NSGA-II achieves a wide range of optimal solutions,
while NSTLBO converges at one point.

4. NSGA-II outperforms NSTLBO in simultaneously max-
imizing weld strength and minimizing seam width.

5. NSGA-II has better performance in terms of various
metrics (uniform distribution, error ratio, overall non-
dominated vector generation, maximum spread, genera-
tional distance, and maximum Pareto front error) despite
slightly longer computational time.

6. The implemented optimization approaches optimized
process parameters effectively within specified con-
straints, improving quality and performance.

The presented work showcases the novelty and usefulness
of the research findings by addressing the following aspects:

1. The research addresses the challenges of predicting
appropriate parameter values and optimizing conflicting
objectives in TWIST welding.

2. The outcomes of the study provide insights into the effec-
tiveness and comparative performance ofANN-NSGA-II
and ANN-NSTLBO, aiding the selection of an appropri-
ate optimization strategy forTWISTwelding in industrial
applications.

The authors may expand on this work in the future to
broaden the objectives of the current study to include the
following aspects:

1. Incorporate additional performance attributes and con-
straints into the multi-objective optimization framework.

2. Investigate real-time optimization and control of TWIST
welding for adaptive parameter adjustments.

3. Extend the optimization strategies to other welding pro-
cesses and refine the ANN model by exploring different
training algorithms.

Author Contribution DK contributed to Methodology, Validation, For-
mal analysis, Writing—Original Draft; SG contributed to Software,
Investigation; BA contributed to Conceptualization, Visualization,
Writing—Review and Editing; ASK contributed to Resources, Super-
vision.

123



2438 Arabian Journal for Science and Engineering (2024) 49:2411–2441

Appendix A: Pseudo Code of NSTLBO

Step 1: Initialization

Function Evaluation=0
Max_Function Evaluation=10000
Generation=0
Population Size=50
Dim=5; %dimension
LB= [7.89 25 2 0.4 1]
UB= [8.35 35 4 0.8 5]
Objectives=2

% Initial Population
for i =1 to Dim

Population(:,i)=LB(i)+(UB(i)-LB(i))*rand(PopulationSize,1);
Stored_Pop=Population
Population (:,Dim+1:Dim+Objectives)=Objective_Function7(Population, Dim)
Pop_Obj_Matrix=Population
Population=Non Dominated Sorting (Objectives,Dim,Pop_Obj_Matrix)

Step 2. Main Loop

While (Function Evaluation<=Max_Function Evaluation)
Top Rank= Population (:,Dim+Objectives+1)==1
Top Rank_CD=find(Population(TopRank,Dim+Objectives+2)==Inf)
Count=numel (Top Rank_CD)
%Step 2.1: Teacher Phase
Population_Temp=Population (:,1:Dim)
[row,col]=size(Population_Temp)   % Storing the size of population
Best=Population_Temp(round(Count-(Count-1)*rand(1,1)),:)
rn=rand(1,1)
Normal_Mean=mean (Population_Temp(:,1:Dim))
Teaching Factor=randi ([1 2],1,1)
for j=1 to row

for i=1 to col
Normal Mean=Normal_Mean(i)

Diff_Mean=rn*(Best(i)-(Teaching Factor*Normal Mean))
Population_New(j,i)=Population_Temp(j,i)+Diff_Mean

New_Pop=Corner_Bounding(LB,UB,Population_New)
New_Pop(:,Dim+1:Dim+Objectives)=Objective_Function7(New_Pop,Dim)
Combined_Pop=cat(1,Population(:,1:Dim+Objectives),New_Pop)
Population=Non Dominated Sorting(Objectives,Dim,Combined_Pop)
Population=Population (1:PopulationSize,:)
%Step 2.2: Learner Phase
% Peer selection
for i=1 to Population Size

Peer=randi([1,PopulationSize],1,1)
while i==Peer

Peer=randi([1,PopulationSize],1,1)
Fitness_Ranking=Population(i,Dim+Objectives+1:end)
Selected_Rank=Fitness_Ranking(1,1)
Peer_Rank=Population(Peer,Dim+Objectives+1)
Selected_CD=Fitness_Ranking(1,2)
Peer_CD=Population(Peer,Dim+Objectives+2)
if Selected_Rank<Peer_Rank
PopulationNew(i,:)=Population(i,1:Dim)+(rand(1,Dim).*(Population(i,1:Dim)-              

Population(Peer,1:Dim)))
elseif Selected_Rank==Peer_Rank
rand2=randi([1,2],1,1)
if rand2==1
PopulationNew(i,:)=Population(i,1:Dim)+(rand(1,Dim).*(Population(i,1:Dim)-

Population(Peer,1:Dim)))
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else
PopulationNew(i,:)=Population(i,1:Dim)+(rand(1,Dim).*(Population(Peer,1:Dim)-

Population(i,1:Dim)))
else
PopulationNew(i,:)=Population(i,1:Dim)+(rand(1,Dim).*(Population(Peer,1:Dim)-

Population(i,1:Dim)))
End of for loop

PopulationNew(:,1:Dim)=Corner_Bounding(LB,UB,PopulationNew(:,1:Dim))
PopulationNew(:,Dim+1:Dim+Objectives)=Objective_Function7(PopulationNew(:,1:Dim),Dim)
Population New=Population New (:,1:Dim+Objectives)
Combined_Pop=cat(1,Population(:,1:Dim+Objectives) ,Population New(:,1:Dim+Objectives))
Population=Non Dominated Sorting (Objectives,Dim,Combined_Pop)
Population=Population (1:Population Size,:)
Combined_Pop= [ ]
Population New= [ ]
Function Evaluation=Function Evaluation + Population Size %This is checked by main loop
disp (Function Evaluation);
%Results
ParetoFront=[Population(:,Dim+1) Population(:,Dim+2) Population(:,Dim+3)]; 
[Pareto Front Sorted,inx]=sortrows (ParetoFront); 
Non Dominated Sol=Population (:,1:Dim); 
Sorted Non Dominated Solutions=Non Dominated Sol(inx,:); 
Final Output=[Sorted Non  Dominated  Solutions Pareto Front Sorted]; %final output

End of while loop.

Appendix B: Pseudo Code of NSGA-II

Step 2. Main Loop:
For t = 1 to T (maximum number of generations):

a. Create an empty offspring population Q(t).
b. Repeat the following steps until Q(t) is filled:

i. Select two parent solutions from P(t) using binary tournament selection.
ii. Perform crossover and mutation operations on the selected parents to produce a child 

solution.
iii. Evaluate the objective values of the child solution.
iv. Add the child solution to Q(t).

c. Merge P(t) and Q(t) to form R(t) (combined population).
d. Calculate the non-domination rank and crowding distance for each individual in R(t).
e. Create an empty next-generation population P(t+1).
f. Repeat the following steps until P(t+1) is filled:

i. Select the next solution based on non-domination rank and crowding distance using binary 
tournament selection from R(t).

ii. Add the selected solution to P(t+1).
g. Increment t.

Step 3. Termination:
Stop the algorithm when the maximum number of generations (T) is reached.

Step 1. Initialization:
Generate an initial population P(t) of size N.
Evaluate the objective values and calculate the non-domination rank and crowding distance for each individual 
in P(t).
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