
Arabian Journal for Science and Engineering (2024) 49:1771–1795
https://doi.org/10.1007/s13369-023-07892-9

RESEARCH ART ICLE -MECHANICAL ENGINEER ING

Optimization of Blowing Jet Performance onWind Turbine Airfoil
Under Dynamic Stall Conditions Using Active Machine Learning
and Computational Intelligence

Si. Kasmaiee1 ·M. Tadjfar1 · Sa. Kasmaiee1

Received: 11 January 2023 / Accepted: 6 April 2023 / Published online: 19 June 2023
© King Fahd University of Petroleum &Minerals 2023

Abstract
The dynamic stall is a common phenomenon in horizontal and vertical axis wind, reducing system efficiency. In order to
enhance the aerodynamic performance (L/D) of a NACA0012 airfoil under the deep dynamic stall at Reynolds number
of 1.35 × 105, computational intelligence algorithms were utilized to find the best operational parameters of a continuous
blowing jet. The airfoil undergoes a sinusoidal motion between − 5 and 25, and the rotation center is around a quarter of its
chord. Unsteady Navier–Stokes equation (URANS) was used with k −ω SST turbulence model. Two types of computational
intelligence algorithms, including neural networks and genetic algorithms, were coupled for this optimization. The average
lift to drag ratio (L/D) in an oscillation period was considered as the objective function. The blowing jet parameters, which
included location, opening length, velocity magnitude and angle of jet, were selected as design variables. Two neural networks
have been utilized to find a relation between design variables and the mean lift and drag coefficients over a period to reduce
the computational cost of the optimization. The optimization algorithm converged after almost 115 simulations. The ANNs
in the last simulation were able to predict the input data with 92% and 93% regression coefficients for average values of
drag and lift coefficient in terms of the operational parameters of the jet, respectively. The optimized jet enhanced the mean
aerodynamic performance by reducing the drag coefficient and increasing the lift coefficient during a period of oscillation.
For the optimal case, this parameter reached the value of 11.727 or 4.717 times the uncontrolled case. The most impact of
the jet is in the downward movement. Significant improvement in aerodynamic performance was observed for the optimal
blowing jet, which is due to the lack of formation leading edge vortex (LEV), dynamic stall vortex (DSV) and trailing edge
vortex (TEV). The results indicated that about 2–5% of the chord is the best location for jet. This location is near the place
where the leading edge vortex is formed. Aerodynamic performance improved better when the jet angle was in the range of
55°–70°. Although the jet momentum coefficient was not maximized, jet-opening length and blowing velocity magnitude
converged to their maximum values quickly.
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Average of aerodynamic Performance over one

period
P Pressure
Re Reynolds number
S Area
Sjet Jet blowing area
Ujet Jet velocity amplitude
U∞ Free stream velocity
V Velocity
α Angle of attack
α0 Initial angle of attack
β Jet angle with respect to airfoil surface
θ Jet angle with respect to chord Line
μ Dynamic viscosity
μt Eddy viscosity
k Turbulence kinetic energy
ρ Density
τ Surface stress
ω Turbulence frequency length scale
Pk Production of turbulence
F1 Blending function
ϕ Transport coefficients
p∗ A guessed pressure field
J ∗
f Face flux

p∗
c0, p

∗
c1 The pressures within two cells on either side of

the face
d f Function of linearized coefficients for normal

velocities
p

′
Cell pressure correction.

ap Linearized coefficients for cell pressure correc-
tion

anp Normal cell pressure correction
b Source term and is the net flow rate into the cell
A f Area of face
εN Numerical uncertainty
εI Iterative convergence uncertainty
εG Grid-spacing uncertainty
εT Time-step uncertainty
rG Refinement ratio
�S32, �S21 Variation of the simulation results for different

cases and is
RG Convergence ratio

1 Introduction

Wind turbines convert wind energy into mechanical energy
and then into electricity. This energy has great potential
to promote sustainable and low-carbon energy. Therefore,
improving the performance of wind turbines is of great
importance. Dynamic stall is one of the common phenomena

that happens inwind turbines [1].Dynamic stall is a nonlinear
unsteady aerodynamic phenomenondue to the rapidly chang-
ing angle of attack. Although it delays the stall compared to
the static case, with the passage of the dynamic stall vortex
from the trailing edge, the lift drastically decreases, and the
stall occurs. Many experimental and numerical studies have
been done on the physical perception of the dynamic stall and
the effect of oscillation frequency [2–5]. Pruski and Bowerso
[6] experimentally investigated the leading-edge flow struc-
ture of theNACA0012 airfoil under dynamic stall conditions.
They showed that the leading-edge vortex acted as a mech-
anism of momentum exchange. They also realized that the
flow of the leading edge region remained attached above the
static stall angle during the upstroke motion. In contrast, the
flow separation remained on the downstroke until past the
static stall angle.

Lee and Gerontakos [7] studied stall events on an oscillat-
ing NACA0012 airfoil experimentally at Re � 1.35 × 105.
They reported on sequences of boundary-layer events before,
during, and after the stall. They expressed that the sequence
for the deep dynamic stall includes upward spread of flow
reversal, turbulent breakdown, and the formation of leading
edge vortex (LEV), LEV growth and rearward convection,
LEV catastrophic detachment, separated flow, and rear-
ward reattachment. Wang et al. [8] numerically perused the
dynamic stall phenomenon of an oscillation NACA0012 air-
foil at the low Reynolds number. They applied two URANS
models, namely the standard k−ω model and the SST k−ω

model with transition for their simulation. They showed that
SST k-ω model could predict the experimental data with
reasonable accuracy other than at very high angles of attack
where the flow is fully detached and the 3D effect is expected
to be more significant. Visbal and Garmann [9] analyzed the
onset of unsteady separation and dynamic stall vortex for-
mation over a pitching NACA 0012 airfoil section. They
described the unsteady boundary-layer behavior that pre-
cedes the dynamic stall vortex formation in detail. They
found that the laminar separation bubble (LSB) is critical
in initiating the events culminating in dynamic stall vor-
tex (DSV) formation. In another work, Visbal and Garmann
[10] surveyed the impact of moderate sweep on the dynamic
stall of a pitching NACA0012 section. They reported that
the dynamic stall vortex evolves into an arch-type structure
that is shed following its transformation into a ring vortex.
Benton and Visbal [11] studied the dynamic stall of a pitch-
ing NACA 0012 airfoil at Re � 1 × 106. They indicated
for the first time that a small LEV structure was generated
due to turbulent-separation-induced bursting of a small LSB.
The dynamic stall is common in horizontal and vertical axis
wind turbines,whichmay cause unsteadyperformance, blade
dynamic loads or faults in blade structure. Therefore, many
authors have investigated this phenomenon with a wind tur-
bine approach. Their target was to explore the influence of

123



Arabian Journal for Science and Engineering (2024) 49:1771–1795 1773

parameters such as the geometry of the Gurney flap [12],
leading-edge slat [13, 14], high reduced frequencies of pitch-
ing motion [15], wake dynamics modeling of floating [16],
airfoil maximum thicknesses [17] and entropy analysis [18]
on the wind turbine blade.

In summary, studies of the dynamic stall phenomenon
indicated that the drag force intensively increases near the
angle of the dynamic stall while the lift force is reduced
drastically. Therefore, studies have been performed on delay-
ing separation and preventing dynamic stall from improving
wind turbine performance. Two general flow control mech-
anisms are utilized for this purpose: passive and active flow
controls. The pulsating blowing jet [19], steady blowing jet
[20, 21], tangential synthetic jet [22, 23], airfoil surfacemod-
ification [24], leading-edge rod [25], steady suction jet [26],
discharge plasma actuator [27, 28], the leading-edge tuber-
cles [29] are samples of flow controls that have been used in
researcher studies. Among the studies that have been done
on the blowing jet actuator, the following can be mentioned.
Müller et al. [20] experimentally perused the influence of
steady blowing in the dynamic stall of a NACA0018 airfoil.
They put the jet slot near the leading edge and at mid-chord.
They deduced that constant blowing at the 5% chord was
more effective than blowing at the mid-chord. They also
indicated that the blowing slot has the potential as a tool
for load control on wind turbine blades. Tadjfar and Asgari
[21] numerically investigated the effect of a steady tangen-
tial blowing jet in the dynamic stall of a NACA0012 airfoil at
high Reynolds. They analyzed the effect of jet slot location.
They significantly improved the lift and drag coefficient by
placing a blowing jet near the leading-edge vortex. Tadjfar
and Asgari [22] also numerically studied the role of the exci-
tation frequency of a tangential synthetic jet actuator on the
dynamic stall of a NACA0012 airfoil and showed that the
synched frequency case with phase 180 was the best in all
controlled cases. Jaburi and feszty [24] numerically perused
passive flow control based on modifying the airfoil surface
in the dynamic stall of a NACA0012 airfoil. They showed
that the upper surface modifications could reduce the nega-
tive impact of dynamic stall better than the lower surface.
Using a leading-edge rod, Zhong et al. [25] numerically
surveyed the passive flow control for a NACA0018 airfoil
dynamic stall. They concluded that the diameter of the rod
and the gap between the rod and the leading edge are criti-
cal parameters for improving the performance of the airfoil.
Rezaeiha et al. [26] numerically implemented an active flow
control mechanism for the power enhancement of a wind
turbine. They found that suction location is an important
parameter for controlling when the amplitude is sufficient
and comprehended that the optimal location jet is sensitive
to the Reynolds number. Yu and Zeng [27] numerically ana-
lyzed a barrier discharge plasma actuator for the control flow
of a NACA0015 airfoil dynamic stall. They realized that a

nanosecond plasma actuator is better than other controller
means because of the thermal convection characteristic par-
ticular of the nanosecond plasma actuator. Guoqiang and
Shihe [28] investigated flow control for the dynamic stall
of wind turbine airfoils. They understood that flow control is
influenced by the two unsteady control parameters, includ-
ing pulse frequency and duty cycle. They concluded that
unsteady pulse flow control saves energy consumption and
improves the aerodynamic coefficient better than continuous
flow control. Hrynuk and Bohl [29] experimentally imple-
mented the leading-edge tubercles on the dynamic stall of
a NACA0012 airfoil as a passive flow control mechanism.
Their idea for control flow is based on the flippers of hump-
back whales. They showed that the dynamic stall vortex for
the modified airfoil was stronger and remained closer to the
airfoil.

Optimization is utilized to find the best value of variables
so that the performance function is maximized. Many stud-
ies have been done on optimizing the flow control parameter
[30–35]. All studies related to flow control optimization have
paid attention to the static stall. Optimization of the synthetic
jet actuator [30, 33], aerodynamic shape and [31, 34], vor-
tex generator [32], blowing and suction jets [35, 36], and
blown flap [37] parameters are the studies samples in the
static stall of an airfoil. Duvigneau and Visonneau [30] opti-
mized the frequency, the angle with respect to the wall and
the velocity amplitude of a synthetic jet actuator in the static
stall of a NACA0015 airfoil using the derivative-free multi-
directional search algorithm of Torczon. This algorithm is
inspired by the Nelder–Mead simplex method. Fouatih et al.
[32] investigated the optimization of passive flow control on
the static stall of a NACA4415 airfoil experimentally. They
considered five geometrical parameters: the vortex genera-
tor’s thickness and height, orientation angle, position and
spacing in the spanwise direction. They demonstrated that
the triangular shape vortex generator could control boundary
layer separation better than other shapes. They used a ran-
dom search to optimize their parameters. Duvigneau et al.
[33] obtained the optimization results for active flow control
over the backward step. They used the RANS model, con-
sidered the amplitude and frequency of actuation as design
parameters, and minimized length separation for the objec-
tive function. Their optimization method was based on the
construction of Gaussian Process models. Kamari et al.
[35] investigated the parameters of blowing and suction jets
applied on the static stall of an SD7003 airfoil. They consid-
ered lift to drag ratio as the objective function. Their study
chose the location, opening length, velocity, and angle of the
jet as design parameters and used the genetic algorithm cou-
pled with an artificial neural network for their optimization.
They found that suction was more effective than blowing
for the control flow. Nair et al. [36] developed a model-free
flow characterization technique and optimized cluster-based
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feedback control. They implemented this model for the
post-static stall of NACA0012. They partitioned the flow
trajectories into clusters and minimized power consumption
for each cluster state using iterative evaluation and down-
hill simplex search. They used simplex search algorithm,
a gradient-free multidimensional unconstrained optimiza-
tion technique. Yuhui and Yufei [37] numerically studied a
new configuration of an internally blown flap. They utilized
tirobjective optimization to cover the large lift, small drag,
and enough robustness for high-lift devices. They adopted
a hybrid surrogate-aided differential evolution for optimiza-
tion. Gautier et al. [38] applied machine learning to design
optimum closed-loop separation control. They experimen-
tally reduced the backward-facing step flow recirculation
zone by a slotted jet. In their study, optimization concern-
ing objective function based on minimizing the recirculation
area and penalizing the actuation was feedback control law.
Genetic programming was used for this optimization and
to obtain the function of the jet. Li et al. [39] experimen-
tally investigated open and closed loop control for drag
reduction in a car model. They used a pulse jet for active
flow control and applied genetic programming as the control
strategy. They showed that the feedback actuation emulates
periodic high-frequency forcing. Tadjfar and Kamari [40]
optimized the parameter of a synthetic jet to prevent a static
stall of an SD7003 airfoil by genetic algorithm and neu-
ral network. They selected aerodynamic performance on a
period of the synthetic jet as the objective function. They
adopted the genetic algorithm coupled with an artificial neu-
ral network for their optimization. They found that when
the nondimensional frequency was increased, the separation
onset was moved further downstream on the airfoil’s upper
surface. Several methods have been developed for optimiza-
tion; classical methods like Newtonian, heuristic approaches
like genetic algorithm (GA), ant colony, bee colony, and
particle swarm optimization algorithms. The use of com-
putational intelligence technics in the optimization process
has attracted the attention of researchers [38–40]. Among
the various methods used in this category, we can mention
genetic algorithms, neural networks [35, 40], and genetic
programming [38, 39]. Classical methods are generally gra-
dient based and have very good convergence speed in the
continuous domain. In contrast, heuristic methods are pow-
erful and robust in continuous anddisperseddomains because
they depend on the objective function and not on derivatives.
Simplex is a popular algorithm for linear programming and is
ineffective for nonlinear.A random search costs a lot andmay
not reach the optimal value. Evolutionary algorithms such
as genetic algorithms, genetic programming, or ant colony
require much time and computational cost to reach the opti-
mal solution. The coupling technique of neural networks and
genetic algorithms allows optimal values with a reasonable
number of simulations. The authors’ previous study [41]

discussed the effect of the jet angle on liquid spraying in
transverse gas. The authors showed that liquid jet injection
at different angles affects the spray parameters, including the
jet trajectory and breakup length. Also, the authors discussed
the effect of selecting the functional parameters of the loca-
tion, opening length, angle and speed of the blowing and
suction jets in other studies [42, 43]. They showed that if any
of the parameters are not selected correctly, the performance
of the control jet will be greatly reduced. The previous stud-
ies concentrated on the effects of one or two flow parameters
of blowing during flow control under the dynamic stall. In
the present work, however, we were interested in finding the
optimum combination of many flow parameters in a blowing
jet flow control system.

The literature survey on pitching airfoils under deep
dynamic stall conditions shows the need to determine the
optimal blowing jet parameters to reach maximum effi-
ciency.Considering the optimal selection importance of these
parameters, the optimization of the blower jet has been dis-
cussed in this study. The main aim of this study is to find
the optimum value for the operational parameters of a blow-
ing jet in an oscillating airfoil. In this study, blowing jet
parameters are optimized for the first time on a wind tur-
bine airfoil under dynamic stall condition. Two-dimensional
computation fluid dynamic was utilized for this investiga-
tion because the two-dimensional simulation of URANS
gives acceptable results for dynamic stall and can capture
the main structure flow and vortexes [15]. There are many
optimization methods. The genetic algorithm was used in
this study. This population-based algorithm can easily escape
local optimums and converge to global optimum values. The
neural network was employed to decrease the number of
simulations and was trained with an online strategy. After
learning, they could estimate aerodynamic coefficients with
high accuracy. This study proposes a technique for optimiz-
ing the dynamic stall’s transient phenomenon. The objective
function for this phenomenon was considered an average of
the aerodynamic performance over a period. The optimal
case results are compared with uncontrolled and other con-
trolled cases. These comparisons include hysteresis curves of
aerodynamic loadings Cl and Cd , performance coefficient,
vorticity and velocity contours, pressure coefficient distribu-
tion and streamlines.

2 Numerical Method

2.1 Governing Equations

Unsteady Reynolds averaged Navier–Stokes (URANS)
equations were utilized in this study. Air was considered an
incompressible and Newtonian fluid. Thus, the mass conser-
vation equation is as follows:

123



Arabian Journal for Science and Engineering (2024) 49:1771–1795 1775

∂u

∂x
+

∂v

∂y
� 0 (1)

Considering that V � (u, v), so linear momentum con-
servation equations can be written as below:

∂V i

∂t
+ V j
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ρ

∂P

∂xi
+
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2μei j − ρV
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In this equation, ei j is the strain tensor and is determined
from the following relation:

ei j � 1

2

(
∂V j

∂x i
+

∂V i

∂x j

)
(3)

According to the Boussinesq assumption, the Reynolds
stress can be obtained from the following equation:

τi j � −ρV
′
i V

′
j � 2μt ei j − 2

3
ρkδi j (4)

where μt is the eddy viscosity, k is the mechanical energy
of turbulence, and δi j is the kronecker delta. In dynamic
stall conditions, k−ωSST model performs better than other
turbulence models and its results are accurate enough for
simulation. In this model, two equations of turbulent kinetic
energy and specific dissipation rate are added to the system
of equations for eddy viscosity modeling as follows:

∂k

∂t
+ V j

∂k

∂x j
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ρ∂x j

[
(μ + σkμt )

∂k
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ω

∂k
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∂ω

∂x j
− βω2

F1, Pk , α, β, β∗, S, σk ,σω2 and σω are closure parameters.
Pk and F1 are the production of turbulence and the blend-
ing function, respectively. F1 is obtained from the following
equation:

F1 � tanh

{
min

[
max

( √
k

β∗ωd
,
500υ

ωd2

)
,
4ρσω2k

CDkωd2

]}
(7)

The coefficients of the transport equations (σk , σω,
αandβ) are calculated based on the coefficients of k − ω

and k − ε equations from the following relation:

ϕ � F1ϕ1 + (1 − F2)ϕ2 (8)

where ϕ represents the transport coefficients and subscripts
1 and 2 show that the parameter is related to k −ω and k − ε

models, respectively. Eddy viscosity is:

μt � 0.31α∗

max(0.31ω, F2)
k (9)

where

F2 � tanh

⎧
⎨
⎩

[
max

(
2
√
k

β∗ωd
,
500υ

ωd2

)]2
⎫
⎬
⎭ (10)

With a1, α∗ and β∗ are constant coefficients that are
obtained from the k-ω model and d is the distance to the
nearest surface.

In this study, a second-order two-dimension finite volume
method was applied and SIMPLE algorithm was utilized for
coupling pressure–velocity [21]. URNAS models modeled
the turbulent property. The k–ω SST was used because of
reported accuracy in previous studies [44]. The discretiza-
tion method adopts the second-order upwind scheme. The
internal iteration of 20 iterations each time was selected. The
simulation convergence was checked by monitoring residu-
als less than 10−6.

TheSIMPLEalgorithmuses a relationship between veloc-
ity and pressure corrections to enforce mass conservation
and to obtain the pressure field. If the momentum equation is
solved with a guessed pressure field (p∗), the resulting face
flux (J ∗

f ), computed from discretization of the Continuity
Equation as:

J ∗
f � Ĵ f

∗
+ d f

(
p∗
c0 − p∗

c1

)
(11)

That p∗
c0,p

∗
c1 are the pressures within two cells on either

side of the face. Ĵ f
∗
contains the influence of velocities in

these cells. The termd f is a function of linearized coefficients
for normal velocities (the average momentum equation coef-
ficients for the cells on either side of the face).This equation
does not satisfy the continuity equation. Consequently, a cor-
rection (J

′
f ) is added to the face flux (J f ):

J f � J ∗
f + J

′
f (12)

So that the corrected face flux satisfies the continuity equa-
tion. The SIMPLE algorithm postulates that J

′
f bewritten as:

J
′
f � Ĵ

′
f + d f

(
p

′
c0 − p

′
c1

)
(13)

where p
′
is the cell pressure correction. The SIMPLE algo-

rithm substitutes the flux correction equations [Eqs. (12) and
(13)] into the discrete continuity equation to obtain a discrete
equation for the pressure correction p

′
in the cell:

ap p
′ �

∑
nb

anp p
′
nb + b (14)
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Fig. 1 The schematic of the
pitching airfoil

where ap and anp are linearized coefficients for cell pressure
correction and normal cell pressure correction, respectively.
b is the source term and is the net flow rate into the cell:

b �
Nfaces∑

f

J ∗
f A f (15)

That A f is the area of face.

2.2 Simulation Set-Up

A pitching NACA0012 airfoil at Reynolds 1.35 × 105 was
selected to optimize the operational parameters of a blowing
jet. The airfoil oscillated sinusoidal motion between AOA of
− 5° and 25°. The center of oscillations is about its quarter-
chord [7]. The equation of motion is:

α � α0 + A sin(2π f t) (16)

In Eq. (16), α0 and A have values of 10° and 15°. The
reduced frequency is equal to k � 0.1. With this movement,
the airfoil experiences a deep dynamic stall. The schematic
of the pitching airfoil is presented in Fig. 1.

The momentum coefficient for a blowing jet case is defin-
ing as below:

Cμ � Sjet
S

×
(
Ujetsin(β)

)2
0.5 ×U 2∞

(17)

That Sjet and β are the opening length and angle of the
blowing jet, respectively. The angle used in defining the
momentum coefficient of a blowing jet is presented in Fig. 2.

Fig. 2 Definition of the blowing jet angles

2.3 Computational Domain and Boundary
Conditions

A structured O-type mesh was generated. The computational
domain on each side was considered 19 times the length
of the chord. This distance is sufficient to ensure that the
entrance conditions did not affect the values of the aerody-
namic coefficients. Free stream velocity was assigned to the
inlet boundary. No-slip boundary condition was imposed on
the pitching airfoil surface. The mesh was divided into three
zones; the first two zones moved based on Eq. (1) as dynamic
mesh parts. The computational domain, zones of the domain
and the mesh in the leading and trailing edges vicinity are
shown in Fig. 3.
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Fig. 3 a Computational domain b Zone of the computational domain c Grid in the vicinity of the leading and trailing edges

2.4 Numerical Verification

According to Tadjfar and Asgari’s [21] study, two separate
time scales were considered for time resolution: one was
the time scale of vortex shedding moving past the airfoil(
t
′
1 � c

U ∞
)
and another was the time scale of the airfoil

oscillation
(
t
′
2 � 1

f

)
. We define the minimum of these two

time scales as t
′(
t
′ � min

(
t
′
1, t

′
2

))
. After several trials, it

was found that the time-step size of �t � t
′

110 is sufficient
for this unsteady simulation. To ensure that this time stepwas
sufficient and check the independence of simulation to time

step choice, we also considered �t � t
′

220 .No differences
between their results were observed. The time step size effect
on aerodynamic coefficients is presented in Fig. 4.

The grid resolution study in both directionswas performed
to verify that the final grid was adequate. The final grid con-
tains the total cell number of 203,000 for the baseline flow.
The results of the grid resolution study on the aerodynamic
coefficients are presented in Fig. 5. �y+ values were below
1 over most zones of the airfoil surface, and the maximum
value of it was 3.

Stern et al. [45] indicated that numerical uncertainty
(εN ) consists of iterative convergence uncertainty (εI ), grid-
spacing uncertainty (εG) and time-step uncertainty (εT ).
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Fig. 4 Impact of time-step size on a the lift coefficient b the drag coefficient

Fig. 5 Impact of grid size on a the lift coefficient b the drag coefficient

Therefore, we have:

εN �
√

ε2I + ε2G + ε2T (18)

Enshaei [46] expressed that the uncertainty of εI is neg-
ligible. However, the grid spacing and time step were major
sources of uncertainty investigated here for pitch airfoil. The
simulation results for the various cases ofmesh or time refine-
ment including, coarse (S3), medium (S2) and fine (S1) with
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Table 1 Uncertainty analysis
Grid spacing uncertainty

rG S1 S2 S3 RG εG(%)

√
2 2.475 2.488 2.511 0.579 2.126

Time step uncertainty

rG S1 S2 S3 RG εT (%)

2 2.469 2.511 2.785 0.156 2.053

a refinement ratio rG are calculated by the following equa-
tions:

⎧⎪⎨
⎪⎩

�S32 � S3 − S2
�S21 � S2 − S1
RG � �S21/�S32

(19)

where �S32, �S21 are the variation of the simulation results
for different cases and RG is the convergence ratio. Jin et al.
[47, 48] referred to the method for grid spacing and time
step uncertainty analysis. The uncertainties are calculated
and presented in Table 1 using the method mentioned in
their study. For more details on the calculation, see Jin et al.
[48]. Three grids of 203, 400 and 744 thousand were used in
t∗/110 time step to analyze the mesh uncertainty. The ratio
of the average lift to drag coefficient in a period of motion
was considered the investigated quantity due to the unsteady
flow. In the time step size uncertainty, the mesh was fixed
and equal to 203 thousand. Three time steps t∗/65,t∗/110
and t∗/220 were considered for analysis. According to the
table, the uncertainty of grid spacing and the time step is
2.126% and 2.053%, respectively. Therefore, the numerical
uncertainty is equal to 2.955%.

2.5 Numerical Validation

Our numerical results were evaluated with the experimental
result of Lee and Gerontakos [7] and the numerical data of
Gharali et al. [49] for validation. These comparisons are pre-
sented in Fig. 6. In this figure, hysteresis curves ofCl andCd

with respect to AOA are shown. According to the figure, our
simulation predictsCl relatively well and slightly better than
the numerical simulation of Gharali et al. [49] in upstroke
movement. However, there are oscillations in our simula-
tion during the downstroke motion that are absent in the
experiments. These oscillations are reported and explained
in other studies such as Tadjfar and Asgari [21] and Ghar-
ali et al. [49]. After the dynamic stall vortex separation and
the start of vortex shedding, we face a very complex flow.
This complex flow physics reduces the accuracy of the sim-
ulation. Therefore, the physics of the flow is so complicated

that the URANS approach cannot capture all the phenomena
and only reveals the general structures. In addition, usually
in experimental research, averaging is done in the structures
and eddies, which is the main reason for the smoothness
of the experimental results in downward movement. Even
large eddy simulation approaches perform poorly when the
airfoil comes to dynamic stall conditions and have similar
disparities. So, our result is similar to previously reported
numerical data at the qualitative and quantitative levels and
matches the experimental result. Analogous interpretations
can be expressed for the Cd hysteresis.

3 Optimization

3.1 DesignVariables

This study aimed to find the optimum value for the opera-
tional parameters of the blowing jet. So, the jet parameters
were considered as the design parameters. The number of
design parameters affects the computational cost. If the num-
bers are too many, the computational costs significantly
increase. According to Kamari et al. [35] research, the design
variables were chosen in this study. These parameters are jet
location, jet opening length, velocity, and angle of jet. Perus-
ing the researchers’ paper and investigating the upper and
lower bounds of design parameters in their study, we consid-
ered the upper and lower bounds of the variables according
to Table 2.

3.2 OptimizationMethodology and Objective
Function

In this study, machine learning flow control (MLFC) is used.
MLFC is a branch of flow control that solves the opti-
mization problem by utilizing machine learning techniques.
MLFC has four types: flow control parameter identifica-
tion such as genetic algorithm (GA), flow control design as
a first-kind regression problem for instance artificial neu-
ral network (ANN), flow control design as a second-kind
regression problem for example genetic Programming (GP),
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Fig. 6 Hysteresis curve of a the lift coefficient b the drag coefficient

Table 2 Design variable bounds
Variable Jet location(%c) Jet-opening length

(%c)
Jet velocity ratio(
Uj max
U∞

) Blowing flow angle
(deg)

Range 1–60 0.05–0.3 0–5 0–180

and reinforcement learning flow control. This classification
is summarized in Fig. 7. The first type is applied when
the structure of the flow control parameter is specified,
but the parameters are unknown. When it is necessary to
approximate a general nonlinear mapping from flow control
parameters to system output, the second type of MLFC is
utilized. If we want to optimize the flow control parameter
without available mapping and law structure of parameters,
wemust use the third type ofMLFC.This type optimizes only
based on the flow control performance (cost function) with
different structures of flowcontrol parameters thatmake them
themselves. The last type implements the semi-supervised
method. The flow control law is continually updated over
control performance changes (rewards) using reinforcement
learning. In this study, GA was applied as the optimization
flow control parameter and ANN to decrease computational
costs.

Our optimization methodology is presented in Fig. 8. Ini-
tially, 50 CFD cases are prepared as the initial database.
Then, ANNs trained to find the relation between the oper-
ational parameters of the jet and the objective function. This
training is kept on until the criteria of regression are satis-
fied. These ANNs are coupled with GA to find the optimum
values of parameters. The GA utilizes networks to evaluate

individuals. In other words, the GA determines the value of
the objective function for cases with different design parame-
ters using networks. After converging GA, the optimum case
is simulated and compared with the result of the GA. For this
purpose, based on the optimal parameters, the airfoil with
the optimal jet automatically meshes and is numerically sim-
ulated. After CFD convergence, the value of the mean drag
and lift coefficients are obtained, and the objective function
is determined based on them. If optimization convergence
criteria are satisfied, the algorithm stops. Otherwise, these
data add to the database and repeat for a new case.

The objective function is one of the main and effec-
tive parameters in the optimization method. Finding the jet
parameters to maximize aerodynamic performance (lift to
drag ratio) is the ultimate purpose of this optimization. In
this study, we must consider the objective function in such
a way that the function considers the time effect due to the
unsteady flow. Therefore, the objective function was chosen
minimization of the mean drag coefficient to the mean lift
coefficient ratio that is defining as below:

Objective function � Cd

Cl
�

1
T

∫
T Cddt

1
T

∫
T Cldt

�
∑N

i�1 Cdi∑N
i�1 Cli

(20)
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Fig. 7 Machine learning control
classification

Fig.8 Scheme of optimization methodology
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Table 3 The property of GA

Criteria Function/value Criteria Function/value

Population
size

800 Crossover
fraction

0.8

Number of
genera-
tion

150 Crossover
method

Constraint
dependent

Fitness
scaling

Rank Mutation Constraint
dependent

Selection Stochastic
Uniform

Reproduction
Elite

Count 5% of
population

In this relation, T is the time of periodicity and N is the
number of time steps in a period.

3.3 Genetic Algorithm

The genetic algorithm is ameta-heuristic algorithm that orig-
inated fromDarwin’s theory and canfindoptimal valueswell.
One of the important capabilities of GA is to escape from
local optimums and converge to the global optimum. This
population-based algorithm uses an initial population as the
initial generation of individuals and tries to create the next
generation in such a way that they are better in terms of the
objective function. The criterion of evaluation and compe-
tence of individuals is the same as the objective function.
It applies selection, transmission, crossover and mutation in
individuals and their genes. The general process of the GA
is presented in Algorithm 1.

For each calculation of the objective function, a simula-
tion should be performed. It was not possible in terms of
computational cost. The number of the required simulations
was decreased by utilizing the neural network to obtain the
objective function. The three main operations in the genetic
algorithm are selection, crossover, and mutation. Selection is

used to choose parents that produce offspring and the popu-
lation for the next generation. Crossover is utilized to convert
two-parent genes into offspring genes. The mutation is a ran-
dom natural error that causes a change in the offspring’s
genes. The two main parameters that greatly impact finding
the correct optimal point are the population of each genera-
tion and the number of generations.Mutationmakes amargin
of confidence, so the algorithm does not get stuck in the local
minimum. Since the neural networks are coupled with it, the
calculations for the convergence of the genetic algorithm are
not very time-consuming. The properties of GA that were
used are given in Table 3.

3.4 Artificial Neural Network

Artificial neural networks derived from the human brain
have become a powerful tool for machine learning. These
tools have provided acceptable results in machine learn-
ing, whether supervised, semi-supervised or unsupervised.
Therefore, we applied the artificial neural network in this
study for function approximation and regression. These net-
works aremadeupof units called neurons,which alone donot
have much ability, but a network of them has a remarkable
ability to learn. Each neuron receives inputs and produces
outputs. From a mathematical point of view, each neuron
collects the inputs based on its weights, and if it exceeds a
limit activation, it produces the output as a function of the
inputs, weights and activation. Learning aims to correctly
determine the value of weights and the activation threshold
of neurons to bring the desired input to the desired output. An

iterative algorithm determines these parameters. The general
algorithm of the learning process in artificial neural networks
is presented in Algorithm 2. A neural network consists of at
least three input, hidden and output layers. When the number
of hidden layers ismore than one, we are facedwith networks
that are called deep neural networks (DNNs). This network’s
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learning process consists of forward feeding and backward
propagation. In the forward section, values of weights are
easily determined based on the inputs, and this step ends
with the determination of the outputs. The backward prop-
agation step compares the network outputs with the desired
outputs. Based on Algorithm 3, the error is propagated from
output layer neurons to the other layer’s neurons, and the
weights are updated. This process is performed for all the
training data. The termination condition is that the training
data’s network output errors are minimal.

Two neural networks were trained, one for the relation
between jet parameters and the mean of lift coefficient over
a period and the other for the relation between jet parameters
and the mean of drag coefficient over a period. Because our
problem was a regression and function approximation, the

multilayer perceptron (MLP) neural network was used. This
type of network is supervised learning-based, so it requires
initial and labeled data for training. An initial database con-
taining 50 simulation samples has been prepared. In our
study, these networks have been online trained. It means
the networks are retrained each time the optimal values are
obtained from GA and simulation is done. This online train-
ing method is also named active learning. The utilized neural
network architecture is presented in Fig. 9, and the property
of these networks is given in Table 4.

4 Results and Discussion

In this study, the dynamic stall of the airfoil and its separation
were controlled by a machine-learning controller mecha-
nism. For this work, the blowing jet with optimal operational
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Fig. 9 Architecture of Artificial Neural Networks

Table 4 The property of ANN
Criteria Function/value Criteria Function/value

Feeding method Feed forward Training algorithm Levenberg–Marquardt

Convergence criteria 1e-15 Performance Mean squared error

Data Division Random Output function Linear function

Neuron activation
function

Sigmoid Number of layers and
neurons

4 layers and 3 neurons in
each layer

parameters was used. To find the optimal point correctly, we
ensured that every part of our methodology did its tasks cor-
rectly. Therefore, the result of each part of the algorithm was
checked. The algorithm converged after almost 115 simu-
lations (with initial data). The ANNs in the last simulation
were able to predict the input data with 92% and 93% regres-
sion coefficients for average drag and lift coefficient values
in terms of the operational parameters of the jet, respectively.
The comparison of the predicted and input data is presented
in Fig. 10. This figure shows that ANNs were trained well
and could make acceptable predictions of the mean lift and
drag coefficients with given inputs (design variables). GA
was coupled with these ANNs and got the fitness function
for each individual quickly from these networks. Figure 11
presents the convergence of the genetic algorithm.According
to this figure, each generation’s population and the number of
generations were sufficient because, as it can be seen, from
the 40th generation, the average and the best fitness of each
generation are almost equal. It should be noted that each case
of this simulation with the Intel(R) Core(TM) i7-4790 CPU
series system took about one day, and the entire optimization
process (115 Cases) took about 115 days.

Variation of design parameter versus optimization loop
iteration is plotted in Fig. 12. The first fifty iterations are ini-
tial data picked randomly. As presented in Fig. 12a, the jet’s
location is beginning to converge to the optimal value from
iteration 80 and the range of optimal location is between 2 and
5% chords. There is a range for the optimal location because
the angle of the jet can change. We found that the area and
velocity of the jet have a great effect on improving aerody-
namic performance and they converge to the upper bound.
According to Eq. (17), these parameters want to maximize
the jet momentum coefficient. Variations of velocity and area
of the jet can be seen in Fig. 12b and c, respectively. As can be
observed, these parameters quickly converged to their upper
limit values. In Fig. 12b for jet opening length, data fluctuate
between two values. The reason for the fluctuation between
the upper and lower limit in the opening length variable is
the change in the jet angle. However, after this parameter has
converged, the opening length has also converged to its max-
imum. The bigger the opening, the better the performance
of the flow controller. Nevertheless, the energy consumption
will be high and the existence of the jet will be economi-
cally and technically unjustifiable. Therefore, a reasonable
upper limit should be chosen, which has been discussed in
detail byKamari et al. [35]’s study.The convergencebehavior
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Fig. 10 ANNs’ data for a the
average of lift and b the drag
coefficient

Fig. 11 Convergence of the genetic algorithm
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Fig. 12 Variation of design parameter versus optimization loop iteration
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Table 5 Specifications of jets in Fig. 13

Case A Case B Case C

Jet location (%c) 2.663 2.630 12.960

Jet opening-length (%c) 0.300 0.050 0.171

Jet velocity ratio
(
Ujet
U∞

)
5.00 1.890 4.883

θ(deg) 68.088 126.781 68.732

β(deg) 43.406 101.930 61.593

Cμ(%) 7.100 0.344 6.330

and variations of the blowing jet angle relative to the chord
axis (θ ) and relative to the local surface (β) are presented
in Fig. 12d and e, respectively. According to the figures, a
wide range can consider for the optimal jet angle. This phe-
nomenon was seen in the optimization method of Kamari
et al. [40] for the static stall of an airfoil. This phenomenon
is because the algorithm earns almost the same objective
function value for all angles in this range and the objective
function does not separate these values well. Hence, the algo-
rithm converges to one of these values each time. It should
be noted that in such cases, the performance of the jet is out-
standing and similar. The range of optimal value for jet angle
relative to the chord axis is 55°–70° and relative to the local
surface is 30°–45°. According to Eq. (17), this range of angle
makes the jet momentum coefficient not maximize. There-
fore, the jetmomentumcoefficient is unnecessary to converge
to the upper band for the optimal blowing jet. Figure 12f also
indicates this issue.

Mean aerodynamic performance versus the design param-
eter is presented in Fig. 13. As can be seen, the aerodynamic
performance changes at a constant value of the design param-
eter and there is a large functional difference in the optimal
location and momentum ratio range. Therefore, two jets with
approximately similar locations with different performance
coefficients (Case A and B) and two jets with approximately
similar jetmomentum ratioswith different performance coef-
ficients (Case A and C) have been selected to investigate the
reason for this issue. These cases are represented in Fig. 13.
Since the parameters of simulations were stored in an excel
file, it is easy to find these cases and extract the relevant
jet parameters for them. The specifications of the jets are
presented in Table 5. Studies have shown that these drastic
changes occur due to the inadequacy of other design parame-
ters. The jet with the optimal momentum coefficient operates
improperly in flow control because of the unsuitable loca-
tion and the optimum location due to the inadequacy of the
parameters required for the jet momentum coefficient (angle,
opening length, and velocity of the blowing jet).

Presented in Fig. 14 are the distribution of the pressure
coefficient on the upper and lower surfaces of the airfoil for

the three cases examined in Table 5 and the uncontrolled case
over one pitching time cycle. The jet location is the same for
cases A and B, and the jet momentum coefficient is the same
for cases A and C. The flow has not separated much in the
uncontrolled case at t � 0, so the pressure distribution is the
same for the four cases. Only we observe a peak at the jet
location for the caseswith jets due to themomentum resulting
from the blowing jet. By moving toward t � T /2, the airfoil
locates at the angle of attack 25°, and the effect of the leading
edge in creating lift decreases so that the share of force gen-
eration near the trailing edge is higher than the leading edge
in the uncontrolled case. In the B and C cases, although the
production force caused by the part near the leading edge is
more than the trailing, the jet could not control the flow well
because the jet momentum coefficient is insufficient. In case
A, the negative level of the pressure coefficient diagram in
the suction surface is significantly increased near the leading
edge, which indicates that the flow is controlled and the lift
coefficient is increased. At time t � T /2, the airfoil is mov-
ing downwards at an angle of attack of 10°. The separation
is reduced and the flow begins to attach for the uncontrolled
case. In case B, we see an increase in the force at the trailing
edge at this time due to the delay and not the complete elim-
ination of the leading edge vortex, but the flow is controlled
in the other two cases. At the t � 3 T /4, the flow is fully
attached when the angle of attack is− 5. It can be seen in the
CP diagram of the uncontrolled. In other cases, the pressure
graphs are almost similar to the uncontrolled case and have
only shifted above near the jet location.

For better comprehension, the streamline of these cases
is shown in Fig. 15 for the angle of attack 25° in upstroke
motion. As can be observed, since case B does not have a
suitable jet momentum coefficient, the trailing-edged vortex
(TEV) is formed at angle of 25°. The dynamic stall occurs,
so the jet cannot control the flow. Its separation is significant
so that even the flow near the leading edge is completely
separated. For caseC,which can control the flow, the jet is not
in the right place, so it still cannot eliminate the separation of
the leading edge. Still, the flow remains attached almost to the
leading edge in case A. Therefore, performance is improved
significantly. In contrast, the separation occurs from trailing
and leading edges in case (d). Also, the LEV and TEV have
been formed, significantly increasing the drag coefficient and
decreasing the lift coefficient.

The boundary-layer velocity profiles are presented at dif-
ferent chordwise positions on the surface of the airfoil in
Fig. 16. Three cases indicated in Table 5 and the uncon-
trolled case over one pitching time cycle are selected for this
investigation. According to figure, there is not much differ-
ence between the velocity profiles at t � 0 for different cases
because there is slight separation. Only the velocity along
the x-axis has increased slightly at the beginning due to the
jet’s presence. As we move away from the leading edge,
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Fig. 13 Mean aerodynamic performance relative to a the jet location b the jet momentum coefficient

the other blowing jets’ (Case B and C) behavior becomes
closer to Case A jet. In the t � T /4, due to the proximity
to the dynamic stall angle, we see a lot of flow separation.
This separation in the uncontrolled case is accompanied by
a positive pressure gradient, which has caused the direction
of the velocity vectors to change against the free flow. The
better the performance of the blowing jet, the more this pres-
sure gradient is damped. We can see the disappearance of
the positive pressure gradient and no change in the direc-
tion of the velocity profile in the boundary layer in Case A
that the parameters of the jet have been well chosen. In the
t � T /2, we observe a positive pressure gradient, which has
caused the direction of the velocity vectors to change against
the free flow. This positive pressure gradient is due to the
shedding vortex under downward movement after a dynamic
stall. The blowing jets of Case B and C could not change
the pressure gradient, and their boundary layer profile at this
time is similar to the uncontrolled case, but Case A was able
to overcome this pressure. In time t � 3 T /4, we do not have
much separation. Therefore, the velocity boundary layer pro-
file of all the cases is similar. Only the velocity profile ismore
stretched toward the free flow in the cases with blowing jets
because of the increased momentum.

Several jets with different mean lift to drag ratios have
been selected to investigate the physics of the flow. The spec-
ifications of the jets are presented in Table 6. Case 3 was the
optimal case that existed in our database. The lift and drag
hysteresis for these jets are presented in Fig. 17. As can be

seen, case 1 is behaviorally and functionally very similar to
the uncontrolled case, which indicates that the jet parame-
ters were not selected correctly. Therefore, case 1 could not
control the flow properly. The two cases 2 and 3 are almost
the same behavior, and the jets were able to control the flow.
In case 1, the momentum coefficient is so low that the jet
is practically ineffective and this seems that there is no jet.
We already found that the momentum coefficient does not
need to maximize for the optimal case but should not be so
low that the jet loses its effect on flow. This low momentum
ratio jet caused the behavior of case 1 to be similar to the
uncontrolled case. Examining the characteristics of cases 2
and 3, we conclude that the difference between these two jets
is in the blowing angle. The sensitivity of the drag coefficient
to the jet angle variations is greater than the lift coefficient.
Therefore, the drag coefficient is the reason for the significant
difference in performance. At the upstroke motion in the lift
coefficient hysteresis, the two cases have the same behavior
and are only slightly different in the downward movement.

Vorticity contours for selected jets in Table 6 are presented
in Fig. 18. As can be seen, at the beginning of the movement
and the angle of attack 10° in upstroke movement, all jets act
the sameand like the uncontrolled case.There is nodifference
in their vorticity contour. Only the difference between two
cases 2 and 3 can be observed on the airfoil surface. The upper
part of the airfoil surface has positive vorticity due to the
blowing jet for cases 2 and 3, but this positive vorticity is not
visible in case 1 because the impact of the jet is low.With the
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Fig. 14 Distribution of pressure coefficient over one pitching time cycle for a Case A, b Case B, c Case C, d Uncontrolled

increasing angle and continued motion, the effect of the jets
becomes more evident. In cases 2 and 3, dynamic stall vortex
(DSV) is not seen at 20° in upstroke motion and most of
the flow is attached. However, DSV is forming and growing
in case 1. The turbulent separation vortex (TSV) is formed
simultaneously with the formation of LEV and downward
movement. By combining these two vortices, DSV is formed.
This final clockwise vortex, created from the combination of
two clockwise vortexes, moves downward and continues to
grow. Until it finally separates from the airfoil surface and

causes the dynamic stall. At the angle of 25° in upstroke
movement, dynamic stall occurred and DSV separated even
thoughTEVhad been formed in two cases (uncontrolled case
and case 1). Nevertheless, this has yet to happen for cases 2
and 3. In case 2, the flow was separated more than in case
3. This issue has caused more separation in the downstroke
movement for case 2 compared to case 3, while we see a deep
separation for another two cases (case 1 and uncontrolled
case). The flow is starting to attach to the airfoil surface by
decreasing the angle in downstroke movement for all cases.
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Fig. 15 Streamlines at the angle of attack 25 in upstroke motion for a Case A, b Case B, c Case C, d Uncontrolled

5 Conclusions

Machine learning flow control (MLFC) was utilized to find
the optimum operating parameters of active flow control in
a NACA0012 airfoil under dynamic stall conditions. Air-
foil pitched between angles of attack of − 5° and 25° with
sinusoidal movement. The sinusoidal motion of the airfoil
was about its quarter-chord. The genetic algorithm (GA)
was applied as the optimization method, and deep artifi-
cial neural networks (DANNs) were trained to predict the
objective function regarding the jet operational parameters.
Using machine learning caused the computational cost of

optimization to be reduced. The design variables of the jet
were considered, including location, opening length, velocity
and blowing angle. The ratio of the mean drag coefficient to

themean lift coefficient over a period of oscillation
(
Cd

Cl

)
was

chosen as the objective function. The optimized jet increased
the average aerodynamic performance by 4.717 times. This
improvement is associated with a decrease of 2.452 times
in the mean drag coefficient and an increase of 1.937 times
in the mean lift coefficient. The results showed that in the
optimal jet, the jet momentum coefficient is not maximum
while the velocity and opening length of the jet converged
to their upper band value. The jet location and angle do not
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Fig. 16 The boundary-layer velocity profiles at different chordwise positions on the surface of the airfoil over one for pitching time cycle a t � 0,
b t � T /4, c t � T /2, d t � 3 T /4

converge to a specific value, and an optimal range can be
considered. The optimal location is between 2 and 5% of the
chord, and the optimal blowing jet angle (θ ) is 55°–70°. The
optimal jet could improve the mean of the aerodynamic per-
formance significantly in comparison with the uncontrolled
case. The reason for the drastic change in these parameters
during the optimization process was studied by surveying the
impact of design parameters on the mean aerodynamic per-
formance. Results showed that these drastic changes occur

due to the inadequacy of other design parameters. Examina-
tion of the vorticity contour for the jets with different mean
performances revealed that suppression and postponement
of the LEV and DSV are the main factors for controlling the
flow of the dynamic stall. The optimal jet does not permit
LEV to be grown and postponed it. This action makes DSV,
a combination of LEV and TSV, not form. In addition, the
lack of a dynamic stall causes the non-formation of TEV.
Investigation of the hysteresis diagrams exhibited that the
effect of the jet is more visible in the downstroke flow and
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Table 6 Specification of the
selected jets Uncontrolled Case 1 Case 2 Case 3 (optimal case)

Jet location (%c) – 6.465 3.50 2.663

Jet opening-length (%c) – 0.300 0.300 0.300

Jet velocity ratio
(
Ujet
U∞

)
– 4.999 4.995 4.999

θ(deg) – 15.547 50.461 68.028

β(deg) – 1.532 29.351 43.406

Cμ(%) – 0.010 3.606 7.100

Cl avg 0.567 0.611 1.016 1.098

Cd avg 0.228 0.211 0.165 0.093

(L/D)avg 2.486 2.891 6.136 11.727

Fig. 17 Hysteresis curve of the a lift coefficient b drag coefficient

improves the coefficient of lift and drag significantly in the
downstroke.

Briefly, the following main results can be considered as
Remarks:

• The optimized jet increased the average aerodynamic per-
formance by 4.717 times.

• In the optimal jet, the jet momentum coefficient is not
maximum while the velocity and opening length of the jet
converge to their upper band value.

• The optimal location is between 2 and 5% of the chord and
the optimal blowing jet angle (θ ) is between 55° and 70°.

• Suppression and postponement of the LEV and DSV are
the main factors for controlling the flow of the dynamic
stall.

• The effect of the jet is more visible in the downstroke flow
and improves the coefficient of lift and drag significantly
in the downstroke.
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Fig. 18 Vorticity contours for specific jets
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