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Abstract
In this paper, a novel approach for improving the performance and robustness of the condition monitoring system in industrial
plants is presented. In the off-line stage of the proposal, the Pythagorean membership grade and its complement of a set of n
classification algorithms are used to build the rule-based decisions for obtaining an enhanced partition matrix, which allows
to improve the positioning of the center of the classes and data clustering. The use of Pythagorean fuzzy sets allow to obtain
a larger classification space, and then the robustness of the condition monitoring system with respect to noise and external
disturbances is improved. This represents a very powerful advantage in industrial plants, where process variables are affected
by such features. The proposal was proven using the kernel fuzzy C-means and Gustafson-Kessel algorithms on experimental
data sets and on the Tennessee Eastman process benchmark. The percentages of satisfactory classification obtained with the
proposal were greater than 90% inmost of the experiments. In all cases, the proposedmethodology significantly outperformed
the results obtained by other algorithms recently presented in the scientific literature.

Keywords Robust condition monitoring · Fuzzy clustering tools · Pythagorean membership grades · Industrial plants

1 Introduction

Currently, the industrial plants must maintain high levels of
quality and efficiency in their productions besides accom-
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plishing demanding regulations related to the environment
protection, and industrial reliability and safety [1–3]. It is
well-known that faults affect the availability of the industrial
systems and adversely influences the safety of the operators.
For these reasons, the modern industries have increasingly
incorporated condition monitoring systems for detecting and
locating faults [4–6].

In the scientific literature, the condition monitoring
schemes are sorted out in two main groups: model-based
[7–9], and data-driven methods [10, 11]. In the model-based
approach, the condition monitoring is supported on the gen-
eration of residuals produced by the difference between the
measured variables from the industrial plant and the variables
estimated by the model that simulates the operation of the
process. The effectiveness of these methods depends on the
quality of the model, which implies a high degree of knowl-
edge of the process by experts. However, the high complexity
of current industrial plants manifested by strongly nonlinear
behaviors of the variables and their relations makes that very
difficult to achieve [12]. The proposed solutions based on
data driven do not need such precise knowledge of the sys-
tem parameters, and the relationships among variables which
is an advantage in complex processes [13–16].
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A review of several strategies for condition monitoring
tasks in the last two decades, shows an important increase
in the use of fuzzy techniques [17–21]. The membership
grades are essential elements in the theory of fuzzy sets. Intu-
itionistic [22, 23] and interval-valued [24] fuzzy sets were
introduced to solve situations where the classical theory of
fuzzy sets cannot be applied [25]. More recently, another
non-standard fuzzy subset called Pythagorean fuzzy sets was
introduced by Prof. Ronald Yager [26, 27]. As shown in [27],
the space of membership grades in the Pythagorean fuzzy
sets exceeds that generated by the membership grades of the
intuitionistic type which represents an excellent advantage
in several types of applications [28–31].

The operation of a condition monitoring system in an
industrial plant is seriously affected by external disturbances
and noise present in the measurements of the process vari-
ables because they introduce imprecisions and uncertainties
in the observations. In order to overcome such difficulties, a
scheme to condition monitoring based on Pythagoreanmem-
bership grades (PyMGs) is presented as themain contribution
of this paper. In the proposal, a set of n classification fuzzy
algorithms are trained in an off-line stage. The Pythagorean
membership grade (PyMG) and the complement obtained
by these n algorithms are used in the rule-based decisions to
obtain an enhanced partition matrix. This allows to improve
the positioning of the center of the classes and the data
clustering. As a result, the performance of the conditionmon-
itoring system gets increases. The use of a set of n algorithms
in the training stage allows to improve the performance of the
classification process. On the other hand, Pythagorean fuzzy
sets allow to reduce false alarms by improving the robustness
of the fault diagnosis against noise and external disturbances.

The remainder of the paper is presented as follows.
Section2 presents a background about the Pythagoreanmem-
bership grade theory, the methodology with the use of the
PyMDs for improving the performance of condition mon-
itoring systems, and an illustrative example. In Sect. 3,
the Gustafson-Kessel (GK) and the kernel fuzzy C-means
(KFCM) algorithms, the UCImachine learning data sets, and
the benchmark Tennessee Eastman (TE), which are used to
test the proposed methodology, are presented. In Sect. 4 the
results obtained are evaluated. A performance comparison
with successful algorithms is developed in Sect. 5. At last,
the conclusions are displayed.

2 Materials andMethods

The main concepts about the Pythagorean membership
grades and the description of the main proposal of this paper
are presented in this section.

2.1 PythagoreanMemberships Grades

[27] presented the Pythagorean fuzzy sets (PyFS), and the
membership grades related with them that will be identified
as Pythagorean membership grades (PyMGs) in the paper.
Next, the fundamental elements that characterize the PyMGs
are presented by using a similar mathematical formulation to
that used in the original article [27].

Consider a space S and a fuzzy subset D of this space. The
PyMG of each element s ∈ S is represented by the values
f (s) , h(s) ∈ [0, 1]. These values are termed the strength
and the direction of commitment at s, respectively. Both are
relatedwith the support formembership (DY (s)) and the sup-
port against membership (DN (s)) of s in D. The element that
establishes the difference between the PyFS with respect to
other nonstandardmembership grades is based on the relation
between DY (s) and DN (s) which is established by using the
Pythagorean complement with respect to f (s). In this case,
DY (s) and DN (s) are defined from f (s) and h(s) as

DY (s) = f (s)cos(φ(s)) (1)

DN (s) = f (s)sin(φ(s)) (2)

where

φ(s) = (1 − h(s))
π

2
radians, φ(s) ∈ [0, π

2
] (3)

From these relations, in [27] it is demonstrated that

D2
Y (s) = f 2(s) − D2

N (s) (4)

From Eq. (3), if h(s) = 1, this implies φ(s) = 0, and,
therefore, cos(φ(s)) = 1 and sin(φ(s)) = 0. This result
indicates that DY (s) = f (s) and DN (s) = 0. On the other
hand, if h(s) = 0, this implies φ(s) = π/2, DY (s) = 0 and
DN (s) = f (s). Therefore, h(s) indicates how f (s) is point-
ing to membership. In the case that h(s) = 1, the direction of
f (s) is totally pointing to membership, and if h(s) = 0, the
direction of the f (s) totally points to nonmembership. Partial
support to membership and nonmembership are represented
by values of h(s) between 0 and 1.

Note that in general form, a PyMG is represented by two
values m, n ∈ [0, 1] that satisfy the relation m2 + n2 ≤ 1. In
this case,m = DY (s), represents themembership degree of s
in D and n = DN (s) is the degree of against membership of s
in D. Asm2 + n2 = f 2, therefore, a PyMG represents a point
of a circle of radius f . Since it is required that a, b ∈ [0, 1],
then, φ ∈ [0, π/2], and this locates the point that represents
the PyMG in the upper right quadrant.

An intuitionistic membership grade (IMG) is also rep-
resented by the values m, n ∈ [0, 1], but, in this case, it
is required that m + n ≤ 1. [27] demonstrated that every
point (m, n) which represents an IMG is also a PyMG.
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Fig. 1 Spaces of Pythagorean and intuitionistic membership grades
[27]

For example, if the point (
√
5
4 ,

√
11
4 ) is considered, then

(
√
5
4 )2 + (

√
11
4 )2 = 5

16 + 11
16 = 1 which indicates that

this is a PyMG. However, since
√
5
4 = 2.236

4 = 0.559 and√
11
4 = 3.317

4 = 0.829, and then 0.559 + 0.829 > 1,
which indicates that this is not an IMG. From this, it can
be concluded that the set of PyMGs exceeds the set of IMGs.
Figure 1 shows this result. The figure shows that IMGs are
the points under the line m + n ≤ 1, and the PyMGs are the
points under the function m2 + n2 ≤ 1.

One important consequence of the above analysis is the
possibility to use the PyFSs in situations in which it is not
possible to use intuitionistic fuzzy sets (IFSs). This advantage
will be very useful to enhance the performance in the schemes
of condition monitoring in industrial plants.

2.2 Description of the Proposal

In Fig. 2, the scheme of the condition monitoring based on
PyMGs proposed in this paper is displayed. The proposal
shows two stages: the training stage (TS) developed off-line
and the recognition stage (RS) performed online. In the TS,
the fuzzy classifiers are trained by using a historical database
of the process, which contains an adequate amount of data
representative of the l operating states or classes of the sys-
tem (normal operation state and fault states). In the RS, the
trained fuzzy classifiers evaluate the membership degree of
each observation xq to different classes. The highest value of
membership decides to which class the observation is allo-
cated, i.e.,

Cl = {
l : max

{
μlxq

}
,∀l, xq

}
(5)

Fig. 2 Classification scheme using Pythagorean memberships grades
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2.3 Training Stage

In this phase, n classifiers are trained and the center of the
different classes are determined. The outputs of these algo-
rithms (membership grade and the complement) are used in
the rule-based decisions to obtain an enhanced U partition
matrix, which allows to enhance the position of the cen-
ters of each class for improving the classification process.
In the construction of the rule base for decision making, the
Pythagorean fuzzy sets are used for obtaining a greater classi-
fication space. This is a very powerful advantage in industrial
systems, where process variables are affected by noise and
external disturbances, with the aim of obtaining a robust con-
dition monitoring system.

Let Ali , i = 1, 2, ...., n be a set of n fuzzy classification
algorithms, and Al+i , Al

−
i be their respective fuzzy parti-

tion matrices and their complements obtained in the training
stage. The rule base will have 2n rules, and they are built as
follows [26, 27]:

R1 : (Al+1 )2 + (Al+2 )2 + . . . + (Al+n−1)
2 + (Al+n )2 ⇒ U1

R2 : (Al+1 )2 + (Al+2 )2 + . . . + (Al+n−1)
2 + (Al−n )2 ⇒ U2

R3 : (Al+1 )2 + (Al+2 )2 + . . . + (Al−n−1)
2 + (Al+n )2 ⇒ U3

R4 : (Al+1 )2 + (Al+2 )2 + . . . + (Al−n−1)
2 + (Al−n )2 ⇒ U4

...
...

...

R2n : (Al−1 )2 + (Al−2 )2 + . . . + (Al−n−1)
2 + (Al−n )2 ⇒ U2n

(6)

where U1,U2, ....,U2n are the fuzzy partition matrices as
outputs of the rules R1, R2, ..., R2n respectively.

This base of rules allows a better clustering (a better fuzzy
partition matrix Ubetter ) of the data due to the use of the
information of the classification obtained for the n classifica-
tion algorithms. In addition, the use of PyMDs enhances the
robustness of the system with respect to noise. Both aspects
contribute to a better location of the class centers in the
training stage, which allows to achieve a robust and better
classification process during the online recognition stage.

2.4 Recognition Stage

The observations coming from the industrial plant are clas-
sified in the different classes by using Algorithm 1. For
performing the classification, the distance between each
observation xq and the center of the different classes obtained
in the previous stage are computed, and the membership
degree of the observations to the l classes is determined.
For allocating an observation xq in a class, the highest

membership degree is determined:

Cl =
{
l : max

{
μ

Al1
lxq

, ......., μ
Aln
lxq

}
,∀l, xq

}
(7)

Algorithm 1 Recognition
1: Input: data sample xq , class centers Z1,..., Zn, m.
2: Output: Current State.
3: for q = 1 to N do
4: for i = 1 to l do
5: Compute the distances from xq to Zi.

6: Compute the membership degree μ
Ali
lq of xq to the l classes.

7: end for
8: Determine the class of q using Eq. (5).
9: end for

3 Study Cases and Experimental Design

For validating the proposal of condition monitoring scheme,
the Gustafson-Kessel (GK) and the kernel fuzzy C-means
(KFCM) classifiers will be used.

3.1 Gustafson-Kessel (GK) Algorithm

In [32], the standard fuzzy c-means (FCM) classifier is mod-
ified by using an adaptive distance norm with the aim of
recognizing clusters with different forms in a data set. The
norm-inducing matrix Ai of each cluster is used to yield the
inner-product norm:

d2iq = (
xq − zi

)T
Ai

(
xq − zi

)
(8)

In order to achieve the clusters fit, in the c-means func-
tion, the matrices Ai are used as optimization variables. The
objective function of the GK classifier is defined by:

J (X;U , z, {Ai }) =
c∑

i=1

N∑

q=1

(
μiq

)m (
diq,Ai

)2 (9)

The following constraints are established [32]:

|Ai | = ρi , ρi > 0,∀i (10)

where ρi is established for each cluster, the expression for
Ai is obtained by using the Lagrange multiplier method as
follows:

Ai = [ρidet(Fi )]1/nF−1
i (11)
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Fi represents the fuzzy covariance matrix of the i−th cluster,
and it is computed as:

Fi =
∑N

q=1

(
μiq

)m (
xq − zi

) (
xq − zi

)T

∑N
q=1

(
μiq

)m (12)

By using Lagrangian multipliers, the conditions for local
extreme in the objective function given byEq. (9) are derived:

μiq = 1
∑c

j=1

(
diq,A/d jq,A

)2/(m−1)
(13)

zi =
∑N

q=1

(
μm
iqxq

)

∑N
q=1 μm

iq

(14)

Algorithm 2 shows the GK algorithm.

Algorithm 2 GK
Input: X, maximum iteration number (Maxiter ), c, ε > 0, m > 1,
ρi , .
Output: class centers Z, fuzzy partition U.
1. Random initialization of U .
for i ter = 1 to Maxiter do

2. Update the center of the different classes using Eq. (14).
3. Compute the fuzzy covariance matrix of each class using Eq.

(12)
4. Compute the norm-inducing matrix Ai using Eq. (11)
5. Compute distance diq using Eq.(8)
6. Update U using Eq. (13)
7. Evaluate the stopping criterion: ‖Ut −Ut−1‖ < ε

end for

3.2 Kernel Fuzzy C-Means Algorithm (KFCM)

The kernel function in the KFCM algorithm carry out the
mapping of the data from the input space to a space of higher
dimension.Amapping� allows tomodify the objective func-
tion of FCM as follows:

JK FCM =
c∑

i=1

N∑

q=1

(
μiq

)m ‖�(xk) − �(zi)‖2 (15)

∥∥�(xq) − �(zi )
∥∥2 represents the square of the distance

between �(xq) and �(zi ). By using the kernel function, the
distance in the feature space is computed in the following
form:

∥∥�(xq) − �(zi )
∥∥2 = K(xq, xq) − 2K(xq, zi) + K(zi, zi)

(16)

There exist several kernel functions that can be used. The
selection ofwhich one to use is related to the application type.

However, one of the most popular kernel functions due to its
satisfactory results is the Gaussian kernel which is selected
to be used in this paper [10, 33].

As the Gaussian kernel will be used, K(xq, xq) =
K(zi, zi) = 1 and

∥∥�(xq) − �(zi )
∥∥2 = 2

(
1 − K(xq, zi)

)
.

Therefore, Eq. (15) is expressed as:

JKFCM = 2
c∑

i=1

N∑

q=1

(
μiq

)m ∥∥1 − K(xq, zi)
∥∥2 (17)

where

K(xq, zi) = e−‖xq−zi‖2
/σ 2

(18)

The conditions for local extreme in the objective function
given by Eq. (17) are derived using Lagrangian multipliers:

zi =
∑N

q=1

(
μm
iqK(xq, zi)xk

)

∑N
q=1 μm

iqK(xq, zi)
(19)

μiq = 1
∑c

j=1

(
1−K(xq,zi)
1−K(xq,zj)

)1/(m−1)
(20)

The KFCM algorithm is displayed in Algorithm 3.

Algorithm 3 KFCM
Input: Xq, c, ε > 0, m > 1, σ , maximum iteration number
(Maxiter ).
Output: class centers Z, fuzzy partition U.
1. Random initialization of U .
for i ter = 1 to Maxiter do

2. Update the center of the different classes using Eq. (19).
3. Compute the distances using Eq. (16).
4. Update U using Eq. (20).
5. Evaluate the stopping criterion: ‖Ut −Ut−1‖ < ε

end for

The general condition monitoring scheme using the GK
and KFMC algorithms is shown in Fig. 3. In this scheme, it
can be seen that the online recognition algorithm determines
the existence of a fault if j samples representative of it are
received in a window of time. Later, an abnormal situation
alarm of the process is executed. This is done to reduce false
alarms in the presence of noise or outliers. The parameter
j and the dimension of the window of time are selected by
using expert knowledge in correspondence to the process.

3.3 Study Cases

Case Study 1: Synthetical Datasets The datasets shown in
Fig. 4 are presented to validate the performance of the pro-
posed condition monitoring. These datasets were created
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Fig. 3 Flowchart of the condition monitoring process

Fig. 4 Data sets for experiments in the first study case

synthetically to represent complex situations for classifica-
tion, despite having only two classes of two variables. They
were obtained fromUCIMachine Learning Repository: Data

Sets (https://archive.ics.uci.edu/ml/datasets.php). The sets
Data A, Data B and Data D have 1,000 observations each
one, and the set Data C has 700 observations to evaluate the
performance on small amounts of data.

In the training stage, 750 observations from the sets Data
A, Data B and Data D were used, and, the remaining 250
observations were used in the recognition stage. In the case
of the set Data C, 525 observations were used in the training
stage and 175 observationswere used in the recognition stage
(See Fig. 5).

Table 1 shows the parameter values used in the GK
and KFCM classifiers for the experiments. In the case of
the parameter σ , several experiments (σ = 10, 20, 30, 40,
. . . , 100) were performed, and the value of σ that gave the
best results in the classification was selected.

Case study 2: Tennessee Eastman Process The second
case study is the TennesseeEastman (TE) benchmark process
which has been extensively used to assess the effective-
ness of new proposals of control strategies and monitoring
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Fig. 5 Case Study 1: dataset preparation

schemes [34]. The plant has five subprocesses interconnected
as shown in Fig. 6.

This benchmark contains one data set corresponding to the
normal operation condition and 21 preprogrammed faults.
The data sets with the presence of noise of the TE are

Table 1 Parameters used in the
GK and KFCM algorithms in
the case study 1

GK KFCM

Maxiter 100 100

ε 10−5 10−5

m 2 2

σ – 10

ρi 0.5 –

generated for 48 hours and the faults are included after
8 hours of simulation. A detailed description of the con-
trol objectives, the main process features and its simulation
are presented in [35]. All used data sets were obtained
fromhttp://web.mit.edu/braatzgroup/TEprocess.zip. Table 2
displays the set of faults used in the performance evaluation
of the proposed condition monitoring strategy. For the train-
ing, 480 observations for each one of the four faults were
used, and 960 observations were considered in the recogni-
tion stage (See Fig. 7).

Table 3 shows the value of the parameters used in the GK
and KFCM algorithms in the case study 2. The parameters
were selected according to the experience in the previous
work [36].

Fig. 6 Piping diagram of the Tennessee Eastman process
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Table 2 Faults considered for the TE process (See Fig. 6)

Fault Process variables Type of fault

F1 A/C feed ratio B composition
constant

Step

F2 B composition A/C ration constant Step

F6 A feed loss Step

F7 C header pressure loss-reduced
availability

Step

Fig. 7 Case Study 2: dataset preparation

3.4 Explanatory Example

In order to better understand why the proposed scheme
improves the robustness and the classification performance of
the condition monitoring system, which represents the main
contribution of this paper, an illustrative example by applying
the kernel fuzzyC-means (KFCM) and theGustafson-Kernel
(GK) algorithms identified as B and E , respectively, is
presented. For this example, the training database has 500
observations from the data set Data A. The first 250 observa-
tions correspond to Class 1, and the others 250 observations
correspond to Class 2. Figures8 an 9 show the fuzzy partition
matrices obtained in the training stage after training KFCM
and GK algorithms, respectively. These results indicate that
in general, the membership grade of the observations of each
class have close values, and this will create confusion in the
classification process.

Now, the KFCM (B) and GK (E) algorithms are trained,
and their fuzzy partition matrices (B+, E+) and their com-
plements (B−, E−) are obtained which allows to build the
following rule base:

R1 : (B+)2 + (E+)2 ⇒ U1

Table 3 Parameter values in the
GK and KFCM algorithms for
the case study 2

GK KFCM

Maxiter 100 100

ε 10−5 10−5

m 2 2

σ – 50

ρi 0.5 –

Table 4 Number of
observations used in each class
by data set

NOC1 NOC2

Data A 250 250

Data B 250 250

Data C 175 175

Data D 250 250

Fig. 8 Example of the fuzzy partition matrix for KFCM algorithm

R2 : (B+)2 + (E−)2 ⇒ U2

R3 : (B−)2 + (E+)2 ⇒ U3

R4 : (B−)2 + (E−)2 ⇒ U4 (21)

U1, U2, U3 and U4 are the fuzzy partition matrices as
outputs of the rules R1, R2, R3 and R4, respectively.

This base of rules allows a better clustering, which cor-
responds to a better fuzzy partition matrix Ubetter . In this
case, Ubetter is obtained for the classes C1 and C2 as fol-
lows:
for i = 1: observations of the C1 do

UC1(1, i) = U1(1, i)
⋂

U2(1, i)
⋂

U3(1, i)
⋂

U4(1, i)

UC2(1, i) = U1(1, i)
⋃

U2(1, i)
⋃

U3(1, i)
⋃

U4(1, i)

end for
The aim is to maximize the classification of one class,

while minimizing the classification of another class. Fig-
ure10 shows the result which explains the robustness with
respect to noise.
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Table 5 Confusion matrices for
the experimental data set
(Data A)

KFCM GK PyFS

C1 C2 TA(%) C1 C2 TA(%) C1 C2 TA(%)

C1 130 120 52.0 112 138 44.8 230 20 92.0

C2 113 137 54.8 130 120 48.8 15 235 94.0

AVE 53.4 46.4 93.0

Total of 250 observations
Bold numbers identify the best results

Table 6 Confusion matrices for
the experimental data set
(Data B)

KFCM GK PyFS

C1 C2 TA(%) C1 C2 TA(%) C1 C2 TA(%)

C1 124 126 49.6 123 127 49.2 226 24 90.4

C2 119 131 52.4 121 129 51.6 20 230 92.0

AVE 51.0 50.4 91.2

Total of 250 observations
Bold numbers identify the best results

Table 7 Confusion matrices for
the experimental data set
(Data C)

KFCM GK PyFS

C1 C2 TA(%) C1 C2 TA(%) C1 C2 TA(%)

C1 117 133 46.8 109 141 43.6 146 29 83.4

C2 125 125 50.0 134 116 46.4 40 135 77.1

AVE 48.4 45.0 80.3

Total of 175 observations
Bold numbers identify the best results

Table 8 Confusion matrices for
the experimental data set
(Data D)

KFCM GK PyFS

C1 C2 TA(%) C1 C2 TA(%) C1 C2 TA(%)

C1 123 127 49.2 117 133 46.8 239 11 95.6

C2 118 132 52.8 123 127 50.8 13 237 94.8

AVE 51.0 48.8 95.2

Total of 250 observations
Bold numbers identify the best results

Fig. 9 Example of the fuzzy partition matrix for GK algorithm

Subsequently, the results obtained in the TS are used in
the RS, which allows to enhance the classification perfor-

Fig. 10 Example of the result obtained with Ubetter

mance and the robustness with respect noise and external
disturbances of the condition monitoring system.
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4 Results and Discussion

Next, the results obtained with the proposed condition mon-
itoring scheme in the case studies are presented.

4.1 Results of the Case Study 1

Table 4 shows the number of observations used from the
Class 1 (NOC1) and the Class 2 (NOC2) of each data set.
Tables 5, 6, 7 and 8 show the confusion matrices resulting
after applying the GK, the KFCM algorithms used individu-
ally in their standard version and the methodology proposed
in this paper, by using both algorithms and the Pythagorean
fuzzy sets (PyFS). The main diagonal shows the number of
observations successfully classified (NOSC), and the col-
umn TA represents the accuracy in the classification process
(NOSC/NOCi for i = 1, 2). The average values (AVE) of
TA are shown in the last row.

In Fig. 11, the classification results for the KFCM, GK
and the PyFS algorithms are shown, representing the correct
classification percentage obtained by each algorithm.

4.2 Results of the Case Study 2

Table 9 shows the confusion matrices for the TE process,
where F1: Fault 1, F2: Fault 2, F6: Fault 6 and F7: Fault 7.
The results obtained confirm that the proposal put forward in
this paper led to the best performance.

Figure12 shows the classification results for the KFCM
and GK algorithms, as well as those obtained with the pro-
posed approach based on PyFS, for the TE process.

5 Comparison with Other Successful
Algorithms

In this section, a comparison taking into account performance
and execution time with recently presented fuzzy clustering
algorithms with successful results in classification processes
is first made. Subsequently, a comparison table is presented
with results of recent condition monitoring methods on the
TE process based on other types of computational tools.

5.1 GAKFCM Algorithm

GAKFCM algorithm is presented in Ref. [37]. With the aim
of improving the initial clustering center, an adaptive genetic
algorithm is used firstly, and next, the KFCM algorithm per-
forms the classification. Table 10 shows the values of the
parameters used in this paper for this classifier which were
obtained from [37].
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Fig. 11 Classification for experimental data sets (Case Study 1)

Table 9 Confusion matrices for the TE process (F1: 960, F2: 960, F6:
960, F7: 960)

F1 F2 F6 F7 TA(%)

KFCM F1 927 13 2 18 96.6

F2 55 883 7 15 92.0

F6 88 41 768 63 80.0

F7 21 19 3 917 95.5

AVE 91.0

GK F1 646 107 62 145 67.3

F2 127 724 44 65 75.4

F6 104 47 720 89 75.0

F7 121 96 35 708 73.8

AVE 72.9

PyFS F1 935 10 0 15 97.4

F2 44 904 0 12 94.2

F6 9 0 945 6 98.4

F7 16 13 0 931 97.0

AVE 96.8

Bold numbers identify the best results

5.2 EWFCM and KEWFCMAlgorithms

The maximum-entropy-regularized weighted fuzzy c-means
(EWFCM) and its kernel version KEWFCM are presented
in [38] for extracting the important features of a data set
and improving the clustering. With this aim, the dispersion
within clusters is minimized, and the entropy of the attribute
weights is maximized simultaneously. The kernel version
(KEWFCM) by using theGaussianKernel was developed for
improving the clustering process in data with non-spherical
shaped clusters.

Table 11 shows the values utilized for the parameters of
theEWFCMandKEWFCMalgorithmswhichwere obtained
from [38].
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Fig. 12 Classification for the TE process (Case Study 2)

Table 10 Parameters of the GAKFCM algorithm

GKFCM

Maxiter 100

ε 10−5

m 2

σ 10

Crossover rate (pc) 0.6

Mutation rate (pm ) 0.001

Table 11 Parameters in the EWFCM and KEWFCM algorithms

EWFCM KEWFCM

Maxiter 100 100

ε 10−5 10−5

m 2 2

γ 0.05 0.05

σ – 10

5.3 Results of the Comparison

For establishing the comparison, the Tennessee Eastman pro-
cess (TE) was used. Table 12 shows the obtained results with
the GAKFCM, EWFCM and KEWFCM algorithms.

For establishing if there exists significant differences
among the obtained results, statistical tests should be applied
[39].

5.3.1 Statistical Tests

First, it is determined if there exists at least one classifier
whose results has significant differences from the rest by
using the Friedman test. Rejection of the null hypothesis of
Friedman’s test leads to a pairwise comparison of the algo-
rithms using Wilcoxon’s test in order to determine the best
algorithm(s).

Table 12 Confusion matrices for the TE process

F1 F2 F6 F7 TA(%)

GAKFCM F1 930 12 2 16 96.88

F2 52 888 5 15 92.5

F6 63 31 809 57 84.27

F7 20 19 3 918 95.63

AVE 92.32

EWFCM F1 886 28 11 35 92.29

F2 48 853 26 33 88.85

F6 83 40 760 77 79.17

F7 46 33 20 861 89.69

AVE 87.50

KEWFCM F1 932 11 2 15 97,08

F2 49 890 9 12 92.71

F6 55 32 820 53 88.42

F7 21 13 1 925 96.35

AVE 93.65

Number of observations for each fault:F1: 960, F2: 960, F6: 960, F7:
960

Friedman Test
Six algorithms (k = 6) with N = 10 data sets were ana-

lyzed. The Friedman statistical quantity value obtained was
FF = 340. The critical value of the F distribution for (k − 1)
and (k − 1)(N − 1) degrees of freedom F(5,45) and degree
of significance α = 0.05 is 2.449, which implies that the
null-hypothesis is rejected (F(5,45) < FF ). This result indi-
cates that there exist at least one classifier whose average
performance is significantly different from the rest.
Wilcoxon Test
Taking into account the result of the Friedman test, the results
of the six algorithms were compared by pairs, by using the
statistical test ofWilcoxon. Table 13 displays the comparison
results. Each algorithm is identified as follows: F: GK, G:
KFCM, H: GAKFCM, I: EWFCM, J: KEWFCM and K:
PyFS. The positive rank (R+) and negative rank (R−) for
each performed comparison are shown in the first and the
second row, respectively. The statistical values of T and the
critical value of T for a degree of significance α = 0.05
are shown in the next two rows. Finally, the last row shows
the winner algorithm in each comparison. Table 14 shows a
summary with the number of wins for each algorithm.

5.4 Analysis of the Execution Time

The characteristics of the computer used for performing the
experiments are the following: Intel Core i7-6500U 2.5 -
3.1GHz, memory: 8GB DDR3L. Table 15 shows a compar-
ison of the average execution time for each algorithm.

The Tennessee Eastman process has a high time con-
stant, which is a characteristic of chemical processes. In
general, the execution times shown in Table 15 are very small
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Table 13 Wilcoxon test results

F vs G F vs H F vs I F vs J F vs K G vs H G vs I G vs J G vs K H vs I H vs J H vs K I vs J I vs K J vs K

∑
R+ 0 0 0 0 0 5 55 0 0 55 5 0 0 0 0

∑
R− 55 55 55 55 55 50 0 55 55 0 50 55 55 55 55

T 0 0 0 0 0 5 0 0 0 0 5 0 0 0 0

Tα=0.05 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Winner G H I J H H G J K H J K J K K

Table 14 Result of the performance comparison of the algorithms

Algorithm No.Wins Ranking

GK 0 6

KFCM 2 4

GAKFCM 3 3

EWFCM 1 5

KEWFCM 4 2

PyFS 5 1

Table 15 Average
computational time for the
different algorithms used

Algorithm Time (seconds)

GK 0.4485

KFCM 0.6082

GAKFCM 1.2045

EWFCM 0.5620

KEWFCM 1.0582

PyFS 0.9904

compared with the time constant of the TE process, which
confirms the feasibility of applying these algorithms in the
condition monitoring scheme.

5.5 Comparison with Recent Condition Monitoring
Methods

In [40], the support vector machines (SVM), convolutional
neural network (CNN), generative adversarial network CNN
(GAN-CNN), auxiliary classifier GAN (ACGAN) and aux-
iliary classifier GAN combined with Wasserstein distance,
gradient penalty and Bayesian optimization (HGAN) algo-

rithms are compared by using the TE process. The goal of
the paper is to analyze the performance of these algorithms
when they are trained with small and imbalanced training
data.

To make a satisfactory comparison, the experiments have
to be performed under similar conditions. In this sense, data
sets with the same characteristics to the experiments devel-
oped in [40](100 samples and an imbalance ratio of normal
samples to fault samples of 5:1) were used for training the
KFCM and GK algorithms used in this paper as example to
apply the proposal of condition monitoring scheme.

The obtained results are shown in Table 16.
This comparison shows that the proposedmethod achieves

better results for most analyzed faults. The Wilcoxon test
was developed to compare the performances of the HGAN
algorithm and the proposal of this paper. The result showed
that there are no significant differences between the perfor-
mances of these algorithms. This experiment demonstrated
the capacity of the proposed condition monitoring scheme to
obtain a satisfactory performance with small and imbalanced
training data.

6 Conclusions

In the present paper, a novel robust condition monitoring
approach for industrial plants based on the use of n fuzzy
classification algorithms and the PyMGs is proposed.

In the training stage of the proposal, themembership grade
and its complement of n classification algorithms are used
to built the rule-based decisions with the aim to achieve an
enhanced U partition matrix which allows a better location
of the center of the different classes. Furthermore, the use of
Pythagorean membership degrees permits to obtain a greater

Table 16 Results of the
comparison

Fault SVM (%) CNN (%) GAN-CNN (%) ACGAN (%) HGAN (%) PyFS (%)

1 61.0 63.4 87.4 81.8 96.6 96.9

2 62.8 66.6 93.6 90.1 97.0 94.0

6 82.3 74.5 96.8 92.0 97.5 97.8

7 85.5 79.3 98.8 94.5 98.8 96.7

AVE 72.9 70.95 94.15 89.6 97.47 96.35
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classification space which improves the robustness of the
system in the presence of external disturbances and noise
in the measured process variables. The rule base allows a
better clustering of the data because it uses the information
of the n fuzzy classification algorithms. Later, in the online
recognition stage, the high membership grade of the set of n
algorithms is used for the final decision.

It is necessary to highlight the potential of the proposed
condition monitoring scheme, since n computational tools
can be used.

Some experiments were performed by using GK and
KFCM algorithms working in single form and together in
the proposed scheme. In the results, it is observed that the
methodology proposed yields the best results.

For comparing the classification performance of the
proposal with other computational tools, three recently pre-
sented fuzzy clustering algorithms (GAKFCM, EWFCM
and KEWFCM) with excellent performance in classifica-
tion processes were first used. In this case, the classification
performance and the execution time were used in the com-
parison. In all cases, the proposal obtain the best results.

Finally, a comparison with other computational tools
using small and imbalanced training data was developed. In
this comparison, the proposed condition monitoring scheme
shows a satisfactory performance.

For future research, an interesting idea would be to eval-
uate the proposal in the diagnosis of multiple faults.

Acknowledgements The authors acknowledge the financial support
provided by the International Funds and Projects Management Office
(OGFPI) of the Ministry of Science, Technology and Environment
(CITMA) of Cuba for the national project with code PN223LH004-
023, and by the Coordenação de Aperfeiçoamento de Pessoal de
Nivel Superior (Finance Code 001 and CAPES-PRINT Process No.
88881.311758/2018-01) fromBrazil. Furthermore, the authors appreci-
ate the support provided by the Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq) and Fundação Carlos Chagas Filho
de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), both in
Brazil.

Declarations

Conflict of interest The authors declare that they have no known com-
peting financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

1. Li, Y.; Song, H.; Ly, Z.: Deep learning in security of internet of
things. IEEE Internet Things J. (2021). https://doi.org/10.1109/
JIOT.2021.3106898

2. Shahbazi, Z.; Byun, Y.: Integration of blockchain, IoT andmachine
learning for multistage quality control and enhancing security in
smart manufacturing. Sensors 21, 1467 (2021). https://doi.org/10.
3390/s21041467

3. Karamti, H.; Lashin, M.M.A.; Alrowais, F.M.; Mahmoud, A.M.:
A new deep stacked architecture for multi-fault machinery identi-

fication with imbalanced samples. IEEE Access 9, 58838–58851
(2021). https://doi.org/10.1109/ACCESS.2021.3071796

4. Zhang, M.; Yi, Y.; Cheng, W.: Multistage condition monitoring
of batch process based on multi-boundary hypersphere svdd with
modified bat algorithm. Arab. J. Sci. Eng. 46, 1647–1661 (2021).
https://doi.org/10.1007/s13369-020-04848-1

5. Abid, A.; Khan, M.T.; Iqbal, J.A.: A review on fault detection
and diagnosis techniques: basics and beyond. Artif. Intell. Rev. 54,
3639–3664 (2021). https://doi.org/10.1007/s10462-020-09934-2

6. Pimenov, D.Y.; Bustillo, A.; Wojciechowski, S.; Sharma, V.S.;
Gupta, M.K.; Kuntoglu, M.: Artificial intelligence systems for tool
condition monitoring in machining: analysis and critical review. J.
Intell.Manuf. (2022). https://doi.org/10.1007/s10845-022-01923-
2

7. Camps-Echevarría, L.; Llanes-Santiago, O.; Fraga de Campos
Velho, H.; Silva Neto, A.J.: Fault diagnosis inverse problems:
solution with metaheuristics, 1st edn. Studies in Computational
Intelligence. Springer, Berlin, Germany (2019). https://doi.org/10.
1007/978-3-319-89978-7

8. Zhang, P.; Wen, G.; Dong, S.; Lin, H.; Huang, X.; Tian, X.;
Chen, X.: A novel multiscale lightweight fault diagnosis model
based on the idea of adversarial learning. IEEE Trans. Instrum.
Meas. 70(3518415), 1–15 (2021). https://doi.org/10.1109/TIM.
2021.3076841

9. Quiñones-Grueiro, M.; Ares-Milián, M.; Sánchez-Rivero, M.;
Silva-Neto, A.J.; Llanes-Santiago, O.: Robust leak localization in
water distribution networks using computational intelligence. Neu-
rocomp 438, 195–208 (2021)

10. Bernal-de-Lázaro, J.; Cruz-Corona, C.; Silva-Neto, A.J.; Llanes-
Santiago, O.: Criteria for optimizing kernel methods in fault
monitoring process: A survey. ISA Trans. (2021). https://doi.org/
10.1016/j.isatra.2021.08.040

11. Wu, B.; Cai, W.; Chen, H.; Zhang, X.: A hybrid data-driven simul-
taneous fault diagnosis model for air handling units. Energy Build.
245, 1–10 (2021). https://doi.org/10.1016/j.enbuild.2021.111069

12. Efthymiou, K.; Mourtzis, A.; Pagoropoulos, A.; Papakostas, N.;
Chryssolouris, G.: Manufacturing systems complexity analysis
methods review. Int. J. Comp. Integ. M 29(9), 1025–1044 (2016).
https://doi.org/10.1080/0951192X.2015.1130245

13. Taqvi, S.A.A.; Zabiri, H.; Tufa, L.D.; Uddinn, F.; Fatima, S.A.;
Maulud, A.S.: A review on data-driven learning approaches for
fault detection and diagnosis in chemical process. ChemBioEng.
Rev. 8(3), 239–259 (2021)

14. Kumar,A.;Bansal,K.;Kumar,D.;Devrari,A.;Kumar,R.;Mani, P.:
FPGA application for wireless monitoring in power plant. Nuclear
Eng. Technol. 53, 1167–1175 (2021). https://doi.org/10.1016/j.net.
2020.09.003

15. Kumar, N.; Mohan Mishra, V.; Kumar, A.: Smart grid and nuclear
power plant security by integrating cryptographic hardware chip.
Nuclear Eng. Technol. 53, 3327–3334 (2021). https://doi.org/10.
1016/j.net.2021.05.006

16. Ompal,M.;Mishra,V.;Kumar,A.: FPGAintegrated IEEE802.15.4
ZigBee wireless sensor nodes performance for industrial plant
monitoring and automation. Nuclear Eng. Technol. 54, 2444–2452
(2022). https://doi.org/10.1016/j.net.2022.01.011

17. Rodríguez-Ramos, A.; Bernal de Lázaro, P.-M.A.J.M.; Silva Neto,
A.J.; Llanes-Santiago, O.: An approach to robust fault diagnosis
in mechanical systems using computational intelligence. J. Intell.
Manuf. 30, 1601–1615 (2019). https://doi.org/10.1007/s10845-
017-1343-1

18. Mayadevi, N.; Mini, V.P.; Hari Kumar, R.; Prins, S.: Fuzzy-based
intelligent algorithm for diagnosis of drive faults in inductionmotor
drive system. Arab. J. Sci. Eng. (2020). https://doi.org/10.1007/
s13369-019-03935-2

123

https://doi.org/10.1109/JIOT.2021.3106898
https://doi.org/10.1109/JIOT.2021.3106898
https://doi.org/10.3390/s21041467
https://doi.org/10.3390/s21041467
https://doi.org/10.1109/ACCESS.2021.3071796
https://doi.org/10.1007/s13369-020-04848-1
https://doi.org/10.1007/s10462-020-09934-2
https://doi.org/10.1007/s10845-022-01923-2
https://doi.org/10.1007/s10845-022-01923-2
https://doi.org/10.1007/978-3-319-89978-7
https://doi.org/10.1007/978-3-319-89978-7
https://doi.org/10.1109/TIM.2021.3076841
https://doi.org/10.1109/TIM.2021.3076841
https://doi.org/10.1016/j.isatra.2021.08.040
https://doi.org/10.1016/j.isatra.2021.08.040
https://doi.org/10.1016/j.enbuild.2021.111069
https://doi.org/10.1080/0951192X.2015.1130245
https://doi.org/10.1016/j.net.2020.09.003
https://doi.org/10.1016/j.net.2020.09.003
https://doi.org/10.1016/j.net.2021.05.006
https://doi.org/10.1016/j.net.2021.05.006
https://doi.org/10.1016/j.net.2022.01.011
https://doi.org/10.1007/s10845-017-1343-1
https://doi.org/10.1007/s10845-017-1343-1
https://doi.org/10.1007/s13369-019-03935-2
https://doi.org/10.1007/s13369-019-03935-2


14744 Arabian Journal for Science and Engineering (2023) 48:14731–14744

19. Zhou, K.; Tang, J.: Harnessing fuzzy neural network for gear fault
diagnosis with limited data labels. Int. J. Adv. Manuf. Tech. 115,
1005–1019 (2021). https://doi.org/10.1007/s00170-021-07253-6

20. Fan, Y.; Ma, T.; Xiao, F.: An improved approach to generate
generalized basic probability assignment based on fuzzy sets in
the open world and its application in multi-source information
fusion. Appl. Intell. 51, 3718–3735 (2021). https://doi.org/10.
1007/s10489-020-01989-6

21. Haiyang, P.; Haifeng, X.; Jin, S.; Jinyu, T.: Multi-class fuzzy
support matrix machine for classification in roller bearing fault
diagnosis. Adv. Eng. Inf. 51, 3718–3735 (2021). https://doi.org/
10.1016/j.aei.2021.101445

22. Yupeng, G.; Ruixin, B.; Zhen, P.; Guiyang, M.; Jia, A.L.; Xiuquan,
C.; Qiqiang, P.:Mechanical equipment healthmanagementmethod
based on improved intuitionistic fuzzy entropy and case reason-
ing technology. Eng. Appl. Artif. Intell. (2022). https://doi.org/10.
1016/j.engappai.2022.105372

23. Atanassov, K.T.: On Intuitionistic Fuzzy Sets Theory, 1st edn. Stud
FuzzSoftComp.Springer,Berlin,Germany (2012). https://doi.org/
10.1007/978-3-642-29127-2

24. Mendel, J.M.; John, R.I.; Liu, F.: Interval type-2 fuzzy sets made
simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006). https://
doi.org/10.1109/TFUZZ.2006.879986

25. Biswas, R.: On fuzzy sets and intuitionistic fuzzy sets. Notes IFS
3(1), 3–11 (1997)

26. Yager, R.R.; Abbasov, A.M.: Pythagorean membership grades,
complex numbers and decisionmaking. Int. J. Intell. Syst. 28, 436–
452 (2013). https://doi.org/10.1002/int.21584

27. Yager, R.R.: Pythagorean membership grades in multicriteria deci-
sion making. IEEE Trans. Fuzzy Syst. 22(4), 958–965 (2014).
https://doi.org/10.1109/TFUZZ.2013.2278989

28. Mardani Shari, M.; Eshraghniaye Jahromi, A.; Houshmand, M.:
Failure mode and effect analysis using an integrated approach of
clustering andmcdmunder pythagorean fuzzy environment. J. Loss
Prev. Process Ind. 72, 104591 (2021). https://doi.org/10.1016/j.jlp.
2021.104591

29. Rodríguez-Ramos, A.; Verdegay, J.L.; Llanes-Santiago, O.: A
robust fault diagnosis strategy in mechanical systems using
Pythagorean fuzzy sets. In: Hernández-Heredia, Y., Milián Nuñez,
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