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Abstract

Blockchain technology has limitations in terms of scalability and throughput of transactions compared to other payment
methods such as VISA and smart cards. But, Off-chain payment solves this issue by performing micro-transactions without
communicating with the ledger. Similarly, Ethereum uses smart contracts to complete Off-chain transactions by constructing
state and virtual channels. In this model, we develop an n-party payment system that uses state and virtual channels. The
proposed model simultaneously executes different contract instances while they belong to other independent channels. Again, a
virtual channel having n-intermediaries takes linear time to resolve payment channel disputes by transferring to the Blockchain.
We introduce a global contract GSCC that solves the disputes in constant time in the worst case without including Blockchain.
The dispute-solving process does not affect any intermediary node and ensures the intermediary is not losing coins. GSCC
stores all the prior information of the active participants. But, GSCC has no communication overhead to other parties and
ensures the execution of disputes with total conflict amount. The resultant model guarantees the execution of every contract,
fair dispute resolution, and security balance. Our proposed theorems and zero-knowledge proof ensure the security of the
n-party model.

Keywords Blockchain - Smart contract - Off-chain payment - Payment channel dispute - Concurrency

1 Introduction

Blockchain technology was introduced in 2008 by Satoshi
Nakamoto [1] for the transfer and use of cryptocurrency,
and it is a decentralized, peer-to-peer append-only ledger. It
contains a database between many users and is distributed
in nature with a consensus to manage. Various applica-
tions have used blockchain over the past decade, including
data storage and transaction handling. It started as a plat-
form for exchanging cryptocurrencies but expanded to other
domains. At the same time, Ethereum uses self-executable
programs called smart contracts to avoid the limitations of
earlier blockchain mechanisms such as Bitcoin. In 2014, the
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Ethereum blockchain had introduced [2]. Smart contracts
enable a user to store, update and execute the state of any
program. Implementing smart contracts on the blockchain
allows multiple users to perform transactions, play games,
vote, and many other applications. In this paper, we propose
a system that can run smart contracts off-chain by preserv-
ing the security and immutability of data. It improves the
system’s performance without compromising data and user
integrity. Before describing the entire model, we have to dis-
cuss the scalability issue, which is the leading cause of the
whole problem.

1.1 Scalability of Blockchain

Blockchain technology has faced issues like Scalability and
efficiency from the time it introduces. Credit cards perform
transactions at a much higher rate than the block creation
process in the blockchain. VISA can complete 70,000 trans-
actions per second, whereas on-chain transaction execution
in Ethereum and bitcoin is much slower [3]. It is only due to
the block generation procedure of blockchain that involves
achieving consensus, mining, and validation of transactions.
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So Scalability and throughput of transactions have been one
of the biggest challenges in blockchain over the past decade.
Although blockchain guarantees immutability, anonymity,
and transparency, it comes at the cost of extensive execu-
tion time [4, 5]. There are many models use applications of
blockchain that are also in scalability problems [6, 7]. Much
research has focused on solving this problem, and the prob-
lem mainly consists of two types of solutions: on-chain and
off-chain-based. Sharding the database [8] is an example of
an on-chain solution, where the data is divided into multiple
nodes across the ledger to improve computation and search.
The off-chain transaction mechanism introduced in bitcoin
is called the bitcoin lightning network [9]. The main idea of
the lightning network is to execute transactions off-chain, so
there is no excess time on block verification, consensus, and
creation. Raiden [10] and sprites [11] are also other off-chain
solutions. The sprites discuss a model that helps reduce the
time for the payment routing process in the bitcoin lightning

network. They have introduced the concept of state channels
for payment. But Perun [12] describes the ledger state chan-
nel and virtual state channel protocol in detail. The perun
protocol is written in solidity language and uses Ethereum
smart contracts to create channels, lock coins, handle dis-
putes, and close channels. In the same way, the general state
channel paper [13] extends the work done in the perun paper
by defining the state channel and virtual channel processes
for more extended channels. They have described how new
virtual channels build over existing state or virtual channels.
Again the multiparty [14] improves upon the dispute time of
the general state channel by introducing the dispute board.
Our problem statement depends on the state and virtual chan-
nel networks that are part of off-chain payment solutions.
We discuss both mechanisms in the next section with dispute
handling. Table 1 compares existing schemes to scalability
issues. Figure 1 explains the summary of our proposed model.

Table 1 Different existing
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Fig.1 Summary of the proposed n-party virtual state channel network

1.2 State Channel Networks

The main focus is the off-chain channels: state channel net-
works and virtual payment channels. The virtual payment
channels are built over state channel networks. The primary
state channel contract (SCC) protocol, shown in Fig.2, is
defined in perun [12]. The protocol establishes the channel
creation process, contract execution, and closure. In channel
creation, Alice and bob lock coins in an SCC, deploy them
in blockchain and hold a contract instance Gg. Suppose one
party wants to perform a transaction. In that case, he sends
the updated contract instances, the following version num-
ber, and the updated function with his signature for the other
party to verify. But in the transaction execution phase, both
create the next contract instance for version w by updating
locally and passing w+1 to the other party. If the other party

verifies with G, (state of the contract with version number
w) and the function obtained, they sign and send it back. If
both parties sign, it is a valid contract instance. Any party
can close the channel using the contract instance to call the
close method and send it to the blockchain. According to the
latest contract instance state, the blockchain releases funds,
and both parties get their coins. The state channel forms the
basic building block for virtual state channels, and the pro-
posed solution entirely depends on the virtual channels and
the disputes solving mechanism. The contract reaction time
defines by the term A, which is the worst-case reaction time
of a contract from its participants.

Virtual Payment Channel The virtual payment channel net-
work shown in Fig.3 is created on top of two existing state
channels. Therefore, state channels must complete first to
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Fig.2 Ledger state channel
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build a virtual channel. Alice and Bob want to create a vir-
tual channel and utilize the ledger state channels SCC1 and
SCC2. Since these are already deployed on the blockchain,
intermediary Ingrid utilizes a special contract instance on
both channels, VSCC (v, and vp). In v,, Alice and Ingrid
lock coins so that Ingrid plays the role of bob. Similarly, in
vp, Ingrid plays the role of Alice. Now, Ingrid and VSCC’s v,
and vy, play the role of “judge” and channel creator and closer,
respectively. The transaction execution phase is similar to
the ledger state channel, where both have an initial contract
instance and version number (G,0). One party updates the
instance, signs it, and sends it to the other party along with
the executed version number and function. The other party
verifies locally and signs it to create a valid contract state
(G1,1). When a party requests the VSCC to close the chan-
nel by running its instance close, the latest version determines
as before, and funds are released so that Ingrid is financially
neutral.

It solves certain drawbacks of the state channel network.
A state channel requires a direct channel between two parties,
but payment between two parties overlaps many intermedi-
aries in the virtual channel. The creation and closing of a
channel in a virtual channel network are off-chain in contrast
to a state channel network, which is on-chain. It helps to
reduce the involvement of the blockchain. The virtual chan-
nel creation over an intermediary party performs the channel
creation, dispute handling, and closing procedure, and this
intermediary plays the role of the dispute solver in the vir-
tual system. A dispute arises when two parties disagree with
the current state of their channel or if at least one party is
dishonest. If all parties involved are honest, the optimistic
case, and if any party is dishonest, the pessimistic case.

Handling Disputes Suppose Alice creates a dispute, such as
Bob is not responding or Bob is trying to validate an older
version of the contract instance. In that case, she registers by
calling the contract instance of v, called “register(G ,,w,sp)”
and sends the latest version of (G ,,w). v, sends this to Ingrid,
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(Valid contract instance)

who registers this with v, by calling v, contract instance
“register(G,,W,sp)”, where s, is the private key of Alice. Bob
responds to v, by executing a contract instance of v, called
“register(G,,w’,s,)”, where s, is the private key of Bob.
vp sends this to v, via Ingrid, registering it in its instance.
Finally, version numbers w and w’ are compared, and the lat-
est version is validated. Alice goes directly to the blockchain
and raises the dispute to validate the contract instance if
Ingrid is malicious.

1.3 Advantages of Virtual Channel

The virtual channel does not involve the blockchain in con-
tract execution. State channels require the blockchain for
channel creation, closing, and handling disputes. In the
case of virtual channels, intermediaries are involved in all
three processes, whereas state channels require the use of
blockchain. It helps reduce the construction time and dispute
handling cost for virtual channels. The intermediaries are not
involved in the transaction execution process, thus provid-
ing privacy to the participating parties. Virtual channels are
made longer by building new channels over the existing state
or other virtual channels and help to resolve the privacy loss
and time consumption involved in payment routing methods.
The virtual channel between two parties allows direct fund
transfer instantly without interacting with intermediaries.

1.4 Disputes in Payment Channels

In a payment channel, A party is in dispute with another party
when they disagree on a valid state of a contract instance.
It happens when one party refuses to sign an instance or
tries to execute an older instance. Such scenarios handle in
various ways by the previous payment channel models. The
disputes handled directly by the blockchain are called direct
disputes. In the case of a model that uses direct dispute, the
dispute initiating party registers the contract instance with the



Arabian Journal for Science and Engineering (2024) 49:3285-3312 3289
Fig.3 Virtual state channel
Blockchain
Intermediary
VSCC (v,) VSCC (vp)
Ledger state channel Al Ledger state channel IB
Alice Ingrid Bob

blockchain. The blockchain takes the help of various miners
to perform the dispute handling process. Ledger state chan-
nels described in perun [12] and general state channel [13] use
the method of direct disputes. An Indirect dispute model is
where all disputes are first handled by an intermediary party,
failing which the blockchain is involved. Virtual channels
described in perun and general state channel use an indirect
dispute model, where the intermediary tries to resolve first
before going to the blockchain. The multiparty [14] has a
direct dispute model, which uses a dispute board instead of
the blockchain. Therefore, in the model [14], the blockchain
is not involved in the dispute process in any scenario.

Dispute Handling in Virtual Channels A dispute occurs
when a party does not cooperate by responding on time
or when parties disagree with the current valid state of the
contract instance. The protocol has two ways of handling
disputes: direct and indirect disputes.

1. Direct Dispute: Assume that two parties, Alice and Bob,
are having a dispute and cannot solve it by themselves. In
adirect dispute, one of the parties contacts the blockchain
directly to intervene and solve it. The blockchain takes
the latest valid responses from the parties. It validates
the most recent instance by choosing the highest version
number of the contract and is executed directly on the
ledger. The paper [14] uses another type of direct dispute
called the dispute board to perform this task.

2. Indirect Dispute: Assume that two parties, Alice and Bob,
are having a dispute and cannot solve it by themselves.
In the indirect dispute model [13], one of the parties con-

Y Contract instance C

tacts the intermediary by sending their current contract
state to special contract v,. The contract v, gets a simi-
lar response from the other party. The intermediary plays
the role of the blockchain by validating the most recent
contract instance in v, and vp. If any of the parties is dis-
honest, the dispute is taken to the ledger and executed,
similar to a direct dispute.

The paper [13] proposes a method to extend the indirect dis-
pute method to a chain of channels. When virtual channels
are built on top of other virtual channels and ledger channels,
disputes that are unsolved at the higher level are taken to the
next lower level until it reaches the blockchain.

1.5 Dispute Handling Time

This section will discuss the dispute handling time for each
of the existing off-chain models. Sprites has a model that
handles disputes simultaneously using a pre-image manager
contract and the blockchain. Perun has proposed direct dis-
putes in state channels, where a party in dispute goes directly
to the blockchain, which settles the dispute. This method is
time-consuming since the blockchain involves miners min-
ing a block to solve the dispute. Hence, block creation takes
approx 10 min or more. Virtual state channels use indirect dis-
putes, where an intermediary tries to solve the dispute first,
failing which the parties approach the blockchain. Here, the
worst-case time is similar to the direct dispute scenario. The
general state channel model has a dispute time linear to the
number of intermediaries involved. Therefore, the worst-case
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time is nA (A is the maximum time it takes for a contract to
respond to a request) + the block creation time.

Our model proposes a dispute-handling mechanism by
a global contract deployed by participating parties on
the blockchain. The contract uses zero-knowledge proof,
append-only board, and cryptographic signature to ensure the
dispute-solving process is secure and authentic. The worst-
case time complexity for our dispute model is
Definition of Terms The symbol A represents the reaction
time of a contract in the worst case,i.e., the time it would
take to react to the farthest request from a participant in a
channel. All the activities done by contracts are executed
in the order of A. It measures more accurately in terms of
“rounds.” If party P; wants to start a virtual channel with
P5 using P, as an intermediary, in the first round, P; sends
the updated contract instance by invoking the create method
using parameters. Contract instance in the channel informs
P, about this. In the next round, P, waits for confirmation
of channel creation from P3. Similarly, all parties respond to
contract requests within A time to perform dispute handling
and closing of the channel.

1.6 Research Gap

The virtual channel protocol described in perun is for two par-
ties and an intermediary. In general state channel networks,
virtual channels are made longer by recursively building new
ones over existing ones. However, the dispute handling in a
pessimistic case becomes linear to the number of intermedi-
ary nodes (nA). The concept of a dispute board has improved
the dispute handling time. But, there are issues in the dispute
board mechanism that affect its performance.

Dispute board The dispute board is a particular contract
deployed on the blockchain to resolve any disputes occur-
ring on the channel. It maintains a set of tuples containing
unresolved disputes (D, ) and completed disputes (D). The
incoming disputes are handled using these tuple values. It
helps the board quickly identify if any disputes are dupli-
cates or whether some parties are malicious. It provides all
parties with A time to respond with their contract instances.
Drawback of Dispute board The dispute board has the data
about disputes between parties. It does not have informa-
tion about which parties are a part of a particular contract
instance. Channel creation and contract information are reg-
istered with the overall channel contract called mpVSCC.
Therefore, whenever a new dispute arises, the dispute board
must contact the mpVSCC contract to check whether the
parties are part of that contract instance. It creates an over-
head in terms of computation time. If the number of disputes
increases very fast at a particular time, then the dispute board
might fail. There is no prior information with the dispute
board regarding the disputes, and the dispute board may be
working slowly; this could fail to Guarantee execution.

%% @ Springer

1.7 Our Contribution

Our model addresses the issues highlighted in Table 1. The
proposed system aims to make an n-party system fully con-
current and solve any disputes using a global state channel
contract (GSCC) in O(A) time instead of O(nA). There
are channels between every pair of parties from 1 to n, con-
structed using the state and virtual channel protocols. The
main idea is to create a system under a single contract,
GSCC, with independent channels. The GSCC contract is
a global contract deployed by any party on the blockchain
before channel construction and game registration(discussed
in Sect. 3). The single contract ensures that the GSCC con-
trols the data of all activities done by all parties. It is aware
of all involved parties and their channels at any time. When
a party raises a dispute, the GSCC contract does not have
the overhead of contacting another contract for information.
The independent channels in our model give the system high
concurrency since any party can access channels freely and
simultaneously. We represent the idea by showing the execu-
tion of a concurrent two-player game in an n-party system.
At the time of game registration with the GSCC, all n parties
agree to some basic parameters (discussed in Sect. 3). If par-
ties P; and P, play the game, one makes the first move and
sends the updated state to the other party. The other party val-
idates this state, makes its move, and sends the latest state to
the first party. The process continues until one party refuses
to or is unable to respond. The system allows games to exe-
cute in parallel, i.e., the game between P; and P> will not
impact game execution in the P3 and P4 channels. GSCC
keeps track of all channels’ status and the results of every
game and resolves disputes between parties. All parties trace
each game by accessing the GSCC to ensure fairness. It helps
participating parties conduct n-player tournaments without a
trusted third party. GSCC also helps handle disputes much
faster than the general state channel model. The resultant
model is also helpful for participants to use as a simple pay-
ment system.

2 Literature Survey

This section discusses different research models relating to
off-chain payment systems. The main issue is the scalability
problem in the basic blockchain models; later, many schemes
solve it. The on-chain and off-chain solutions are based on
parameters such as channel opening and closing mechanism,
dispute handling method, scalability, and execution time.
Table 2 explores on-chain and off-chain models.

On-chain Scalability Solutions Research on the scalabil-
ity problem resulted in various on-chain solutions, namely
sharding. [15] proposes a model named RapidChain, which
is resilient to Byzantine faults and performs communica-
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tion between parties and storage without a trusted setup. It
solves other existing sharding techniques’ linear communica-
tion and computation time. The proposed system performed
7300 tx per sec on a network of 4000 nodes. The literature
[16] provides a complete study on existing sharding protocols
such as RSCoin, OmniLedger, RapidChain, and ChainSpace
in terms of dealing with cross-shard transactions, transac-
tion models, pipelining, and so on. The model [17] describes
fastpay, a blockchain scalability solution that aims to prevent
the double-spending problem. The scheme [18] is another
sharding-based scaling solution. These models are not dis-
cussed any particular solution for virtual payments.
Off-chain Scalability Solutions The scalability of blockchain
can be improved drastically by having parties execute trans-
actions away from the main blockchain network, called
off-chain execution. Eberhardt, Jacob, et al. [19] have pro-
posed an off-chain solution called ZoKrates, to improve
the scalability and privacy of the system. ZoKrates is a
toolbox used to conduct off-chain computations such as zero-
knowledge proof using smart contracts to reduce on-chain
involvement. Cheng Xu et al. [20] have proposed a sys-
tem called SlimChain to improve scaling and storage in the
blockchain. SlimChain’s stateless design commits changes
on-chain and maintains storage and transaction execution
off-chain. Randhir Kumaretal. [21] propose a distributed off-
chain storage mechanism to prevent unauthorized access to
patient’s confidential medical information and provide con-
sistency, availability, and integrity of data. These solutions
have been improved over the years to involve the blockchain
only when necessary. All the models are not in the way
to solve the issue, probably in an efficient manner that can
appear more accurate in the future.

Lightning Network The off-chain solution to the scalabil-
ity problem introduced systematically in bitcoin is called the
lightning network. Poon et al. [9] introduce the bitcoin light-
ning network(BLN) concept. The protocol enables parties
to perform any number of transactions by executing them
off-chain after locking a certain number of coins in a multi-
signature wallet. These are called microtransactions, which
can complete in a few microseconds. It is achieved by updat-
ing the balance of the coins after each transaction rather
than the on-chain process of coin exchange, consensus, and
block creation. Any party can stop participating in off-chain
transactions by going to the ledger and, unlocking the wal-
let, distributing the funds. The paper also introduces Hashed
Timelock Contracts (HTLC), which uses a routing mecha-
nism to perform off-chain transactions between parties that
do not have a common communication channel. Lee et al.
[22] discuss the robustness of the BLN. DDOS attacks and
their effects on the lightning network are explored. A sim-
ulation of various attack and defense mechanisms includes
random, high-centrality, community-based, and high-degree

%% @ Springer

attacks. The defense mechanisms utilized for these attacks
are random, preferential, and balanced defense.

The effectiveness of the attack and defense strategies are

discussed and shown in the simulations. These simulations
were performed on the BLN mainnet and testnet. George
et al. [23] present an analysis of the privacy of BLN. The
author runs various attacks on the BLN simulator and testnet
to check the routing path and balance discovery for differ-
ent network topologies. The main idea of this paper is to
identify how attackers can gain secret information about net-
works and exploit them by simply connecting to peers and
routing payments. Finnegan et al. [24] explain the availabil-
ity and reliability of BLN in terms of the amount that can
transfer at a time, availability of nodes and payment routes,
the success rate of off-chain transactions, and possible rea-
sons for transaction failure. Yuwei et al. [25] explain the
BLN routing process success rate, graph construction for var-
ious topologies, and impact of network structure on lightning
network performance. BLN has an intermediary insecurity
issue, which is only for the bitcoin network. We discuss
in ethereum model by avoiding the intermediary insecurity
issue.
Payment Channels Ethereum blockchain has introduced
payment channels for off-chain execution, which can be
open and closed between any two parties. Smart contracts
have enabled Ethereum blockchain to perform this task
seamlessly. They can execute functions automatically when
conditions are met and guarantee the same level of security
and integrity as blockchain. It helps provide many new fea-
tures such as state registration, dispute handling, function
execution, etc. Stefan et al. [12] describe the protocol for the
primary payment channel, multistate payment channel, and
virtual payment channel. The protocol is called perun, and it
uses solidity language.

Stefan et al. [12] explain the perun payment channels for
the two-party system and there is no intermediary insecurity
issue. The sprites [11] paper defines channel construction
using a global contract called the preimage manager. Perun
protocol is an improvement on sprites since it involves the
blockchain sparingly. In the case of a non-virtual or ledger
state channel, a routing path with multiple intermediaries
between sender and receiver has been established before per-
forming transactions. The purpose of the virtual payment
system is to enable parties to perform multiple microtrans-
actions in a few seconds without using a routing path or
multiple intermediaries between the parties. A single inter-
mediary is used to create a virtual channel between any two
parties, even if they do not have a direct ledger channel.
The paper clearly defines protocols for virtual channel cre-
ation, contract instance update, contract instance execution,
and channel closing. Security and efficiency goals are also
defined for each of the processes. Gudgeon et al. [26] dis-
cuss another layer-2 scaling solution called systematization
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of knowledge(sok), providing a comparison between proto-
cols and research on layer-2 transactions. Zhong et al. [27]
have designed an off-chain payment system called the secure
large-scale instant payment (SLIP). The system locks coins
to be circulated among parties and uses an aggregate sig-
nature scheme to connect the channels. The efficiency and
privacy of the SLIP system are analyzed, and a comparison
with the BLN. Perun has discussed a single intermediary, and
there is insufficient information regarding payment channel
disputes.

General State Channel Network [14] extends the perun
protocol for state channel networks and virtual state chan-
nel networks to construct a general state channel network
model. A virtual channel using perun protocol creates over
a single intermediary between the two participants. If multi-
ple intermediaries involve between two parties, the proposed
model uses a recursive approach to construct virtual chan-
nels over existing and virtual state channels. It is carried out
until there is a direct virtual channel between the partici-
pants, and it requires O(A) time for dispute solving. Lisa
et al. [14] have extended the previously proposed two-party
virtual network by creating a system that supports multiple
parties concurrently. They have also proposed a model called
a virtual channel with direct disputes, making use of a dis-
pute board to handle all the disputes. The worst-case time
complexity for dispute handling and complex channel proto-
cols has improved. A four-round protocol has been proposed
to ensure that the parties can execute contract instances con-
currently. The dispute board is not working concurrently and
has no information about the involved parties. It creates a
problem at the time of dispute solving. Table 3 shows a com-
parison between existing schemes.

2.1 Other Related Work

Vitalik et al. [28] discuss another layer2 scalability solution
of Ethereum called plasma. It also consists of off-chain trans-
action execution by creating replicas or duplicates of the
original blockchain and sharing funds from the main chain.
The child blockchains form more child chains, resulting in a
tree-like structure. Changes in the child chains are updated
periodically to their parent chains until they reach the main
chain. Tairi et al. [29] propose a payment channel hub(PCH)
to resolve scalability in blockchain and allow off-chain pay-
ments. It is a three-party protocol involving an intermediary
that provides a cryptographic challenge to the participating
parties.

Security is an essential part of blockchain technology.
Providing privacy to users, authenticity to data, and trans-
parency is vital. The concept of cryptographic proofs such
as zero-knowledge proof [30, 31] has excellent future scope
in blockchain security. Zero-knowledge proof is a mecha-
nism where one party can convince another that he knows
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certain sensitive information without revealing it. Yang et al.
[32] propose an identity management system model using
blockchain and zero-knowledge proof. They have identi-
fied threats in existing identity management systems such
as a single point of failure, privacy leakage, and centraliza-
tion. They have utilized smart contracts and zero-knowledge
mechanisms such as zk-SNARKS to create a challenge-
response protocol to allow users to have privacy. Wanxin et
al. [33] propose a traffic management and privacy-preserving
model using blockchain and zero-knowledge proof. The
author has identified data integrity and privacy in the traf-
fic network. A model is proposed by integrating blockchain
and non-interactive zero-knowledge proof to improve secu-
rity and performance on the hyperledger fabric platform.
The author explored the advantage of Zcash, which uti-
lizes zero-knowledge succinct non-interactive arguments of
knowledge (ZK-SNARK) to improve privacy. We provide
zero-knowledge proof to prove our model to the global con-
tract.

3 Proposed Methodology

The idea is to propose a model that helps an n-party vir-
tual system execute contracts concurrently and solve disputes
constantly. It means that parties can run and update contracts
on their channel irrespective of the traffic created by other
parties simultaneously. The system comprises a global con-
tract GSCC that handles the dispute handling process. The
summary of the proposed scheme has described in Fig. 1, but
the Fig. 4 describes the easy working of all the functionalities.

1. All n parties have to be able to perform transactions or
update contract states with any other party in the system
concurrently.

2. Disputes have to be handled constantly by the global con-
tract.

3. Time has to be optimized for all processes by the global
contract by setting a limit on each process.

The channels from C; to C, are ledger state channels
which exist between the parties P to P,. The channels Y; to
Y,, are virtual state channels constructed above ledger state
channels and other virtual state channels. The construction
has multiple levels, and each channel level is constructed over
the lower levels. The first and lowest level is the state channels
Cj to C,. The dotted line represents the intermediary over
which the virtual channel is constructed.

The secondary objective is to design the system in such
a way that there is consensus among all the parties to per-
form construction, dispute handling, execution, closing, and
so on. All the intermediary parties and channel participants
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On-chain Parameters

SCC, , sCC;, ... SCC,, -» State channels
GSCC ->Global State channel contract
VEr -= channel version

| == channel length
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¥1.¥2. - ¥m - Virtual state channels
C,.Cy, .. C, - State channels
P,.P;, ... P, -> Participants

[P1.id:ver:lj_._> 9
== ¢ (Pjidver
((P4.Pg).verle— L ({P4.Pg).ver)

SCCeqq

GSCC
Blockchain
Fig.4 Proposed four-party diagram for methodology explanation
Pi Pj
Channel_initialize([Pi,...Pn],Pi.id)

Channel_create([Pi,...Pn],Pi.id,l,Ver)

< Global_state_channel_contract

<

y
>

Channel_done([Pi,...Pn],Pi.id,l,Ver)

Channel_create([Pj,...Pn],Pj.id,l,Ver)

rd

Fig.5 Global state channel contract for channel construction

should not lose their coins and each off-chain activity has
to be protected against malicious parties. It is essential to
explore how the proposed solution improves upon some
existing off-chain solutions. The main idea is to extend the
application of payment channels to design an n-party concur-
rent game execution mechanism. In the working procedure,
we explain the channel construction, game registration, coin
locking mechanism, game execution procedure, dispute han-
dling, and channel closure procedure in detail. There are five
main phases in the working process of the model:

1. Channel creation

2. Game registration and coin locking phase
3. Execution procedure

4. Dispute handling

5. Channel closure

Following this, we identify and analyze the security and
efficiency goals. After this section, we explore some the-
oretical proof definitions and their descriptions. Off-chain
transactions are performed in Ethereum blockchain by using
multistate smart contracts and constructing payment chan-
nels. Various protocols have developed over the years, such as
Raiden, sprites, perun, etc. Our model uses the perun protocol
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Pi

Channel_create([Pi,...Pn],Pi.id,1,Ver)

v

Channel_create_done(Pi,...Pn],Pi.id,Pj.id,l,Ver)

<
<

iMPVSCC

Pj

Channel_create_response([Pi,...Pn],1,Ver)

Y

9hannel_create([Pi,...Pn],Pj,id,I,Ver)
<

Channel_create_done(Pi,...Pn],Pi.id,Pj.id,l,Ver)

>

Fig.6 iMPVSCC contract for channel creation

for state and virtual channel construction. This paper pro-
poses two innovative special contract called the iMPVSCC
and GSCC.

The proposed model uses the state updating and signa-
ture functionality of the Ethereum smart contract. The idea
is to utilize the model to play two-player games amongst all
the n parties, concurrently and simultaneously. All parties
have independent channels connecting them, enabling con-
current execution of multiple contract instances. The global
contract GSCC uses an append-only contract board to settle
disputes and decide the winner of each match played in the
system in each round. After all the games of all the rounds are
completed, the GSCC calculates the final balances of all the
parties, uses channels to transfer funds correctly and releases
these funds.

3.1 Total cost of GSCC Contract

Channel creation, game registration, coin locking, and clos-
ing processes are one-time tasks that GSCC runs. These
processes consume more time and computation resources.
However, we obtain a trade-off where the execution time and
dispute handling time reduce significantly. In our n-party sys-
temn, the GSCC holds the data of all n% channels, the balances
in each channel, the append board containing details of the
game, and the final contract state of each channel. Every time
a dispute arises between parties that participate in a game, the
GSCC gets involved in resolving it. GSCC has the author-
ity to add data to the append board since it has all the game
details. GSCC approves the final valid channel instance for
the coins to exchange in the channel. Now, we explore the
creation of channels, state execution, dispute handling and
closing of the game in detail.

3.2 Channel Creation

Suppose parties Py,Ps,...P, want to construct a n-party
channel with functional/design requirements explained pre-
viously. We first make use of a global contract manager to
help facilitate the construction mechanism.

S @ Springer

Algorithm 1 Channel Construction

Require: Input: length,number
1: while length < number do
2 =l

3 for i =1 to number do

4 if i + length > number then
5: break from loop

6: end if

7 construct(i,i+length)

8 end for

9 i=i+1

10: end while

The global state channel contract shown in Fig. 5 is a con-
tract that is triggered at the time of channel creation by party
P;. Party P; deploys the GSCC contract on the blockchain.
Any party can perform the initialization process in the set
of parties in the n-party network. The instance channel ini-
tialization is called by passing the name of the parties and
the identification of sending party to the global contract. The
global state channel sends the channel to create a contract
instance to the party by assigning a version number(ver) and
length of the channel (/). This ver ensures that the channel
of a particular size is made precisely once by the party. Any
party verify it by accessing the GSCC. The party uses these
details obtained from the GSCC to create a channel on the
iMPVSCC, as shown in Fig. 6.

The iMPVSCC takes input from one party and triggers a
response from the other party for channel creation. The other
party responds with its identification number and sends the
length and version with its signature. The iMPVSCC can con-
struct the virtual channel of length / and lock funds from both
parties. GSCC provides each party with data on the fund to be
locked in each channel. GSCC encrypts all the data it sends
to parties with its key o,,. Finally, a channel creation message
is sent with the identification of both parties. It is sent to the
GSCC by one of the parties informing that the channel has
been constructed. The GSCC then moves on to the next chan-
nel creation with the next party, and this continues until all
pairs of parties have a channel with each other. The GSCC is
a global contract that handles the channel creation protocol
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of the system. If the length value + party number exceeds the
total number of parties, the contract resets the party number
to one, increments the length by one, and continues the pro-
cess. It ensures that the channel of length two is constructed
first (initial value of / is 2), then length three is built, and so
on. It must not be that the GSCC validates one contract cre-
ation process at a time. Therefore, a party can only construct
the channel with contact with GSCC. The channel construc-
tion algorithm discusses in Algorithm.1. The channel can
be constructed after all the n parties have connected ledger
state channels. Creating a state channel takes time to deploy
a contract on the Ethereum blockchain and create blocks.
As discussed above, the value of [/ initializes to 2 to
construct a virtual channel between 2 parties over an inter-

mediary. We keep constructing channels for all parties until
channel number (i) + [ becomes greater than the total parties.
If so, we go back to the first party, increment channel length
by one, and continue till all channels are constructed. The
construct method in the above algorithm uses the perun pro-
tocol to construct a virtual channel between parties i and i +1.
Since all lengths from 1 to / — 1 will be constructed before
constructing channel of length /, intermediary is optimally
chosen to be (i +i +/)/2 party. Hence, virtual channel is con-
structed in time A between existing channels (i, (i +i+1)/2)
and (i +1i +1)/2,i 4+ 1). So a virtual channel is to be con-
structed as in [12] between parties i and i + [/ with party
(i +i +1)/2 as intermediary. If there are n parties, the two
loops will create n2 channels.

Protocol for n-party Channel creation

To create an off-chain channel, party P; performs the following procedure:

Channel Creation Initialization Phase

Procedure channel_initialize([P;, P,], P;.id)

is run by P; on GSCC:

Channel_initialize(P;, P,, P;.id) <T—0Pl-

Procedure channel_create([ P;, P,], P;.id,
1, ver) is run by GSCC to P; and P;:

P;, ver=0
Pj, ver=0
=2

Party P; runs this instance of GSCC to start the channel creation procedure with Party P;.

The GSCC generates the latest version number(ver) and initial channel length(l) with value 2.

Channel_create(P;, Py, P;.id, [, P;.ver)— P;, and Channel_create(P;, P,, P;.id, [, Pj.ver)— P;
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Protocol for n-party Channel creation
Local Contract Channel Creation Phase

Procedure channel_create([ P;, P,], P;.id,l, ver) is run by P; on iMPVSCC:

After obtaining channel creation parameters such as length, participants, version number from
GSCC, P; runs this instance to initiate channel creation. These can be checked by iMPVSCC with
GSCC.

Channel_create(P;, Py, P;.id, 1, Pj.ver)<P;

Procedure channel_create_response([P;, P,], P;.id, 1, ver) sent by iMPVSCC to P;:

The iMPVSCC contract awaits for a response from party P; for creating channel. If party

responds, channel creation is done.
r=Channel_create(P;, P,, P;.id, I, Pj.ver)M)Pj
if r== 1 then stop. Else,

Lock_coins(Pj, 04(Pj,a))<P;

Lock_coins(P;, 04(P;, a))<P;
Lock_coins_done(P;, Pj,a)<-iMPVSCC
Lock_coins_done(Pj, P;,a)<-iMPVSCC

Channel creation acknowledgement Phase

channel_create_done([P;, P,], P;.id, Pj,id, 1, ver) is run by iMPVSCC on P; and P;:

Funds are locked and channel creation validation is provided by iMPVSCC.
Channel_create_done(P;, P,, P;.id, [, P;.ver, Pj)— P;

Channel_create_done(P;, P,, P;.id,l, Pj.ver, P;)— P;

channel_create_done([P;, P,], P;.id, Pj,id,l, ver) is run by P; on GSCC:

Party P; runs channel creation done instance on GSCC. After this, GSCC increases length
of virtual channel by one and continues channel creation process with next party.

=l +1

Channel_create_done(P;, Py, P;.id, 1, P;.ver, P;)<P;

Channel_create(P;, Py, 1, P;.ver)— P;, and Channel_create(P;, Py, 1, Pj11.ver)— Pjy|

@ Springer
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3.3 Game Registration and Coin Locking Phase

Game Registration Procedure

if r.length()<=c and P; not in r then,
message = (Py,04(Pg,a))+ ) +(Pp,04(Pp,b))
return message to P;
else,
message = 'invalid response’
return message to P;

Lock_coins(Py, 0g(Py,a)—iMPVSCC

that channel.
Lock_coins_done(P;, P,,a)<-iMPV SCC

The following methods are executed on global contract GSCC to register a game between N parties:

Contract Registration Phase

At time ty, party P; runs the game_register(c, r, n, a) method of GSCC contract.
GSCC waits till time #; = #+A for all N parties to respond with the set of opponents.
Party P; sends response as r;=(P;, Pp) to GSCC. oy is the key of GSCC.

if P; receives valid message from GSCC, P; splits message at ’,
(Pa,04(Py,a)) and (Pp,0,(Pp,a)) to their respective channel, ie., channel contract (P;, P,;) and (P;, Pp).

Channel contract will be able to decrypt using GSCC’s key to obtain value ‘a’ and lock ‘a’ coins in

LK)

and provides each tuple

This section will discuss the game registration and coin
locking procedure in detail. This phase happens during the
local channel creation phase, where funds are generated
and locked, as discussed in the last section. While con-
structing an n-party channel, any party P; can execute the
game_register(c, r, n, a) procedure of the GSCC contract.
There are four values passed in the function: the concurrency
¢, number of rounds r, number of parties n, and the amount
for each game a. For this game to have sufficient funds in each
channel, every party must lock at least r * a coins in each of
their n — 1 channels. The value ¢ * r is the total number of
games a party P; can play. In each of the rounds, a party can
play concurrently c¢ different players. c is always less than or
equal to n — 1, since a party cannot play against more than
n — 1 players at a time. However, in one channel, each party
can lose a coins in each of the r rounds. All n parties agree
upon these parameters before the party P; executes this on
the global contract.

Teoins =r*ax(n—1)

In the above equation,the total number of coins (Z¢pins)
deposit in all off-chain channels by one party.

After this execution, the GSCC provides all the n parties
at most A time to respond with a list of players that they
would be playing against(The number of players have to be
less than or equal to the value c that was passed at the time
of function call) and a zero-knowledge proof that they have
sufficient number of coins in their main blockchain account.
The global contract waits for A time and verifies the values
received from all parties. If no party responds to the GSCC,
they are considered not playing in that round. In the next step,
the global contract maintains an append-only contract board
which consists of all possible pairwise matches between n
parties.

The board can only append by the GSCC. The values
added to the board cannot alter, even by the GSCC. It ensures
that the outcome of all the matches describes precisely once.
After receiving the list from all the parties, the GSCC marks
all the pairwise matches not taking place in that round as ‘No
Result’ (N); after the outcomes of each game are obtained,
the append board will mark it as “W’ for a win and ‘L’ for a
loss.

Further, the GSCC sends a tuple to each party with two
fields: the names of the virtual contract and the number of
coins in that contract, encrypted with its key, o,. Each party
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provides this tuple to each of its payment channel contracts
by running the lock_coin procedure, as shown in Fig.7. The
contract will use o, to decrypt and get the amount. Each
channel will lock coins. After all coins are locked, each party
receives a Lock_coins_done message from their channel
contract. All parties will submit their confirmation messages
to the GSCC to start playing the game.

3.4 Execution Procedure

One game consists of two players, where each player chooses
to make their first valid move. Once a player P; makes his
move, he signs the new state with his signature o;, and sets
the initial version number ver as 0. P; sends the signed state
and version number to the party P;, who signs the instance
with his signature o;. Signing a state by party P; means
that he agrees upon the move made by P;, making it a valid
executable state. Now, party P; makes his move, signs the
new state with his signature, sets the next version number as
ver + 1, and sends both of it to P;.

coins for the winner and loser of that game. If these two par-
ties behave maliciously and continue to play a new game in
the same round, the append-only board prevents them from
validating this new game. After all the games in a round are
completed, the next round starts, and the board is cleared.
Concurrency and multiple rounds of games give all partici-
pants the flexibility to play during a particular round.
Game execution example: Consider a scenario where four
parties P1,P>,P3 and P4 decide to play a two-player game
tournament with each other simultaneously and concurrently.
All parties form a chain of ledger state channels connecting
each with their neighbor. One party belonging to a channel
deploys SCC on the ledger. All players agree upon basic
parameters such as the number of rounds, number of concur-
rent games per player, and the amount to be locked per game.
Player P; deploys GSCC on the ledger to start the channel
creation, game registration, and coin locking procedure. All
parties have to cooperate with the GSCC to complete the
above three processes by responding to the GSCC contract
within each round of information exchange.

Protocol for n-party channel execution

state number and contract instance respectively.

cs+1=Update_instance(cs) < P;
oi(cs+1)< P

(Cs+1, 07 (C5+1))—> Pj

cs+2=Update_instance(cs41) < P;
0j(cs+2)<P;

(cs+2, 0j(Cs+2))—> Py

The function explains the execution of contract between two parties P; and P;. Let s and ¢ be the current

Contract Execution \

0;j(0;i(cs+1)) < P; (State s+1 becomes valid since it has signature from both parties)

The above process continues until one party is unable to make the next move. When the contract execution
halts, the GSCC resolves the dispute and validates final instance.

This process repeats until one party wins, making the other
party unable to send the next valid state of the game, as shown
in Fig. 8. There is a dispute when one party refuses to respond
to another party’s move or a party does not reply within A
time. Details of the dispute handling process by the GSCC
will discuss in the next section. The GSCC settles the dis-
pute and assigns the winner and loser to the append-only
board, which finishes that game between the two parties. The
append-only board ensures that no one, including the GSCC,
can modify the result of a completed game. The GSCC cre-
ates the latest valid state of channel balances by updating the
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All parties decide the four initial values as 2,6,3 and 0.1,
which are the number of concurrent games (c), rounds (r),
parties (n — 1)(since a party cannot play with itself), and
amount for each game(a) respectively. Each party locks a
total amount equal to the product of three terms. In the worst
case, any party can play a maximum of two parties concur-
rently for all six rounds and lose every match. Each channel
has to have sufficient coins locked in it in this scenario. There-
fore, each party locks a total of 6¥3*0.1, which is 1.8. Each
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Fig.7 iMPVSCC contract for
locking coins after game
registration

Pi

Lock_coins(P,, 04 (P,,a))

Lock_coins_done(P;, P,, a))

\ 4

iMPVSCC

A

party has to lock a 0.6 value in each of the three channels.
Figure9 shows the initial number of coins locked by each
party in their respective channels and the final amount after
completing their game. In this scenario, we have shown the
first round where party P; playing against P> and Pz, party P>
playing against Pz, and party P is not participating. GSCC
marks the games that are not taking place as “No result (N).”

After locking coins, all the games can occur concurrently,
and any game can start or stop in their independent chan-
nels. In Fig. 9, we assume that party P; has won against both
P> and Pj3, party P> has won against party P3. Hence, the
final distribution of coins is shown, where the winner gains
0.1 coins, and the loser has to pay that amount. Tables 4
and 5 shows the initial state(left) of append board and final
state(right) after completing all the games in that round. If
the index (i, j) mark as “W’ by GSCC, the index (j, i) is ‘L.
The ‘W’ at (row 2,column 3) means that party P; has won
against party P,. The same convention is followed through-
out by the GSCC while marking the result. Let us explore the
game execution between parties P and P>, and they have the
initial state of the contract instance cp. Assume that P; makes
the first move.

1. Party P; updates the state of contract to cy.

2. Pj signs cq with its key o7 to result in o1 (cq).

3. P; sends the state ¢ and the signed instance oj(cy) to
P,.

4. Party P, validates the signed state o1 (c1) by signing with
his key o7, resulting in o2 (o1 (c1)). This makes instance
c1 valid.

5. P> makes the move in ¢ and generates next state c.

P, signs ¢ with its key o7 to result in 02 (c2).

7. P, sends the state ¢; and the signed instance 03(c2) to
P;.

o

The above steps continue until one party cannot make his
next move or if someone refuses to sign an instance. In this
case, any party can raise a dispute with GSCC, which solves

Pi Pj
0i(Gyer,ver)

Y

0i(0i(Gyer,ver))

A

0j(Gyer+1,ver+l)

Fig.8 Execution process of two parties exchanging signed versions of
current and next instances

it in constant time. Once the dispute is solved, the game
between those two parties ends. GSCC updates the game’s
result on the append board and provides the parties with the
final contract instance with updated balances after comple-
tion of their game. The parties go to their channel contract
iMPVSCC to set the balance. The final balance calculation
and fund release happen after all games and rounds finish.
Other examples: The model also performs as a payment
mechanism between n parties. Instead of sending the number
of rounds and concurrency to the global contract, party P;
sends value zero in both fields, indicating that the parties
want to make payments. Parties decide the coins per channel.
Therefore, the GSCC does not need to maintain an append
board. The GSCC sets up each channel to lock the number
of coins that parties decide, and the remaining registration
and coin locking procedure remains the same. If party P;
wants to make a payment to P,, the party P; can create a
new contract instance by updating the current balances of
both parties. Further P; signs with his key and sends it to
P>. If P, agrees with the new state, he can sign with his
key, making that instance valid. In this manner, P; and P,
make many payments to each other using their state or virtual
channel.
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Fig.9 Four player system
explained using the state and
virtual channels

y3

Cc2 C3
0.6/0.7 0.6/0.5 0.6/0.7 0.6/0.5 0.6/0.6 0.6/0.6
8 2
: :
SCC¢ SCC¢» SCCc3
Blockchain
To explore the payment application, consider the four ini-  Table4 Initial state of append Pl P2 P3 P4
tial values as 0.0,3 and 2, which are the number of concurrent board
games (c), rounds (r), parties (n — 1) (since a party is con- Pl N N
nected to n — 1 neighbours), and amount to be stored in each P2 N N
channel (a) respectively. The parties take help from GSCC P3 N N
to lock ‘a’ coins in each n — 1 channels that a party is con- P4 N N N N
nected to. The coin locking phase is performed with the help
of intermediary contract iMPVSCC. Once all parties lock
coins, they are free to update balances of the channel any Table5 Final state of append Pl P2 P3 Pa
number of times. Parties obtain initial state of contract with board
‘a’ coins from iMPVSCC, named c;. If party P; wants to P1 N w w N
send ‘x’ coins to P,, the below procedure is followed. P2 L N w N
P3 L L N N
P4 N N N N

1. Party P; updates its balance from a coins to @ — x, chang-
ing state from cg to cy.

2. P1 signs c1 with its key o7 to result in o1(cq).

3. P; sends the state c; and the signed instance o1(cy) to
P.

4. Party P> checks if state c; balance is greater than or equal
to zero.

5. If so, P, validates the signed state o1(c1) by signing with
his key o>, resulting in 02(o1(c1)). This makes instance
¢ valid.

Any of the two parties will initiate the state update at a
given point of time. The above process continues until any
party refuses to respond to a state change request from the

Springer

other party. A party invokes the GSCC to resolve the issue.
The GSCC asks for latest state from both parties. Initially, it
verifies if the total balances of the valid state are equal to the
total amount locked in the channel by the two parties. The
GSCC has authority to verify this since all parties and chan-
nels register with it during registration phase. If it is valid,
the GSCC validates the party’s instance that has the higher
version number. The parties provide the final valid instance
obtained from GSCC to the channel contract iMPVSCC,
which releases the funds and updates the final on-chain bal-
ances.
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Dispute Handling: A dispute arises when an instance of a
contract does not have the signature or approval of both par-
ties. In our model, this scenario arise because of two reasons:

1. A party P; does not respond to the state change signed
by the other party P; in A time.

2. A party P; cannot make its next valid move because of
the game ending in that party’s defeat.

We consider the above scenarios when the game comes to
an end. After waiting for A time, the party P; raises a dispute

with the GSCCby running the dispute_handle(c;, zkp, c;.ver)

method. While invoking the method, the party P; has to
provide the latest instance, version number and a zero-
knowledge proof, proving that the instance execution is done
by P; and P;. The GSCC checks the validity of the instance
by verifying the signatures and proof provided.

If the instance is valid, the contract provides party P; with
A time to respond with its own latest valid instance, version,
and zero-knowledge proofs. After obtaining and validating
information from both parties, the GSCC signs the correct
instance, thereby solving the dispute. The GSCC returns the
correct instance to both parties. Figure 10 shows the dispute

handling process execution sequence, with party P; initiat-
ing the dispute with party P;. Finally, the global contract
updates the append board. Party P; initiates the dispute with
the GSCC in one round, and the contract waits for one more
round for the other party to respond. In the optimistic case,
when the other party responds before timeout, the dispute
process requires 1 round with a time of A. In the pessimistic
case, the contract waits for another round, making the total
time as 2A. The time complexity of the dispute solving pro-
cess is O(A). Once the dispute in a channel is solved, the
GSCC creates the final contract instance for that channel and
shares the data with both parties. The parties then go to the
channel contract iMPVSCC to settle the final balances.

3.5 Channel Closing Procedure

The final stage is when all games and rounds are complete.
Any party P; initiates the channel closing method of the
GSCC by passing the party number of each of the partici-
pants, shown in Fig. 11. The GSCC completes the validation
of the last states of each game and provides this valid contract
instance to all parties when their game ends. GSCC checks
each game by navigating through the append board. If the
game is complete, unlock_coins(P;....P,) is invoked.

Protocol for n-party channel closing

Upon Channel_close(P;, ..., P,)<P;
Forifrom 1 ton
For j from 1 ton

Else,
og(unlock_coins(P;, ..., Py))— P;

og(unlock_coins(P;, ..., Py))— P;

Channel_close_done(P;, ..., P,)— P;

P; sends Channel_close_done(P;, ..

The function explains the working of GSCC in closing channel between two parties P; and P;.

Channel closing

if board[i][j]== L, then stop.

P; sends og(unlock_coins(P;, ..., Py))—>iMPVSCC
Pj sends og(unlock_coins(P;, ..., P,))—>iMPVSCC

. Pp) =iMPVSCC

The two loops navigate through every game. GSCC ensures that only valid game participants can unlock their
channel coins. In final step, GSCC acknowledges that channel is closed,
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Pj

Dispute_initiaIize(Pi,Pj,ci,zkp,ci .ver)

x
>

A

Dispute_done(P;,P;,cy)

Global_state_channel_contract

Dispute_respond(P;,Pj,t1=t0+A)

3
>

Dispute_response(Pi,Pj,cj,zkp,cj .ver)

<
<

\4

Dispute_done(P;,P;,cy)

Fig. 10 GSCC dispute handling mechanism

Pi

Channel_close([P;,..P,])

\4

<
<

Channel_close_done ([P;,..P,,])

Global_state_channel_contract

unlock_coins([P;,..P,])

Y

Fig. 11 GSCC channel closing mechanism

The parties provide their channel contract iIMPVSCC with
final state received from GSCC. iMPVSCC executes the final
instances of each channel, releasing all the locked coins to
their respective parties. After checking every channel, the
Channel_close_done(P;, ..., P,) method is run by GSCC
to acknowledge process completion.

3.6 Working of GSCC

In this section, we explore the functioning of GSCC in resolv-
ing dispute. GSCC acts as the entity that resolves all disputes
in the n-party network. A party P; initializes a dispute with
GSCC by running the method Dispute_initialize(P;, P,
¢i, zkp, ci.ver) at time tp. In function initialize, party P;
provides GSCC with its latest instance and proof of its
blockchain account. If the zkp_ function(P;) returns a true

S @ Springer

response, GSCC accepts it, otherwise rejects the dispute ini-
tialization. GSCC requests other party to provide proof of
their account and their latest valid instance in 7; time, where
71 < 19 + A. GSCC provides fixed time A for parties
to give response to requests. If a party is unable to pro-
vide proof of their account, GSCC marks it as malicious.
A party that does not respond with its instance in given time
is also treated as a malicious party. If the zkp_ function(P;)
returns a true response, GSCC accepts it. GSCC checks
which party has a valid instance number that is larger. It
assigns ¢y as ¢; if ¢;.ver > cj.ver. Otherwise, it assigns c
as ¢;. Finally, GSCC runs the Dispute_finalize(P;, P;)
method. Both parties P; and P; are provided with message
Dispute_done(P;, Pj, c) at a time 1. This message con-
tains ¢, which is the final valid state for the channel between
Pi and P je
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GSCC dispute handling

If zkp_ function(P;)H, then stop.

A
Send Dispute_respond(P;, Pj) T1<70+

If zkp_ function(Pj) # 1, then stop.

If ¢;.ver > cj.ver, then cx=c;. else,cy=c;
Upon Dispute_finalize(P;, Pj)

Send Dispute_done(P;, Pj, ck)2>P,-

o T
Send Dispute_done(P;, Pj, ck)—2>Pj

The function explains the working of GSCC in resolving dispute between two parties P; and P;.

Dispute handling

Upon Dispute_initialize(P;, Pj, c;, zkp, c;.ver) <r—0Pi

Upon Dispute_response(P;, P}, c;, zkp, cj.ver) <r—le

P;j

4 Security Analysis and Efficiency Goals

In this section, we explore the security and efficiency goals
of the proposed model. We discuss all the security measures
and present some theorems to prove them.

4.1 Consensus on Channel Creation

In the previous section, we explore the role of the GSCC.
The GSCC helps create a channel of length two starting from
the first party and increments the length by 1 to repeat the
process. Each party plays a role in channel creation with the
iMPVSCC contract after obtaining parameters from GSCC.
It proves that the entire multiparty model cannot construct
without attaining consensus.

4.2 Dispute Handling with Corrupt Parties

The dispute handling process described previously has given
each party the opportunity to prove that they have the cor-
rect state of the contract. The global contract performs this
process by providing A time to both parties to respond with
their latest valid instance.

4.3 Consensus in Execution and Contract Updation

A party updates the state of a contract and signs with his
private key. The other participating party validates this locally
and signs with his key, if validation is successful. A contract
is valid after achieving signature from both parties, which
can be verified by intermediary party using the virtual state

contract. Hence, consensus achieve in contract execution and
updation.

4.4 Concurrency in Execution of Contract Methods

The channel construction algorithm ensures that while con-
structing a virtual channel of length i between parties P;
and Pj, all channels from length 1 to i — 1 exist between
them. There exists a channel between each pair of parties.
The execution of one contract does not impact the execu-
tion of another one simultaneously. Multiple parties’ contract
instances work simultaneously without affecting the system
performance. This section will explore some theorems and
their proof and analyze their complete description.

Theorem 1 If there are n participating parties from 1 to n
in constructing a channel, every pair of parties i and j are
connected by a virtual channel built over the party then the
intermediary must be (i+j)/2.

Proof The n-party channel between parties 1 to n is con-
structed after attaining consensus from all participants. There
also exists a state channel between all parties before construc-
tion begins. The party numbered 1 sends the initial request
to global contract GSCC. The GSCC generates parameters
for the virtual channel to be constructed between parties 1
and 3 with the help of local contract iMPVSCC. Following
this, the GSCC moves on to build a virtual channel between
parties 2 and 4. The GSCC continues the process until all
parties up to n have constructed a channel length of 2. The
GSCC now returns to party 1 and generates the parameters to
build a channel between 1 and 4. The exact process contin-
ues until all pairs of parties have a channel connecting them.
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Therefore, this proves that all channels between i and j can
be built with the existing channel over party (i 4 j)/2.

A three-party channel construction protocol is described
below. We assume that all parties Pi,P>,P3 are connected
by two ledger state channels as explained above. n is the
number of parties,which is 3. p is the party number, i is the
intermediary. The below mechanism creates virtual channels.

The three party channel creation takes place as follows:

1. Initially, Party P; sends creation initialization procedure
to GSCC contract.

2. GSCC upon receiving (create_initialize,Py), runs
generate_parameters, where parameters such as ver
and i are calculated.

generate_parameters function description:

initialize static variable 1 as 2
input : (N,1,p)
if p+1==N, then,
setpas 1
Increment 1 by 1
if p+1>N, then,
exit
i=ceil[(p+1)/2]
end function

»

GSCC sends channel_create(p, 1, ver,i, p +1) to P;.

4. Pj upon receiving channel_create from GSCC, sends
it to intermediary P;

5. P; upon receiving channel_create from party p, waits
for A round for response from party p+l.

6. Party p+l sends create_channel_ok response to party i.

7. The three parties p,i and p+] lock funds on each virtual

channel to open it.

8. Partyisendschannel_create_done(P1,1, ver)to GSCC.

9. GSCC runs generate_parameters(P1,1, ver)

The process continues until all channels are constructed
between n parties. The generate_parameters method cal-
culates and assigns intermediary. The method terminates
creation process when the party number p+] exceeds total
number of parties P. O

Theorem 2 [f a party P; tries to execute an invalid contract
state G with version number w on the blockchain, it gets
discarded.

Proof All disputes are solved using the GSCC deployed by
the parties on the blockchain. If two parties have a dispute,
the GSCC invoke by the party raising the dispute. Then, the
GSCC starts a procedure that gives A time to both parties
to provide their latest contract version. The contract vali-
dates one of the party’s contracts, making them the winner
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of the game. The contract on the append-only board appends
the result. A malicious party cannot change the game’s out-
come by running an older instance of the contract at any later
instance. It is because all older instances do not have a valid
signature from the GSCC.

Consider a party P; with contract instance G, and another
party P; with contract instance G,.

1. Party P; wants to execute its instance G, on the
blockchain at a certain point.

2. The blockchain recognizes that the contract is from an
off-chain channel and waits for response from other par-
ties.

3. Party P; sends its contract instance G, to the ledger.

4. The blockchain runs the instances on the ledger.

5. The most recent instance of the contract will achieve con-
sensus from other participants.

5. Finally, the blockchain creates block for the valid instance
and discards the other ones.

The involvement of blockchain in this process increases the
overall time of solving the validity of contract. O

Theorem 3 If an n-party system is constructed off-chain,
each member has to be able to prove their legitimacy to any
other party by using their own secret number or value.

Proof Security is an important feature of blockchain, since it
ensures that malicious entities cannot corrupt sensitive data.
We have used the universal composability (UC) model to
prove the channels and contracts are secure. Canetti et al.
[34] explores the UC model for two-party and multiparty sys-
tems using zero-knowledge proof mechanism. Their protocol
allows any subset of parties to perform correctly, independent
of the activity of the rest of the network.

Consider an N-party system where each party knows a
secret value x;, where i is the party number. Therefore, the
secret values are x1,x2,...x,. The idea is to compute and store
a value y=f(x1,x2,...x,) in the global contract GSCC after
receiving all the x; values. We will be exploring a three-party
system with secrets x1,x3, and x3 for this proof.

1. The security_check(P;, P, P3) instance of GSCC is
invoked by party P;.

2. GSCC provides computing function f(x1,x2,...x;) to

party P; and waits for response.

Party Pj inputs its x; locally and sends value y to GSCC.

4. GSCC provides computing function y = f(x1,x2,...Xp)

obtained from P; to party P, and waits for response.

Party P; inputs its x; locally and sends value y to GSCC.

6. GSCC provides computing function y = f(x1,x2,...X,)
obtained from P, to party Pz and waits for response.

7. Party P3 inputs its x; locally and sends value y to GSCC.

w

i
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8. GSCC stores the final y value and terminates.
9. GSCC waits for 1 round for each party to respond. Hence,
total time complexity for n-party system is O (nA).

The value y cannot alter by any party once it computed and
added in the contract. This means each party can prove that
they know their secret value x; each time without revealing
what it is. O

4.5 Zero-Knowledge Proof

The zero-knowledge proof verifies the participating parties
that they have sufficient coin to involve in the n-party virtual
model. Party P; wants to prove to GSCC that it knows the
secret value x to verify him as he has the required no. of coins.
The GSCC is a global contract that knows the party after par-
ticipating in this model, but it has no information regarding
the contract account as the user may have already used some
coins. The GSCC chooses one miner who has the complete
details of the contract account of the participating party see
Fig. 12. We use the property of the Elliptic curve discrete log-
arithm to define the zero-knowledge proof and geE(F)). pis
a large prime, and the Elliptic curve(E) is the koblitz curve,

i.e., secp256k1. The P; chooses x & Zy+. g is the generator
of F), and n is a prime number. Ethereum uses the SHA-3
hashing algorithm, i.e., Keccak-256; hence in this proof, we
use it for blockchain convenience. GSCC verifies the public
address with the respective number of coins available.

P calculates value V=x.g, and sends it to P;.

P> generates challenge ¢ i Zy+ and sends it to Pj.

P calculates Y=e.g, and h=Keccak-256(Y).
P sends tuple (e, h) to Ps.

P, calculates r=z.g+c.V.

P, calculates d=Keccak-256(r).

zero_knowledgeproof function description

$
P generates value z < Z,+ and calculates e=z — x * c.

If d==h, then the party P; has proven to party P, that it knows its secret value x.

update and dispute handling mechanisms. The successful
execution of simulations tells us the proposed system’s fun-
damental concepts. Table 6 calculates the gas consumption
and time taken in seconds for each transaction between par-
ties P; and P,. Gas cost can be represented in gwei or eth
units. The conversion equation is shown below:

1 eth = 10° gwei

From the simulation, we can infer that contract gas cost
and execution time varies for update and dispute transaction
types. Table 7 divides update and dispute transactions to cal-
culate efficiency for each type. The efficiency of a transaction
is calculated using the below equation.

Gas Cost

Efficiency = —————
y Execution Time

Figure 13 compares the execution times for update and dis-
pute transactions. In this scenario, two parties perform trans-
actions by transferring coins off-chain using state update.
When a dispute happens, a party invokes the GSCC. The
GSCC checks with both parties for the latest instance and
transfers coins correctly based on the latest valid state. We
observe that update transactions consume more time and exe-
cution costs than dispute handling. Figure 14 Compares the
update and dispute process efficiency for five transactions.
The efficiency signifies how much gas costs a particular type

5 Discussion and Results

We analyze the resultant work and all the smart contracts. We
use solidity programming language and truffle suite along
with Ganache with Metamask. The contracts deploy on the
ethereum framework. We discuss the time consumption and
contract execution cost for state update and dispute handling
process in each two-party game. We assume equal response
time from all participants during each transaction in our sim-
ulations. We provide a proof of concept representation of

of transaction uses per unit of time. In this case, the update
process has high efficiency, making it more cost-efficient than
the dispute-handling process and comparing the efficiency of
update and dispute transactions. Figure 15 shows the total
cost of each module. The initialized module is the coin-
locking phase. The getBalances module provides a party’s
current balance at any point. The setBalance module is used
to update the state/balances of any party. The DisputeHandle
module compares the version numbers from both parties to
check the latest one and validates it. The total cost is obtained
by adding the cost of each transaction.
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Fig.12 Zero-knowledge proof
mechanism

Verifier
P4(Prover) GScC P, (Miner)
V=g* modn N Vv -
B c < challenge ¢
Generate random value z, e=z-xc
Y=e.g and h=Kccak-256(Y)
Send (e,h) Send (e,h)

If d==h, verification successful

Y

»
L

r=z.g+ c.V; d=Kccak-256(r)
If d==h, verification successful

< {‘
Table 6 Simulation results 1
Transaction number Transaction Gas cost (gwei) P initial balance P, initial Py P Time (s)
type balance updated updated
balance balance
1 Update 42688 10 10 12 3.693621
2 Update 42688 10 10 7 13 3.298053
3 Dispute 21624 10 10 - - 2.511392
4 Dispute 21624 10 10 - - 2.013312
5 Dispute 21624 10 10 - - 2.525194
6 Update 42688 10 10 6 14 3.047172
7 Dispute 21624 10 10 - - 2.009664
8 Update 42688 10 10 5 15 3.292367
9 Update 42688 10 10 9 11 2.890422
10 Dispute 21624 10 10 - - 2.156778
Table 7 Simulation results 2
Transaction number Update cost (gwei) Dispute cost (gwei) Update time (s) Dispute time (s) Update Dispute efficiency (cost/time)
efficiency
(cost/-
time)
1 42688 21624 3.693621 2.511392 11557.22257 8610.364292
2 42688 21624 3.298053 2.013312 12943.3941810740.51116
3 42688 21624 3.047172 2.525194 14009.05495 8563.302463
4 42688 21624 3.292367 2.009664 12965.7477410760.00764
5 42688 21624 2.890422 2.156778 14768.7777110026.06666
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Fig. 13 Comparing update and
dispute handling time(sec)
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Fig. 14 Comparing efficiency
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Figure 16 shows the execution time for non-concurrent
transactions. We assume that four events are happening at the
same time. Therefore, the total time for each transaction gets
multiplied by four in the case of the non-concurrent method.
Our model can conduct state updates/transactions off-chain.
The on-chain payment cost and time in the real-time scenario
are very high because of consensus requirements, crypto-

Initialize

T~ — T~

s pdate transaction time

s (ISP Ute transaction time

3 4 5

Transaction Number

Comparison of efficiency of update and dispute process

/\/

= I date efficiency

dispute efficiency

3 4 5

Transaction number

TOTAL GAS COST

DisputeHandle

setBalances

getBalances

graphic challenges, and the involvement of miners. Figure 17
shows the real-time ethereum on-chain average transaction
cost. When we compare the cost with Table 6, the update
execution cost for our method is much less than the on-chain
block creation and consensus cost.

Consider the Fig. 9, where concurrent games between par-
ties (Py,Py), (P2,P3), (P3,Py), (P1,P3), and (P;,Py). The first
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Fig. 16 Execution time of
events without concurrency
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Fig. 17 Real time average transaction cost in ethereum

transaction is an update. Therefore, it indicates that the game
between P; and P, has begun, with party P making a move.
During the update, P; sends the next state of the game with
Py signature to P>. Then, P, validates the move by giving
its signature and reply to P;. Transaction 2 is an update by
P, in the game (P,,P3). Here, P, makes a move and sends
an updated signed instance to P3 for validation. Transac-
tion 3 is a dispute in the game (P3,Ps) since the party Py
did not initiate the game within time. Therefore, the GSCC
instance gets triggered by honest party Ps, and the game’s
result is decided, according to which party committed unfair
play. Transaction 4 is a dispute between parties in the game
(P1,P3), where party P; fails to respond in time to P3. The
GSCC gets called again to resolve the dispute by penalizing
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the unfair player and ending the game. Transaction 5 is an
update in the game (P2, P4), with party P4 making the first
move. P4 makes a move, signs the instance, and sends it to
P, for validation.

After the above transactions are complete, the games
(P3,P4) and (P1,P3) are no longer considered active by the
GSCC. Hence, the results update in the append board, and
fund distribution steps initiate. From the next transaction, the
GSCC considers the remaining three games valid. Since all
five transactions are conducted by different games belonging
to independent channels, these execute concurrently, result-
ing in seamless execution and efficiency. Table 8 shows the
transaction details for conducting the games, and details such
as transaction cost, game details, and current player.
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Table 8 Simulation results 3

Transaction number Transaction type

Transaction cost (gwei)

Game details Current move party

1 Update 21624
2 Update 21624
3 Dispute 42688
4 Dispute 42688
5 Update 21624

(P1,P2) Py
(P2, P3) P
(P3,Py) Py
(P1,P3) Py
(P2, Py) Py

6 Conclusion

The research conducted in this work has shown that virtual
off-chain computations have significant advantages over on-
chain or state channel networks since they provide better
throughput, scalability, and efficiency without compromising
security, integrity, and privacy. The previous model has prob-
lems simultaneously providing the same channel to different
parties for execution. Our construction solved this problem
by giving independent channels to all pairs of parties, allow-
ing concurrent execution. Dispute resolution is linear to the
number of intermediaries in more extended virtual channels.
The dispute board helped make dispute solving time constant
but has an overhead in computation time. The GSCC dis-
pute model described in this work solves disputes in constant
time and contains stored data of each channel. It eliminates
the communication overhead which exists in the previous
method. A detailed view of each protocol construction, dis-
pute handling, execution, and channel closing has also been
given. The resultant model ensures the security of participant
parties and does not lose the coins as an intermediary or pay-
ment initiator. Resolving disputes with intermediary parties
before involving the contract provides an additional layer of
dispute resolution before the contract execution. Therefore,
an indirect dispute model for n-party concurrent execution is
a possible future research problem.
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