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Abstract
The accurate prediction of the rate of penetration (ROP) is crucial for optimizing drilling parameters and enhancing drilling
efficiency in ultra-deep wells. However, this task is challenging due to the harsh geological conditions, complex drilling
processes, voluminous drilling data, and nonlinear relationships between drilling parameters and rock-breaking. In this study,
a comprehensive intelligent model is proposed that combines clustering and deep residual neural network to address these
challenges. Specifically, relevant feature parameters are selected for ROP prediction and the Savitzky–Golay filter is employed
to reduce noise in the field data. Formations with similar rock characteristics are clustered using well logging parameters,
including sonic logging and natural gamma ray logging, which indicate the formation rock properties. A deep residual neural
network is then used to develop the prediction model, with the clustering results and 13 mud logging parameters serving as
inputs. The model is trained and tested using field data from an ultra-deep reservoir in northwest China, and its performance
is evaluated. The impact of data noise reduction, formation clustering, and deep residual neural network on the prediction
accuracy is analyzed through ablation experiments. The proposed model achieves high accuracy in predicting ROP, with
relative errors ranging from 11.34 to 11.44% and R2 values from 0.92 to 0.94. Compared to traditional machine learning
models, the approach demonstrates superior performance and is suitable for real-time drilling applications. This study provides
a promising solution for accurate ROP prediction in ultra-deep wells, helping to optimize drilling parameters and improve
drilling efficiency.
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1 Introduction

Although there is a growing interest for sustainable energy,
for the next decade, oil and gas will still remain as the basis
for global energy consumption. With the depletion of shal-
low oil and gas resources, the exploration and development
of deep oil and gas resources become popular [1–5]. The
increasing well depth greatly raises the drilling costs, which
brings about the necessity to improve drilling efficiency and
rate of penetration (ROP). Accurate prediction of ROP is the
first step for optimizing drilling parameters and improving
drilling efficiency [6–8]. ROP prediction has been the subject
of drilling engineering for more than half a century, which
can be divided into two categories: physics-basedmodels and
data-driven models.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-023-08043-w&domain=pdf
http://orcid.org/0000-0002-4831-432X


16754 Arabian Journal for Science and Engineering (2023) 48:16753–16768

The traditional physics-based ROP models were widely
used because of their simplicity and clear physical back-
ground. Through extensive experimental data analysis, Bing-
ham [9] discovered that weight on bit (WOB), rotation
per minute (RPM), and wellbore diameter had substantial
impacts on ROP and put forward a basic ROP equation.
Later researchers worked to refine this equation and pro-
posed a number of modified models [10–17]. More factors
were considered, including formation strength, formation
compaction, bit wear, hydraulic parameters, bottom hole
pressure, inclination angle, dogleg degree, cuttings bed thick-
ness and concentration, etc. Physics-based ROP models are
devoted to establishing an explicit mathematical relationship
between drilling parameters and ROP through mechanism
analysis and laboratory experiments. However, the physical-
based ROP models suffer from certain limitations. Due to
the high reciprocity and nonlinearity among various relevant
parameters, it is difficult to accurately predict ROP with tra-
ditional polynomial equations. In addition, the models have
undetermined coefficients that are related to bit wear, well-
bore cleaning, and rockmechanics. In ultra-deep wells, these
deficiencies become more intolerable and make the physics-
based ROP models poorly applicable.

In recent years, machine learning technology has
advanced rapidly. The data-driven models do not rely on
theoretical analysis and show the advantages such as high
flexibility for input parameters and strong ability of fit-
ting complex nonlinear relationships. ROP prediction using
machine learning is receiving increasing attention [18–22].
Since Bilgesu et al. [23] published the first paper on ROP
prediction applying artificial neural network (ANN) in 1997,
researchers have done a lot of works on ROP prediction with
ANN [24]. ANN is an information processing system that
imitates the structure and function of neural networks in
human brain. For a data set, ANN can learn and capture
the unique relationship between input and target parameters,
and has the characteristics of fault tolerance, high efficiency,
and great adaptability [25]. The powerful nonlinear mapping
ability of ANN provides a good solution for ROP prediction.
Multilayer perceptron (MLP) and extreme learning machine
(ELM) neural networks were widely adopted [26, 27]. In
order to boost ROP prediction accuracy, researchers started
to optimize the ANN structure (the number of hidden lay-
ers, the number of neurons in each layer, etc.) [28–30]. In
addition, other popular machine learning methods, such as
random forest (RF) and support vector machine (SVM), are
also utilized to build ROP prediction models [31–33]. Chris-
tine et al. [31] compared five machine learning methods (RF,
ANN, SVM, ridge regression, and gradient elevator) in ROP
prediction.

From the perspective ofmachine learning, ROP prediction
is a regression task. Although neural networks are com-
petitive for regression tasks, there are challenges to build

high-performance ROP prediction models [19, 34–36]: (1)
Due to the complex underground condition and instrumental
errors, there are deviations and noise data in the original data
set. The quality of the original field data set is poor, so it is dif-
ficult to train an accurate and reliable model with the original
data. In previous publications, R2 > 0.8 could be regarded as
a good accuracy [24, 37, 38]. (2) As a result of the local uplift
and subsidence, the corresponding depth of the same forma-
tion in different wells varies. To complete the ROP prediction
of the whole well, the traditional solution needs to build mul-
tiple models according to the geological formations, which
is extremely time-consuming [30]. It is necessary to build
a single model that both considers geological heterogeneity
and can predict ROP of the whole well sections. (3) With the
continuous automation of drilling engineering, the big data
generated by drilling operations are more abundant in diver-
sity and quantity. As the data size greatly increases, there are
more hidden information that needs to be elucidated. The tra-
ditional neural networks have simple structure, which cannot
fully perceive the latent relationships in the big data.

To deal with above challenges, this paper constructs a
new intelligent ROP prediction model. Savitzky–Golay (SG)
algorithm is adopted to filter the data, which ameliorates the
data quality. The logging data are clustered. The geological
formationswith similar rock characteristics are classified into
the same cluster. The cluster results replace the well logging
data and act as a single feature parameter for formation char-
acteristics. To fully dig the hidden information in drilling big
data and achieve high-precision prediction, a 23-layer deep
residual neural network (ResNet) is built for the final ROP
prediction.

For the remaining contents, in Sect. 2, the frame of the
proposed model is introduced. The sub-processes of noise
reduction, formation clustering, and ResNet are presented in
detail. Themodel evaluation indexes are also described. Field
drilling data of ultra-deep reservoir in Xinjiang are collected
to train and test the model. Section 3 displays the results and
discussion, including the test results, ablation experiment,
performance comparison with other machine learning meth-
ods, and a case study of real-time application. After that, a
conclusion is drawn.

2 Material andMethods

2.1 Input Parameters for ROP Prediction

There are many mechanic, hydraulic and chemical param-
eters that affect ROP. Generally, field parameters can be
divided as mud logging parameters and well logging param-
eters based on data source. According to previous researches
[24, 37, 38], a total of 20 parameters that are closely related
to ROP are selected, as shown in Table 1. Since all the ultra-
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Table 1 Input parameters for ROP prediction

Number Feature parameter Source

1 Well depth, WD/m Mud logging parameter

2 Weight on bit, WOB/kN Mud logging parameter

3 Rotation per minute,
RPM/(r/min)

Mud logging parameter

4 Standpipe pressure,
SPP/Mpa

Mud logging parameter

5 Flow rate, Q/(L/s) Mud logging parameter

6 Torque, TOR/(kN m) Mud logging parameter

7 Bit diameter, BD/mm Mud logging parameter

8 Mud density, MD/(g/cm3) Mud logging parameter

9 Equivalent mud density,
ECD/(g/cm3)

Mud logging parameter

10 Hook load, HL/kN Mud logging parameter

11 Pump stroke, PS/spm Mud logging parameter

12 Mud pit volume, MPV/m3 Mud logging parameter

13 DC exponent, DC Mud logging parameter

14 Interval transit time,
AC/(µs/m)

Well logging parameter

15 Gamma ray, GR/(Ur/h) Well logging parameter

16 Spontaneous potential,
SP/mV

Well logging parameter

17 Compensated neutron
logging, CNL/ev

Well logging parameter

18 Density logging,
DEN/(g/cm3)

Well logging parameter

19 Resistivity, RD/(� m) Well logging parameter

20 Photoelectric absorption
cross-section index, PE

Well logging parameter

deepwells in the target reservoirs are vertical, deviation angle
and azimuth are not included in Table 1.

2.2 Model Framework

Figure 1 summarizes the structure and workflow of the
model, which is composed of data noise reduction, forma-
tion clustering (K-means), and ResNet. It is abbreviated as
DKR model. First, the input drilling data undergo the noise
reduction process to eliminate the outliers and missing val-
ues. Then, the well logging parameters are clustered using
K-means algorithm. The formations with similar rock char-
acteristics are classified into the same cluster. The cluster
results replace the well logging parameters and provide a sin-
gle feature parameter for formation characteristics. It helps
to enhance the correlation between formation characteristics
and ROP. Last, a ResNet with optimized structure is trained
to correlate feature parameters with ROP.

2.3 Data Noise Reduction

Data noise reduction aims to improve data quality and ensure
the reliability of the model. Drilling data are collected from
multiple sources (mud logging and well logging in this
work). Due to facility or human factors, field drilling data
are inevitably interfered by noise signals, which reduces the
model accuracy and increases the training time [39]. Appro-
priate noise reduction should be performed to improve the
consistency and integrity of the data.

In this paper, SG filter is adopted, which is a filtering algo-
rithm that realizes polynomial fitting of local interval through
least square convolution [40]. It has beenwidely used for data
smoothing and noise reduction [41, 42]. It can maintain the
shape and width of the original signal while removing the
noise. The process of SG filter is shown in Fig. 2. Within a
slidingwindow of 2m+ 1 continuous data points (width), the
least square fitting with a certain fitting order k is conducted,
and the fitting curve value at the center of the sliding window
is taken as the filtered value. The window continues to move,
and the above process is repeated to fulfil the filtering of all
data points.

The basic principle of SG filter is as follows:

s∗
j =

∑m
i=−m Ci S j+1

N
(1)

where S is the original signal; s* is the signal after noise
reduction; Ci is the noise reduction coefficient for the i-th
time;N is the sliding window width for 2m + 1 data points;
j is the j-th point in the data set. Two parameters need to be
determined when applying SG filter: sliding window width
N and local polynomial fitting order k. Reasonable selection
of N and k can reduce signal distortion and ensure filtering
quality [43].

2.4 Formation Clustering

The purpose of formation clustering is to arrange geological
formations that share similar rock properties. Due to the local
geological movement, the same formationmay appear at var-
ious vertical depth or even disappear for different wells. To
guarantee the accuracy, previous machine learning method
has to establish multiple ROP models for all the formations
(Fig. 3). In this work, well logging data are used to cluster
the formations. After dividing the formations with similar
rock characteristics into the same cluster, the well logging
parameters are replaced by cluster results as the input param-
eters for ROPprediction. It helps to strengthen the correlation
between formation feature and ROP, and facilitate the model
training. Most importantly, the ROP prediction of the whole
well can be realized with a single model.
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Fig. 1 Framework of DKR model

Fig. 2 The process of SG filter

The process of formation clustering (unsupervised learn-
ing) is shown in Fig. 4. Specifically, K-means algorithm is
applied. The algorithm requires to specify the number of
clusters k and initial cluster centers in advance. Euclidean
distance is used to evaluate the similarity betweendata points.
The similarity is inversely proportional to the distance. The
location of each cluster center is updated according to the
similarity between the data points and the cluster center.

The essence of K-means algorithm is to divide the unla-
beled data set X (Eq. 2) into k (k <m) clustersC = c(1), c(2),

. . . , c(k).

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x (1)

x (2)

...

x (m)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, x (i) ∈ Rn (2)

wherex(i) is the data points in the data set.
Its framework is as follows:
1) Randomly select k cluster center points μ1, μ2, . . . ,

μk ;
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Fig. 3 Traditional ROP prediction strategy for different formations in the same well

Fig. 4 Formation clustering with K-means algorithm

2) For each data point x(i), decide the cluster it belongs to:

c(i) := argmin
j

∥
∥
∥x (i) − μ j

∥
∥
2

(3)

where c(i) is the cluster closest to x(i), i < k;
3) For each cluster j, recalculate the center μj;

μ j :=
∑m

i=1 1
{
c(i) = j

}
x (i)

∑m
i=1 1

{
c(i) = j

} (4)

4) Repeat step 2) and 3) until convergence. Distortion
function Eq. (5) represents the square sum of the distance
from each data point to its cluster center. When J reach the
smallest value, clustering is convergent. Because of the non-
convexity of Eq. (5), local convergence may happen. So the
clustering process should be conducted for multiple times to

ensure consistency.

J (c, μ) =
m∑

i=1

∥
∥
∥x (i) − μc(i)

∥
∥
2

(5)

In this paper, the elbow method [44] is used to determine
a proper k value.

2.5 Deep Residual Neural Network

For big data of drilling, simple neural networks are inade-
quate in learning ability and generalization ability, and more
complicated networks have been proposed. A deeper and
larger network is believed to better capture the complex
nonlinear relationship between feature parameters and ROP.
With the increase in network layers, it can extract more
features and capture intricate relationships. However, the
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Fig. 5 ResNet residual learning

increased complexity of network is not always in favor of
the prediction accuracy. On the other hand, there are growing
risks of over-fitting, gradient vanishing, and gradient explo-
sion. Traditional neural networks are unable to deal with the
big data in ROP prediction.

In view of the successful applications of ResNet in solving
complicated regression problems with big data [45–47], this
work uses ResNet [48] to meet the challenges. ResNet adds
shortcut connections in the network, which directly transfer
the output of the previous layer to a subsequent nonadjacent
layer through identity mapping. By modifying the network
structure, ResNet can assure model stability and accuracy
with the increased network layers.

The residual learning in ResNet is shown in Fig. 5. Sup-
pose that the input of a neural network is x and the expected
output isH(x). It is difficult to directly train the model to find
the relationship between x and H(x). In the residual learning
scenario, the input x is directly transferred to the output as
the initial result through shortcut connection, and the out-
put becomesH(x) = F(x) + x. If F(x) = 0, then H(x) = x,
which is an identity mapping. Thus, the learning objective
of ResNet is no longer a complete output, but the difference
between the target valueH(x) and x, residual F(x) = H(x) −
x. The training target is to minimize the residual to 0. This
jump structure of residual breaks the convention that in the
neural network the output of one layer can only be used as
the input for the next neighboring layer. The output of pre-
vious layer can cross several layers and directly serve as the
input of a subsequent layer. Therefore, with the increase in
network layers, the accuracy and stability of model do not
decline. The workflow of ResNet is demonstrated in Fig. 6.
The input includes mud logging parameters and formation
cluster label.

2.6 Evaluation Index

The model performance is evaluated by mean absolute error
(MAE), mean absolute percentage error (MAPE), and coef-
ficient of determination (R2). MAE is the absolute error

between the predicted ROP ypre and the actual ROP y:

MAE = 1

n

n∑

i=1

|yprei − yi | (6)

where n is the number of data points; yprei is the i-th predicted
ROP, m/h; yi is the i-th real ROP, m/h.

MAPE measures the relative error between ypre and y:

MAPE = 1

n

n∑

i=1

∣
∣yprei − yi

∣
∣

yi
(7)

For a high-performance model, MAE and MAPE should
be small.

R2 evaluates the fitting performance of the regression
model. The closer R2 is to 1, the higher the degree of model
fitting. R2 is calculated by:

R2 = 1 −
∑n

i=1(y
pre
i − yi )2

∑n
i=1

(
yprei − 1

n

∑n
i=1 yi

)2 (8)

2.7 Field Data

This work collects 243,000 sets of data from 40 ultra-deep
wells in NY reservoir, Xinjiang Province, China as the origi-
nal data set, which covers all the main geological formations
for the reservoir. The typical geological stratifications and
well structure of the target reservoir are illustrated in Fig. 7.
Part of the data set are presented in Tables 2 and 3. To avoid
data leakage, the division of training data set and test data set
is conducted for the wells instead of the data points. The data
from 32 wells are used as training data set, while the data of
remaining 8 wells comprise test data set.

3 Results and Discussion

3.1 Model Performance and Analysis

The structure and main parameters of DKR model are listed
in Table 4. N and k (SG filter) are decided by trial and error.
The optimal K (formation clustering) is determined to be 23
by elbow method. The data value is obtained after several
tests. In ResNet, a total of 7 residual blocks are constructed,
and each residual block contains three weight layers. This
is the optimal network structure obtained through multiple
tests.

Figure 8 shows an example of noise reduction using SG
filter. It can be seen that the general trends of the processed
curves are consistent with the original data. The abnormal
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Fig. 6 Workflow of ResNet ROP prediction

Fig. 7 Typical geological
stratifications and well structure
in the target reservoir

values are significantly reduced, and the curves are smoothed.
This is beneficial for model training.

To evaluate the effect of formation clustering, the stan-
dard deviation and variation coefficient of rock compressive
strength are calculated for 4 continuous major formations
(K1l, K1h, K1q, and J3k) in the reservoir. The standard devia-
tion and coefficient of variation indicate the dispersion degree
of data. Greater standard deviation/coefficient of variation
means a more disperse data distribution. The results are
presented in Table 5. The 4 formations are classified as 6

different clusters (Cluster 1, 3, 4, 6, 8, and 9). Before clus-
tering, the variation coefficients of 4 formations are all larger
than 0.1 (weighted average 0.1253), which is statistically
moderate-variant. After clustering, the variation coefficients
are all less than 0.1 (the weighted average 0.079), which
shows a weak variation. The weighted average of variation
coefficient is lowered by 36.95%. The data in the same clus-
ter are more homogeneous in terms of rock property. The
results of remaining formations are similar. In this case, the
influence of rock characteristics on ROP can be regarded
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Table 2 Part of the drilling data collected from the target reservoir

WD (m) ROP (m/h) WOB (kN) RPM (r/min) SPP (MPa) Q (L/s) … TOR (kN/m) BD (mm) MD (g/cm3)

… … … … … … … … … …

3810 7.16 87 54 32.63 25.2 … 10.34 311.2 2.1

3811 5.25 100 54 32.98 25.3 … 7.03 311.2 2.1

3812 4.96 115 54 32.75 24.5 … 11.62 311.2 2.1

3813 5.42 94 54 32.68 25.3 … 8.84 311.2 2.1

3814 5.66 119 54 32.61 23.6 … 8.32 311.2 2.1

3815 8.94 103 54 33.43 25.2 … 13.07 311.2 2.1

3816 9.43 106 54 33.15 24.6 … 10.18 311.2 2.1

3817 6.2 86 54 32.05 24.5 … 8.6 311.2 2.1

3818 6.89 85 54 32.21 24.8 … 8.98 311.2 2.1

3819 8.45 103 54 32.09 24.6 … 6.43 311.2 2.1

3820 9.79 104 54 32.78 24.6 … 9.01 311.2 2.1

… … … … … … … … … …

Table 3 Part of well logging data
collected from the target
reservoir

WD (m) SP (mV) GR (Ur/h) AC (µs/m) … CNL (ev) DEN (g/cm3)

… … … … … … …

3810 36.345 53.120 229.381 … 7.782 2.583

3811 37.872 44.250 211.906 … 5.752 2.592

3812 48.363 60.089 238.488 … 15.445 2.517

3813 65.256 119.977 260.765 … 19.789 2.462

3814 71.389 150.572 264.012 … 20.515 2.486

3815 70.778 117.411 249.534 … 25.157 2.384

3816 70.142 117.899 266.082 … 27.363 2.313

3817 69.045 130.283 277.094 … 27.625 2.354

3818 69.214 124.869 265.173 … 23.597 2.366

3819 69.664 107.098 248.831 … 19.004 2.386

3820 68.495 111.681 250.341 … 20.567 2.303

… … … … … … …

Table 4 Key parameters and
network structure for DKRmodel Sub-process Key parameters/network structure

Data noise reduction N = 25, k = 3

Formation clustering K = 23

ResNet Input.layers(14)

Residual block 1

Weight.layers(128, activation = ReLU)

Weight.layers(256, activation = ReLU)

Weight.layers(128, activation = ReLU)

…

Residual block 7

Weight.layers(256, activation = ReLU)

Weight.layers(256, activation = ReLU)

Weight.layers(128, activation = ReLU)

Out.layers(1, activation = ReLU)
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Fig. 8 Result of noise reduction

as identical in the same formation cluster. The cluster label
substitutes well logging parameters as the input for ResNet,
which effectively reduces the input parameters for ROP pro-
duction, and facilitates model training.

In order to validate the generalization ability of DKR
model, 10 repetition of training and test are conducted. In
each experiment, the training wells and test wells are re-
divided. The prediction deviations vary in each repetition
test, and the 10 test results are averaged for the wells in the

test set, which are shown in Table 6. Note well1 to well8
only represent the sequence in test set, not a certain well.
The maximumMAE of the DKRmodel is 0.66 m/h, the min-
imum MAE is 0.48 m/h, and the average MAE is 0.55 m/h.
ThemaximumMAPE is 12.77%, theminimum is 9.82%, and
the average is 11.34%. The absolute deviation and relative
deviation are both tolerable. The maximum R2 is 0.94, the
minimum R2 is 0.89, and the average R2 is 0.92. The overall
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Table 5 Standard deviation and
variation coefficient of
compressive strength before and
after clustering

Formation Numbers of
data

Mean
compressive
strength (MPa)

Standard
deviation
(MPa)

Coefficient of
variation

Before
clustering

K1l 19,268 137.2 15.85 0.1155

K1h 29,650 132.1 14.94 0.1131

K1q 20,750 138.9 21.28 0.1532

J3k 16,744 174.6 21.61 0.1238

After
clustering

Cluster 1 12,317 140.34 11.91 0.0849

Cluster 3 14,905 188.13 13.04 0.0693

Cluster 4 16,096 103.98 9.29 0.0893

Cluster 6 14,535 152.48 12.83 0.0841

Cluster 8 13,094 132.79 11.95 0.0900

Cluster 9 15,465 170.22 10.03 0.0589

Table 6 Average test results of DKR model

MAE (m/h) MAPE (%) R2

Well1 0.54 11.54 0.92

Well2 0.50 10.48 0.93

Well3 0.59 12.01 0.91

Well4 0.66 12.77 0.89

Well5 0.51 11.41 0.93

Well6 0.57 11.60 0.91

Well7 0.48 9.82 0.94

Well8 0.55 11.10 0.92

Average 0.55 11.34 0.92

fitting accuracy is good. The repetition experiments demon-
strate that DKR model can achieve accurate and stable ROP
predictions. Despite of small fluctuations, MAE,MAPE, and
R2 are maintained at satisfactory values.

Violin plots (Figs. 9 and 10) are applied to analyze the
error distribution of DKR model. Violin Plot combines the
characteristics of box plot and density plot. It displays data
distribution and its probability density. The AEs (absolute
error) generated by DKR model during the tests are shown
in Fig. 9. The box plots indicate the 25 and 75% quantiles.
For the test wells, most of the AEs are less than 1 m/h, which
concentrate around the medians (0.50–0.71 m/h). The distri-
bution density decreases from the peakvalue near themedian.
The occurrence of large AE is rare. The maximum AE is
between 3.01 and 3.68 m/h. The APEs (absolute percentage
error) of DKR model are shown in Fig. 10. The medians of
relative error range from 9.8 to 13.1%, validating a fairmodel
accuracy. Most of the APEs are distributed in between 5 and
15%. The maximum APE ranges from 34 to 41%. There are
no extreme outliers in the plots, indicating that the model has
good generalization ability and stability.

Figure 11 depicts the relationship between predicted ROP
and real ROP values. In the DKR model, the determination
coefficients are in the range of 0.89 ~ 0.94, indicating that
the proposed model precisely fits the nonlinear relationship
between the ROP and the feature parameters. In conclusion,
the repetition test results prove that DKR model has satis-
factory performance for ROP prediction in ultra-deep wells,
with high prediction accuracy, good robustness, and strong
generalization ability.

3.2 Ablation Experiment

An ablation experiment in machine learning involves remov-
ing certain elements from the dataset or model in order
to better understand its behavior. In this section, the abla-
tion experiments of DKR model is performed to evaluate
the contribution of each sub-process. Specifically, following
combinations are tested: (1) K-means + ResNet, where the
data noise reduction is removed; (2) Data noise reduction
+ ResNet, where the formation clustering is removed; (3)
Data noise reduction + K-means + ANN, where ResNet is
replaced by a traditional 23-layer ANN. Similarly, 10 rep-
etition tests are conducted for each combination, and the
average test results are shown in Table 7. It is demonstrated
that the removal of any part of DKR model leads to certain
deterioration, while the substitution of ResNet with ANN
results in the largest impact.

Figure 12 shows the AE and APE of ROP prediction with
and without noise reduction. Without noise reduction, the
median, quartile range, and 95% confidence of the AE and
APE obviously grow. MAE and MAPE increase by 12.73
and 9.0%. R2 is reduced from 0.92 to 0.90. It reveals that data
noise reduction plays an important role in building a high-
precision ROP model. By data noise reduction, the accuracy
of the ROP prediction can be improved to a certain extent.
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Fig. 9 AE distribution of DKR
model

Fig. 10 APE distribution of DKR
model

Fig. 11 Comparison of predicted ROP and real ROP
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Table 7 Results of ablation experiment

Model MAE(m/h) MAPE
(%)

R2

Data noise reduction +
K-means + ResNet (DKR)

0.55 11.34 0.92

K-means + ResNet (KR) 0.62 12.36 0.90

Data noise reduction +
ResNet (DR)

0.69 13.47 0.87

Data noise reduction +
K-means + ANN (DKA)

0.81 15.55 0.84

Figure 13 shows the AE and APE of ROP prediction with
and without formation clustering. Both of the models use SG
filter for noise reduction and the ResNet with same structure.
Similar to Fig. 12, the median, quartile range, and 95% con-
fidence interval of errors have significantly increased when
formation clustering is removed. R2 reduces to 0.87. The AE
and APE of DR model are 0.69 m/h and 13.47%. In com-
parison, the AE and APE of DKR model are 0.55 m/h and
11.34%. It proves that formation clustering is a crucial con-
tributor for the accuracy of DKR model.

The effect of replacing ResNet with an equal-layer ANN
is shown in Fig. 14. TheAE andAPE distribution of theDKA
model are significantly larger than those of DKRmodel. The
AE and APE of DKA model are 0.81 m/h and 15.55%,
increased by 47.27 and 37.13%. R2 declines to 0.84. It
demonstrates that conventional ANN cannot solve the prob-
lem that the model accuracy decreases with the increased

network layers. Otherwise, ResNet successfully overcomes
this challenge.

3.3 Comparison with Other Machine Learning
Methods

The performance of the proposed ROP prediction model
(DKR) is compared with three benchmark machine learning
models (Back-Propagation neural network (BP), SVM, and
RF) [24, 49–54]. To ensure consistency, noise reduction and
formation clustering are also performed for the three mod-
els. And the model parameters are the optimized values after
trial and error. Each model has been trained and tested for 10
times, and the results are averaged. It can be seen fromFig. 15
that DKR model has better performance than BP, SVM, and
RF. The AE and APE of DKR are the lowest, while its R2 is
the highest. BP shows a decent accuracy, but SVM and RF
perform poorly on ROP prediction in ultra-deep wells.

3.4 Real-time Field Application

Recently, the trained DKRmodel was applied for a real-time
ROP prediction of a new ultra-deep well (HT-X) in the reser-
voir. The prediction started from a measure depth of 5700 m,
and ended at 7600 m. The test results are shown in Fig. 16.
Figure 16a displays measured ROP and predicted ROP along
the measure depth. It can be seen that the predicted ROP
curve closely follows the measured ROP curve, despite that
the peak and bottom values are less prominent in the pre-
dicted curve. The smooth change of predicted ROP curve
is the result of SG filtering. Figure 16b shows the AE and

Fig. 12 Distributions of AE and
APE of ROP prediction model
with and without data noise
reduction

Fig. 13 Distributions of AE and
APE of ROP prediction model
with and without formation
clustering
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Fig. 14 Distributions of AE and
APE of ROP prediction model
with ResNet and ANN

Fig. 15 Comparison of DKR and other machine learning models

APE distributions of ROP prediction. The AE is mostly dis-
tributed in the range of 0–0.2m/h, while the APE is generally
located in the range of 5–15%. The maximum and average
AEs of the DKR model are, respectively, 0.77 and 0.17 m/h,
corresponding to APEs of 30.3 and 11.2%. There are only
a few of unsatisfactory large errors in the whole ROP pre-
diction process. Figure 16c depicts the relationship between
predicted and measured ROPs. The high R2 of 0.91 indicates
the prediction accuracy of DKRmodel is great. The field test
validates the feasibility of applying DKR model to real-time
ROP prediction in drilling ultra-deep wells.

4 Conclusion

This paper proposes a new ROP intelligent prediction model
for ultra-deep wells. The model utilizes mud logging and
well logging parameters that are closely related to ROP
as inputs and incorporates several innovative techniques,
including data noise reduction using SG filter, formation
clustering using K-means algorithm, and a ResNet-based

neural network for prediction. The model is tested on field
data from an ultra-deep reservoir in northwest China and
is found to have high prediction accuracy, good robustness,
and strong generalization ability. The average MAE, MAPE,
and R2 are 0.55 m/h, 11.34%, and 0.92. Ablation experi-
ments demonstrate the importance of each sub-process,while
comparison with other mainstreammachine learning models
confirms the superiority of the proposed model. Notably, the
proposed model with ResNet outperforms the conventional
ANN model by successfully overcoming the challenge of
decreased accuracy with increased network layers. Further-
more, a field test validates themodel’s feasibility for real-time
ROP prediction in drilling ultra-deepwells (MAPE= 11.2%,
R2 = 0.91). Overall, the proposed ROP prediction model
based on formation clustering andResNet shows great poten-
tial for further field application in ultra-deep wells, making it
a highly novel and competitive approach to ROP prediction.
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Fig. 16 Results of real-time ROP
prediction in HT-X well using
DKR model

(a) Measured and predicted ROPs vs. measure depth.

(b) AE and APE distributions of ROP prediction.

(c) Relationship between predicted ROP and measured ROP.
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