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Abstract
This research article studies the critical issue of the single-server congestion problem with prominent customer impatience
attributes and server strategic differentiated vacation. Despite their apparent practical relevance, the proposed congestion
problem has yet to be studied from a service/production perspective with transient analysis. The queue-theoretic approach is
used for mathematical modeling. The transient queue-size distribution has been derived using a modified Bessel function and
generating function technique. A time-dependent solution is advantageous for queueing systems’ dynamic behavior over a
planning phase and is predominantly valuable within the real-time design process for the state-of-the-art strategic system. The
time-dependent explicit expression of variance and mean for the number of waiting customers in the system is also derived
for quick statistical insights. Finally, numerical results are also exhibited to study the system’s behavior in depth.

Keywords Modified Bessel function · Generating function · Differentiated vacations · Reneging · Balking

1 Introduction

The optimal service system emphasizes strategic congestion
management to address the customer’s traffic. Congestion
management is an association between planning and oper-
ations. The research study’s prime objective is to present a
systematic process for managing customer congestion and
provides critical information on the performance of the ser-
vice system. The investigation identifies alternative strategies
for alleviating congestion and enhancing customers’ mobil-
ity to levels that attain a state of intended service. At the
core, congestion management includes performance moni-
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toring, alternative strategies for congestion, and norms for
detecting when action is required. Studying congestion and
its causes is used to develop more efficient and cost-effective
services and systems. The critical goal of the studied service
system is to prioritize strategies that would be most effective
for congestion management. The queueing analysis is one
of the most effective and practical mathematical tools for
understanding and aiding decision-making in dealing with
critical resources and managing congestion. The queueing
theory aims to design efficient systems that render service
competently to customers with a minimum delay but do not
cost too much to be sustainable. Several queueing systems
representing different service designs, regimes, and strate-
gies, wherein the common feature is that customers arrive
randomly at facilities to get service, need to investigate.

The queueing problems with customer impatience
attribute and service provider strategic vacation interestmany
researchers in neoteric times due to their broad applicability
in real-time congestion. Server vacation may occur for sev-
eral reasons, including a lowworkload,maintenance time, the
failure to repair, and many more. In recent years, there has
been considerable research on customer impatience attributes
in queueing systems with strategic server vacations/failures.
Levy and Yechiali [1] were the ones who introduced the
server vacation policy initially. A thorough, excellent, and
exhaustive study of vacation queueing models is found in
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Doshi’s survey [2], as well as in several publications on vaca-
tion queueing models (cf. [3–6]).

The strategic vacation policy variants include multi-
vacation, single-vacation, working vacation, Bernoulli vaca-
tion, gated vacation, N− policy, etc. The server goes on
vacation mode if found no waiting customer for service
instead of continuing in an idle state and increasing the ser-
vice cost. In a single-vacation policy, when the server returns
from vacation, it serves any waiting customers in the system;
otherwise, it stays idle. The server immediately takes another
vacation in the multiple-vacation policy when it resumes
from vacation and discovers no waiting customer in the sys-
tem. In a working vacation policy, the server remotely offers
the service at a slower rate instead of terminating it or remov-
ing itself from the system. In N − policy, the server remains
on vacation until there is an accumulation of N customers.
In the present study, we propose the multiple-vacation-based
differentiated vacation queueing systems that arewidely used
strategies to control access to the service facility and simulate
many energy-saving modes, such as wireless communica-
tions and flexible manufacturing systems. Isijola et al. [7]
studied the variant of multiple vacations wherein two sorts
of vacations, each with a different random duration, are ana-
lyzed. Vijayashree and Janani [8] analyzed the single-server
queueing system incorporating differentiated vacations pol-
icy and obtained the transient probability using the modified
Bessel function and Laplace transform techniques.

KempaandMarjasz [9] derived the conditional probability
distribution analytically for the queue size in a limited-
buffer single-channelM/G/1/N queueingmodel with batch
arrivals operating under the multiple-vacation policy. They
calculated the time to a first buffer overflow employ-
ing Korolyuk’s potential, integral equations, and embedded
Markov chain notions. Ayyappan and Deepa [10] analyzed
a non-Markovian batch arrival bulk service M [X ]/G(a, b)/1
queueing system featuring multiple-vacation policies, ser-
vice interruption & setup time with N−policy. In recent
years, many researchers (cf [11–15]) opted for the multiple-
vacationpolicy and several types ofmethodologies to analyze
the performance characteristics and provided several numer-
ical illustrations.

In everyday life, numerous queueing circumstances hap-
pen, and a long queue may deter customers. As a response,
customers either elect not to join the line (i.e., balk) or leave
after waiting due to impatience (i.e., renege). The dissat-
isfaction level of customers increases due to long waiting
for service and deciding to leave the system without getting
served at random times. Haight [16] first conceptualized cus-
tomers’ balking attribute in a single-server queueing model.
Later, Haight [17] again proposed the reneging attribute
of customers for the M/M/1 queueing model. Many ser-
vice systems originating in real-world applications may have
intermittently inaccessible servers, impacting a customer’s

sojourn duration and willingness to join. Naor [18] pio-
neered the research of queueing systems concerned with
customers’ reluctance behavior from an economic perspec-
tive. The economic assessment of customer-balking behavior
is significant. Indeed, the approach andfindings are alsomore
important (cf.[19–21]). The decision of a waiting customer
to stay or renege is continually offered till his departure from
the system. The waiting time before reneging depends on the
service type [22]. For instance, if a customer is waiting for a
mode of transportation and an unexpected event occurs that
might cause more delays, the customer may opt to renege
and utilize one of the available alternative service options
instead (cf. [23, 24]). Al-Seedy et al. [25] provided a tech-
nique for evaluating transient probabilities of the queueing
model M/M/c incorporating reneging and balking. Hassin
[26] presumed to renege as a crucial component for the real-
istic modeling of customers’ strategic behavior in queueing
models involving vacations. Due to their adaptability and
applicability, these models with impatient customers have
been thoroughly evaluated (cf. [27–31]). Customers’ impa-
tience attributes are comprehended as a possible loss of
customers, resulting in a loss of total income owing to their
insurmountable influence on a system’s intended financial
situation from a cost perspective.

Kumar [32] is the first researcher who introduced the effi-
cient notion of retention of the reneging customer. Later,
many researchers (cf. [33–37]) investigated retention of the
reneging customer in the service sector in economic perspec-
tive. Bouchentouf andGuendouzi [38] studied theMX/M/C
queueing model, including multi-working vacation vari-
ants in modeling and computed the steady-state solution
and henceforth performance measure for economic analysis
using the probability generating function (PGF).

To the best of our surveys, no studies have been undertaken
on customers’ impatience attributes: balking and reneging
in queueing systems with differentiated-multiple vacations.
The research gap makes a broader platform for our study.
Customers may opt to be reluctant to service when a server
goes on vacation and system congestion grows. In compar-
ison with earlier research, the importance of our analysis is
that we concentrate on the impact of balking and reneging
options in systems with differentiated-multiple vacations.

The structure of the remaining article is organized in
the following order. We describe the proposed queueing-
based congestion model along with its states and notations in
Sect. 2. Section3 explains the proposed methodology: mod-
ified Bessel function and generating function. In Sect. 4, we
discuss the transient analysis employing theLaplace transfor-
mation and derive the state probabilities of the studiedmodel.
The system’s performance measures are derived in Sect. 5
with the help of transient probabilities computed in the previ-
ous section. Section 6 contains different experimental results,
numerical findings, and significant qualitative insights. In the
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end, we conclude and offer potential study prospects for the
future in Sect. 7.

2 Problem Statements and Associated
Equations

In this article, we have considered a single-server queueing
system with the following assumptions and notations:

Notations
λ: the arrival rate of the customers
β: the balking probability
ξ : the reneging rate
μ: the service rate
θ1: the type-1 vacation parameter
θ2: the type-2 vacation parameter
N (t): number of customers in the system at time t
J (t): the state of the service provider at time t
πn, j : the probability that there are n customers in the system and
service provider is in state j
m(t): expected number of the customers in the system at time t
V (t): variance of the number of the customers in the system at time t

• The customers are generated randomly from the popula-
tion of prospective customers of size infinite.

• The inter-time between arrivals of customers for the
intended service in the system is assumed exponentially
with mean arrival rate λ.

• Upon arrival, the prospective customer gets the intended
service immediately if the service provider is idle; other-
wise, the customer joins the queue and waits for service.

• The customer may be impatient at the arrival epoch if the
server is on vacation or busy. Each arrived customer may
decidewhether to balk or join the systemwith probability
β or complementary probability 1 − β, respectively.

• After waiting for some subsequent time interval, the cus-
tomer may renege from the system. The random waiting
time before reneging is exponentially distributed with a
mean time of 1/ξ .

• There is one reliable server to serve the customer waiting
in the system with finite capacity.

• The waiting customer is chosen for service following
first-come-first-serve (FCFS) queue discipline.

• The continuous random variable, time-to-serve a cus-
tomer, follows exponential distribution (memoryless dis-
tribution) with parameter μ.

• Under the strategic policy, we assume that there are two
types of vacations: type-1 vacation and type-2 vacation.

• The type-1 vacation is initiated after a nonzero-length
busy period and is independent of the busy period. The

vacation time for type-1 is exponentially distributed with
parameter θ1.

• The type-2 vacation is initiated when no customer is
queued for the service when the service provider returns
from vacation. The duration of type-2 vacation follows
an exponential distribution with parameter θ2.

All events’ arrival/service, balking/reneging, and vacation
are independent of each other.

Let (N (t), J (t))define a two-tuple continuous-timeMarkov
chain (CTMC) with two-dimensional state space S =
{(n, j) : n = 0, 1, 2, . . .& j = 0, 1, 2}, where

N (t) ≡ number of customers present in the system at
instant t

J (t) ≡ state of the service provider (SP) at instant t

where

J (t) =

⎧
⎪⎨

⎪⎩

0; The SP is in active busy mode at instant t

1; The SP is on a type-1 vacation at instant t

2; The SP is on a type-2 vacation at instant t

For modeling purposes, we define the joint probability dis-
tribution as

πn, j (t) = Prob[N (t) = n, J (t) = j]; (n, j) ∈ S

TheChapman–Kolmogorovdifferential-difference equations
for the studied model are derived using the assumptions and
notations stated above. We start the analysis with the for-
mation of equations for rate of change of joint probabilities
πn, j ; ∀n, j (state probabilities) for different states by balanc-
ing the inflow–outflow rates, i.e., outflow rate with negative
sign and inflow with positive sign along with state probabil-
ities.

dπ1,0(t)

dt
= − (λβ + μ) π1,0(t) + θ1π1,1(t)

+ θ2π1,2(t) + (μ + ξ) π2,0(t) (1)

dπn,0(t)

dt
= − (λβ + μ + (n − 1)ξ) πn,0(t)

+ λβπn−1,0(t) + θ1πn,1(t) + θ2πn,2(t)

+ (μ + nξ) πn+1,0(t); n = 2, 3, 4, . . . (2)

dπ0,1(t)

dt
= − (λ + θ1) π0,1(t) + μπ1,0(t) (3)

dπ1,1(t)

dt
= − (λβ + θ1) π1,1(t) + λπ0,1(t) (4)

dπn,1(t)

dt
=− (λβ+θ1) πn,1(t)+λβπn−1,1(t); n=2, 3, 4, . . .

(5)

dπ0,2(t)

dt
= −λπ0,2(t) + θ1π0,1(t) (6)
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dπ1,2(t)

dt
= − (λβ + θ2) π1,2(t) + λπ0,2(t) (7)

dπn,2(t)

dt
=− (λβ+θ2) πn,2(t)+λβπn−1,2(t); n=2, 3, 4, . . .

(8)

The systemofdifferential-difference equations (1)–(8) depen-
dent on the initial conditions

πn, j (0) =
{
1; n = 0, j = 1
0; otherwise

is solved to obtain state probabilities employing mathemat-
ical notions of hypergeometric Laplace transform, modified
Bessel’s function, generating function in the forthcoming
section.

3 Mathematical Preliminaries

This section introduces some basic principles of modified
Bessel functions and generating functions that the fellow
researcher will need to comprehend this article better.

3.1 Modified Bessel Function

Bessel’s modified equation is given by:

t2y
′′
(t) + t y

′
(t) − (t2 + r2)y(t) = 0, r ≥ 0

The solution of the above equation is the first kind ofmodified
Bessel function of order r , indicated by Br , defined as

Br (t) =
∞∑

m=0

(t/2)2m+r

l!�(m + r + 1)
, r > 0

In particular, Br (t) = B−r (t) for r ≥ 0.

3.2 Generating Function

The following is a definition of a generating function G(z, t)
in powers of t for a collection of functions { fm(z)}.

G(z, t) =
∞∑

m=1

cm fm(z)tm (9)

where cm is a parameter coefficient function of m of the
set { fm(z)} and independent to z and t . The symbol { fm(z)} is
used to indicate the infinite set { f0(z), f1(z), . . . , fm(z), . . .}.
If fm(z) is also defined for negative, function H(z, t) having

a Laurent series expansion is of the form:

H(z, t) =
∞∑

−∞
cm fm(z)tm (10)

If fm(z) is the point probability function of adrv z, then the
generating function is called a probability-generating func-
tion (cf. [39, 40]).

4 Transient Analysis

Using pre-stated mathematical notions of the Bessel func-
tion and generating function, we obtain the explicit formula
for time-dependent queue-size distribution for the stud-
ied queueing-based congestion system in this section. We
employ the following sequel for this purpose.

4.1 Laplace Transform

The following is the definition of the Laplace transform L of
state probabilities πn, j ∀ n, j and corresponding derivatives

π∗
n, j (s) = L

(
πn, j (t)

) =
∞∫

0

e−s tπn, j (t)dt; ∀ n, j

L

(
dπn, j (t)

dt

)

= s π∗
n, j (s) − πn, j (0); ∀ n, j

The system of differential-difference equations from Eqs.
(1)–(8) is converted as system of linear equations from
Eqs.(11)–(18) on applying predefined Laplace transform as
follows:

sπ∗
1,0(s) − π1,0(0) = − (λβ + μ)π∗

1,0(s) + θ1π
∗
1,1(s)

+ θ2π
∗
1,2(s) + (μ + ξ) π∗

2,0(s) (11)

sπ∗
n,0(s) − πn,0(0) = − (λβ + μ + (n − 1)ξ) π∗

n,0(s)

+ λβπ∗
n−1,0(s) + θ1π

∗
n,1(s)+ θ2π

∗
n,2(s)

+ (μ + nξ) π∗
n+1,0(s); n = 2, 3, 4, . . .

(12)

sπ∗
0,1(s) − π0,1(0) = − (λ + θ1) π∗

0,1(s) + μπ∗
1,0(s) (13)

sπ∗
1,1(s) − π1,1(0) = − (λβ + θ1) π∗

1,1(s) + λπ∗
0,1(s) (14)

sπ∗
n,1(s) − πn,1(0) = − (λβ + θ1) π∗

n,1(s) + λβπ∗
n−1,1(s);

n = 2, 3, 4, . . . (15)

sπ∗
0,2(s) − π0,2(0) = − λπ∗

0,2(s) + θ1π
∗
0,1(s) (16)

sπ∗
1,2(s) − π1,2(0) = − (λβ + θ2) π∗

1,2(s) + λπ∗
0,2(s) (17)

sπ∗
n,2(s) − πn,2(0) = − (λβ + θ2) π∗

n,2(s) + λβπ∗
n−1,2(s);

n = 2, 3, 4, . . . (18)
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Analytical solutions, even if approximate, give a straight-
forward method for decision-makers to estimate congestion
and waiting time more quickly. They also typically lower the
calculation time of traditional models by introducing better
initial parameters into their optimization search space.

On applying initial condition π0,1(0) = 1, from Eq. (13)
we have

sπ∗
0,1(s) = 1 − (λ + θ1) π∗

0,1(s) + μπ∗
1,0(s)

(s + λ + θ1) π∗
0,1(s) = 1 + μπ∗

1,0(s)

π∗
0,1(s) = 1

s + λ + θ1
+ μ

s + λ + θ1
π∗
1,0(s) (19)

Similarly on applying the initial condition π1,1(0) = 0,
from Eq.(14) we get

sπ∗
1,1(s) = − (λβ + θ1) π∗

1,1(s) + λπ∗
0,1(s)

π∗
1,1(s) = λ

s + λβ + θ1
π∗
0,1(s) (20)

With the initial condition πn,1(0) = 0; n = 2, 3, 4, . . .,
Eq. (15) gives

sπ∗
n,1(s)=− (λβ+θ1) π∗

n,1(s)+λβπ∗
n−1,1(s); n=2, 3, 4, . . .

π∗
n,1(s) = λβ

s + λβ + θ1
π∗
n−1,1(s); n = 2, 3, 4, . . .

which recursively yields

π∗
n,1(s) =

(
λβ

s + λβ + θ1

)n−1

π∗
1,1(s); n = 2, 3, 4, . . .

Hence, using Eq. (20), we get

π∗
n,1(s) =

(
λ

s + λβ + θ1

)n

βn−1π∗
0,1(s); n = 1, 2, 3, . . .

(21)

We henceforth solve Eq. (21) by substituting the value of
π∗
0,1(s) from Eq. (19)

π∗
n,1(s) = λnβn−1

(s + λβ + θ1)
n+1

+ μλnβn−1

(s + λ + θ1) (s + λβ + θ1)
n+1π∗

1,0(s);
n = 1, 2, 3, . . . (22)

Since π0,2(0) = 0, Eq. (16) deduces as

(s + λ) π∗
0,2(s) = θ1π

∗
0,1(s)

π∗
0,2(s) =

( θ1

s + λ

)
π∗
0,1(s) (23)

Hence, from Eqs. (19) and (23) we get

π∗
0,2(s) = θ1

(s + λ) (s + λ + θ1)

+ θ1 μ

(s + λ) (s + λ + θ1)
π∗
1,0(s) (24)

Using the initial condition π1,2(0) = 0, Eq. (17) reduces
to:

π∗
1,2(s) =

( λ

s + λβ + θ2

)
π∗
0,2(s) (25)

Similarly, under the initial conditionπn,2(0) = 0, Eq. (18)
reduces as:

π∗
n,2(s) =

( λβ

s + λβ + θ2

)
π∗
n−1,2(s); n = 2, 3, 4, . . . (26)

which recursively yields

π∗
n,2(s) =

(
λ

s + λβ + θ2

)n

βn−1π∗
0,2(s); n = 1, 2, 3, . . .

(27)

Using Eqs. (24) and (27), we have

π∗
n,2(s) = θ1λ

nβn−1

(s + λ) (s + λ + θ1) (s + λβ + θ2)
n

+ θ1 μλnβn−1

(s + λ) (s + λ + θ1) (s + λβ + θ2)
n

× π∗
1,0(s); n = 0, 1, 2, . . .

(28)

After taking partial fraction and the inverse Laplace trans-
form in Eqs. (22) and (28), we have

πn,1(t) = λnβn−1e−(λβ+θ1)t

n!
+ μλnβn−1

{
tne−(λ+θ1)t

n! × tne−(λβ+θ1)t

n! × π1,0(t)

}

;
n = 1, 2, 3, . . .

πn,2(t) = θ1λ
nβn−1

{

e−λt × e−(λ+θ1)t × t (n−1)e−(λβ+θ2)t

(n − 1)!

}

+ θ1μλnβn−1

{

e−λt × e−(λ+θ1)t × t (n−1)e−(λβ+θ2)t

(n − 1)! × π1,0(t)

}

;

n = 0, 1, 2, . . .

Define the probability-generating function (PGF) as

P(z, t) =
∞∑

n=1

πn,0(t)z
n
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then

∂P(z, t)

∂t
=

∞∑

n=1

π
′
n,0(t)z

n

Using Eqs. (1) and (2), after some algebra we have

∂P(z, t)

∂t
− (ξ (1 − z))

∂P(z, t)

∂z

=
(

(
1 − z−1)(ξ − μ

) + λβ
(
z − 1

)
)

P(z, t)

+
∞∑

n=1

θ1πn,1(t)z
n +

∞∑

n=1

θ2πn,2(t)z
n − μπ1,0(t)

(29)

On solving Eq. (29), we obtain

P(z, t) = exp[((z−1 − 1
)(

μ − ξ
) + λβ

(
z − 1

))]t
+

∫ t

0
exp

(
[
(z−1 − 1

)(
μ − ξ

)

+ λβ
(
z − 1

)] (t − u)

)

×
[ ∞∑

n=1

θ1πn,1(t)z
n+

∞∑

n=1

θ2πn,2(t)z
n−μπ1,0(t)

]

(30)

It is well known that if

	 = 2
√

βλ (μ − ξ) & 
 =
√

βλ

(μ − ξ)
(31)

then

exp

{(

βλz + μ − ξ

z

)

t

}

=
∞∑

n=−∞
(
 z)n In (	 t) (32)

Using Eq. (32), we have

P(z, t) = exp

(

λβ z + μ − ξ

z

)

t × exp

(

− (μ − ξ) + λβ

)

t

+
∫ t

0
exp

(

λβ z + μ − ξ

z

)

(t − u)

× exp

(

− (μ − ξ) + λβ

)

(t − u)

∞∑

n=1

θ1πn,1(t)z
ndu

+
∫ t

0
exp

(

λβ z + μ − ξ

z

)

(t − u)

× exp

(

− (μ − ξ) + λβ

)

(t − u)

∞∑

n=1

θ2πn,2(t)z
ndu

−
∫ t

0
exp

(

λβ z + μ − ξ

z

)

(t − u)

× exp

(

− (μ − ξ) + λβ

)

(t − u)μπ1,0(t)du (33)

On equating the coefficient of nth power of z of Eq. (33)
on the both sides for n = 0, 1, 2, . . ., we have

πn,0(t) = 
n In(�t) exp

(

− (μ − ξ) + λβ

)

t

+ θ1

∫ t

0
exp

(

− (μ − ξ) + λβ

)

(t − u)

[ n∑

k=0


k Ik(.)πn−k,1(t) +
n∑

k=0


−k Ik(.)πn+k,1(u)

]

du

+ θ2

∫ t

0
exp

(

− (μ − ξ) + λβ

)

(t − u)

[ n∑

k=0


k Ik(.)πn−k,2(t) +
n∑

k=0


−k Ik(.)πn+k,2(u)

]

du

−μ

∫ t

0
exp

(

−(μ−ξ)+λβ

)

(t−u)
n In(�t)π1,0(t) du

(34)

where In = In(α(t − u)). Equation (34) holds for negative
integer n = −1,−2,−3, . . . with the LHS substituted as
zero. Using I−n(.) = In(.) for n = 1, 2, 3, . . .

0 = 
−n I−n(�t) exp

(

− (μ − ξ) + λβ

)

t

+ θ1

∫ t

0
exp

(

− (μ − ξ) + λβ

)

(t − u)

[ ∞∑

k=0


−(n+k) In+k(.)πn+k,1(t)

]

du

+ θ2

∫ t

0
exp

(

− (μ − ξ) + λβ

)

(t − u)

[ ∞∑

k=0


−(n+k) In+k(.)πn+k,2(t)

]

du

− μ

∫ t

0
exp

(

− (μ − ξ) + λβ

)

(t − u)
−n I−n(�t)π1,0(t) du

(35)

By Eqs. (34) and ( 35), for n = 1, 2, 3, . . ., we have state
probabilities when service provider is in busy state at instant
t as:

πn,0(t) = exp

(

− (μ − ξ) + λβ

)

t

[


n In(� t) − 
−n I−n(� t)

]

+ θ1

∫ t

0
exp

(

− (μ − ξ) + λβ

)

(t − u)

×
[ n∑

k=0


k Ik(.)πn−k,1(t) +
n∑

k=0


−k Ik(.)πn+k,1(u)
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Fig. 1 The variation of the state probability πn,0(t) wrt t

−
∞∑

k=0


n−k In+k(.)πn+k,1(t)

]

du

+ θ2

∫ t

0
exp

(

− (μ − ξ) + λβ

)

(t − u)

×
[ n∑

k=0


k Ik(.)πn−k,2(t) +
n∑

k=0


−k Ik(.)πn+k,2(u)

−
∞∑

k=0


n−k In+k(.)πn+k,2(t)

]

du (36)

Hence, state probabilities at instant t for n = 0, 1, 2, . . .
when service provider is on type-1 vacation as

πn,1(t) = λnβn−1e−(λβ+θ1)t

n!
+ μλnβn−1

{
tne−(λ+θ1)t

n! × tne−(λβ+θ1)t

n! × π1,0(t)

}

and is on type-2 vacation as

πn,2(t) = θ1λ
nβn−1

{

e−λt × e−(λ+θ1)t × t (n−1)e−(λβ+θ2)t

(n − 1)!

}

+ θ1μ λnβn−1

{

e−λt × e−(λ+θ1)t × t (n−1)e−(λβ+θ2)t

(n − 1)! × π1,0(t)

}

,

respectively.
For the default value of the involved parameters λ = 0.3;

μ = 0.5, ξ = 0.1, β = 0.6, θ1 = 0.3 and θ2 = 0.4, we
plot the variation of state-probabilities πn,0, πn,1, and πn,2

in Figs. 1, 2, and 3, respectively, wherein the deviation is
displayed for n = 5, 15, and 20. Figures1, 2, and 3 illustrate
that the state probabilities become stable, which prompt the
system to tend to steady state after a long time. Initially,
there is much fluctuation in state probabilities, which shows
the customers are getting service immediately.

Fig. 2 The variation of the state probability πn,1(t) wrt t

Fig. 3 The variation of the state probability πn,2(t) wrt t

5 PerformanceMeasures

The acceptance of any queueing model is best evaluated in
terms of its system characteristics. Evaluating queueing sys-
tem performance indices is the most essential and promising
method for improving any system. Systematic observation
of the state genuinely aids decision-makers in enhancing the
performance and efficiency of the queueing system.

5.1 Expectation of N(t)

Estimating the number of customers in the system N (t) at
arbitrary instant t is the primary goal of any queueing mod-
eling. Here, it is expressed as:

m(t) = E(N (t))

=
∞∑

n=1

n
(
πn,0(t) + πn,1(t) + πn,2(t)

)

On differentiating both sides wrt t , we have

m
′
(t) =

∞∑

n=1

n
(
π

′
n,0(t) + π

′
n,1(t) + π

′
n,2(t)

)
(37)
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On substituting the value from Eqs. (1)–(8) in Eq. (37) and
using some mathematical manipulation, we get

m
′
(t) = − (λβ + μ)π1,0(t) + (μ + ξ) π2,0(t)

− λβ
(
π1,1(t) + π1,2(t)

) + λ
(
π0,1(t) + π0,2(t)

)

+
∞∑

n=2

(μ − λβ − ξ)nπn,0(t)

+ ξ

∞∑

n=2

n2πn,0(t)

+ λβ

∞∑

n=2

nπn−1,0(t) − λβ

∞∑

n=2

nπn,2(t)

+ μ

∞∑

n=2

nπn+1,0(t) + ξ

∞∑

n=2

n2ξπn+1,0(t)

− λβ

∞∑

n=2

nπn,1(t)

+ λβ

∞∑

n=2

nπn−1,1(t) + λβ

∞∑

n=0

nπn−1,2(t) (38)

m(t) = − (λβ + μ)

∫ t

0
π1,0(y)dy + (μ + ξ)

∫ t

0
π2,0(y)dy

− λβ

∫ t

0

(
π1,1(y) + π1,2(y)

)
dy

+
∫ t

0
λ

(
π0,1(y) + π0,2(y)

)
dy

+
∞∑

n=2

∫ t

0
(μ − λβ − ξ)nπn,0(y)dy

+ ξ

∞∑

n=2

∫ t

0
n2πn,0(y)dy

+ λβ

∞∑

n=2

∫ t

0
nπn−1,0(y)dy − λβ

∞∑

n=2

∫ t

0
nπn,2(y)dy

+ μ

∞∑

n=2

∫ t

0
nπn+1,0(y)dy + ξ

∞∑

n=2

∫ t

0
n2ξπn+1,0(y)dy

− λβ

∞∑

n=2

∫ t

0
nπn,1(y)dy + λβ

∞∑

n=2

∫ t

0
nπn−1,1(y)dy

+ λβ

∞∑

n=0

∫ t

0
nπn−1,2(y)dy (39)

5.2 The variance of N(t)

The variance V (t) of a number of customers in the system
N (t) at an arbitrary instant t is calculated as:

V (t) = E(N 2(t)) − (E(N (t)))2 (40)

where E(N 2(t)) represents the 2nd moment of drv N (t) at
instant t . Therefore,

E(N 2(t)) =
∞∑

n=1

n2
(
πn,0(t) + πn,1(t) + πn,2(t)

)

E(N (t)) =
∞∑

n=1

n
(
πn,0(t) + πn,1(t) + πn,2(t)

)

Differentiating both sides of Eq. (40) with respect to t yields:

V
′
(t) = E

′
(N 2(t)) − (E

′
(N (t)))2 (41)

On substituting the values of computed state probabilities,
we get

V
′
(t) = −(μ + λβ)π1,0(t) + (μ + ξ)π2,0(t) − λβπ1,1(t)

+ λπ0,1(t) − λβπ1,2(t) + λπ0,2(t)

+ (μ − λβ)

∞∑

n=2

n2πn,0(t) + ξ

∞∑

n=2

n2(n − 1)πn,0(t)

+ θ2

∞∑

n=2

n2πn,2(t) + μ

∞∑

n=2

n2πn+1,0(t)

+ ξ

∞∑

n=2

n3πn+1,0(t) − λβ

∞∑

n=2

n2πn,1(t)

+ λβ

∞∑

n=2

n2πn−1,1(t) − (λβ + θ2)

∞∑

n=2

n2πn,2(t)

+ λβ

∞∑

n=2

n2πn−1,2(t) − m
′
(t) (42)

Hence, we have

V (t) = −(μ + λβ)

∫ t

0
π1,0(y)dy + (μ + ξ)

∫ t

0
π2,0(y)dy

− λβ

∫ t

0
π1,1(y)dy + λ

∫ t

0
π0,1(y)dy

− λβ

∫ t

0
π1,2(y)dy + λ

∫ t

0
π0,2(y)dy

− (μ + λβ)

∞∑

n=2

∫ t

0
n2πn,0(y)dy

+ ξ

∞∑

n=2

∫ t

0
n2(n − 1)πn,0(y)dy

+ θ2

∞∑

n=2

∫ t

0
n2πn,2(y)dy + μ

∞∑

n=2

∫ t

0
n2πn+1,0(y)dy
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Fig. 4 The variation of the mean number of the customers in the system m(t) wrt t

Fig. 5 The variation of the mean number of the customers in the system m(t) wrt t

Fig. 6 The variation of the variance of the number of the customers in the system V (t) wrt t

+ ξ

∞∑

n=2

∫ t

0
n3πn+1,0(y)dy

− λβ

∞∑

n=2

∫ t

0
n2πn,1(y)dy

+ λβ

∞∑

n=2

∫ t

0
n2πn−1,1(y)dy

− (λβ + θ2)

∞∑

n=2

∫ t

0
n2πn,2(y)dy

+ λβ

∞∑

n=2

n2
∫ t

0
πn−1,2(y)dy − m(t) (43)

6 Numerical Result

The numerical results for different experiments conducted
on MAPLE software with a computing system of hardware
configuration having processor Intel(R) Core(TM) i5-5200U
CPU @ 2.20GHz and RAM 16.0 GB for various involved
parameters are summarized in Figs. 4, 5, and 6. The depicted
results show the effects of various system parameters on the
system performance measures, namely expected customers
count in the system (m(t)) and time-dependent variance
(V (t)). Initially we set the default value of system param-
eters as λ = 0.3; μ = 0.5, ξ = 0.1, β = 0.6, θ1 = 0.3 and
θ2 = 0.4.
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Figure4 depicts the deviation in the mean number of cus-
tomers in the system wrt t for different values of λ as 0.2,
0.5, and 0.8. The apparent result is thatm(t) is increasingwrt
λ. As the time t is large, the plot becomes uniform, reveal-
ing the system achieves stability after a long time, and the
system tends to steady state. Initially, a lot of fluctuation of
decreasing and increasing value is observed with customer
accumulation before stability.

Figure5 depicts the deviation of the expected number of
customers in the systemm(t)wrt time t for varying the dura-
tion of type-1 vacation as θ1 = 0.2, 0.3, and 0.5, which
denotes the rate at which the server joins the system from
type-1 vacation mode. Figure5 indicates that m(t) increases
with time for all values of θ1 with some fluctuation in the ini-
tial time. As the server’s vacation time is longer, the system
remains with no service provider in this period, and arriving
customers either join or show balking behavior. This pattern
can be easily inferred from Fig. 5 as the customers’ count in
the system rises for the lesser value of parameter θ1.

While Fig. 6 illustrates the graph of variance V (t) with
time t for varying the duration of type-1 vacation as θ1 = 0.2,
0.3, and 0.5, Figure6 reveals that V (t) increases with time
for all values of θ1. As the server’s vacation time decreases,
arriving customers’ reluctance behavior decreases. This
observation can be easily incidental from Fig. 6 as the cus-
tomers’ count variance in the system upsurges for the lesser
parameter θ1.

7 Conclusion

In this article, we have analyzed the queueing-based conges-
tion model incorporating strategic, differentiated-multiple
vacations and customer impatience attributes like balking
and reneging. The studied system has infinite differential-
difference equations, which are solved with the help of
Laplace transformation, Bessel modified function, and gen-
erating function techniques. The transient analysis of the
system gives the explicit formula for transient-state probabil-
ities of the proposed queueing-based congestion system. The
investigation demonstrates the dynamic congestion behav-
ior in the planning phase. These transient probabilities are
helpful in the evaluation of the characteristic measure of the
system. The numerical illustrations are performed, which
also justify the theoretical results. The present model can
be extended for service with general distribution and batch
arrivals. The unreliability of the server can also be included
in future work.
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