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Abstract
Timely defect detection plays a positive role in preventing the evaluation of steel derivative damage. As a state-of-the-art
image recognition technology, pixel-level segmentation technology can obtain the pixel distribution and generate the shape of
the objects accurately, which provides a potential detection method for steel surface defects. Therefore, this paper employed
the well-known pixel-level segmentation CNN (DeepLab_v3+) to detect three defect categories (inclusions, patches and
scratches) on the steel surface, and the ‘regionprops’ function was used to quantify the defect features (length, average width,
maximum width, area and ratio). The results show that ResNet50, as the backbone network of DeepLab_v3+, has the highest
detection precision for steel surface defects, and its accuracy is more competitive than that of other algorithms (FCN, SegNet,
U-Net and PAG-Net). The proposed quantitative method also achieved encouraging results (the average relative error (ARE)
of the evaluation indicator, 10%, 18%, 17%, 23% and 23%, respectively), and the precision was higher than that of the other
methods. This demonstrated that the proposed method can greatly benefit steel surface defect detection and evaluation of
defect levels.
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1 Introduction

Steel surface defect detection (SSDD) is the key to con-
trolling the quality of industrial products. Steel is the most
fundamental material of infrastructures (e.g., construction,
machinery, aerospace), and considerable economic losses
and reputation losses can be avoided by evaluating steel
safety [1]. Visual observation is the most effective method
for steel surface defect detection. However, the manual
implementation of this task is time-consuming, inefficient
and subjective, and an automatic visual observation (AVO)
instrument is necessary. However, the AVO system faces the
following main challenges [2]: (1) low contrast: the presence
of dust and the change in light intensity lead to low con-
trast between the defect and background shown in images;
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(2) intraclass difference: the shape of the defects in indus-
trial production is irregular, and the size of the same defect
ranges widely; and (3) similarity between categories: due
to the uncertainty of the production process, different defect
categories have little difference, their textures and gray infor-
mation are close.

The development of computer vision (CV) technology
provides a new solution to these challenges and has become
a hot topic. In recent decades, some traditional methods have
been widely used, including statistical-based, spectral-based
and model-based methods. (1) Statistical-based methods:
The distribution of pixel values was measured by statistical
methods, including clustering [3], edge-based [4], gray-level
[5], cooccurrence matrix [6] and local binary pattern [7] for
surface defect detection. (2) Spectral-based methods, which
use a set of filters to describe the texture of the image in
the transform domain, are widely used in texture analy-
sis. Related research includes Fourier transforms [8], Gabor
filters [9], and wavelet transforms [10]. (3) Model-based
methods, which need to establish a mathematical model to
connect the original texture and defects, require high com-
putational complexity, including the Markov random field
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model [11] and Weibull model [12]. Although these tech-
niques have achieved good results in defect detection, these
methods still face major challenges, e.g., noise interference,
inaccurate locating and high computational costs.

The emergence ofmachine learning (ML) technology pro-
vides a more advanced algorithm for SSDD. The essence of
ML is to analyze and learn the training data and then make
accurate decisions or/and predictions for further operations.
As an important branch of the model-based method, ML has
been widely used in SSDD. The most common methods
include support vector machines (SVMs) and neural net-
works (NNs). As a binary classifier, the SVM is often used
to detect defect and non-defect regions [13, 14]. A study also
employed the SVM to classify hot-rolled flat steel into defect
and normal images [15]. The NN can extract the defect fea-
tures from the training data and classify the testing data. A
study used a two-layer feed forward neural network (FFNN)
to detect the image pixels in defect and non-defect regions
and achieved encouraging accuracy [16]. Another study used
the back-propagation neural network (BPNN) to classify the
defects on the steel plate surface [17]. Other methods include
distance function, sparse representation, and multi-classifier
fusion [18].However, a large number of parameters in theNN
lead to considerable computational complexity and easily
lead to over-fitting, which weakens the generalization ability
of the SVM and/or traditional NN for the new data (testing
data).

A deep convolutional neural network (DCNN) provides
a faster and more accurate method for SSDD. Its weight
sharing and sparse connection significantly reduce the com-
putational parameters and effectively prevent over-fitting.
DCNNs have been widely used in feature extraction and sur-
face defect detection. The defect detection methods based on
DCNN include classification-based, region-based and pixel-
level segmentation-based methods. (1) Classification-based
methods: a semi-supervised [19] and a supervised DCNN
[20], were used for the feature extraction and classification of
steel surface defects, and the results showed that theDCNN is
powerful and robust for classification tasks. However, these
methods cannot give accurate defect locations. Additionally,
when there are many defects in an image, the accuracy of this
method is reduced. (2) Relevant researchers have employed
Faster-RCNN to detect a variety of defects and have achieved
high locating accuracy (an average precision (AP) value
higher than 0.8) [21]. To improve the accuracy of real-time
location, the more advanced YOLO series algorithm was
used to detect steel surface defects, and the accuracy and
speedwere 99%and 83FPS [22], respectively. (3) Pixel-level
segmentation-based methods: a fully convolutional network
(FCN) model has achieved effective results in the surface
detection field [23]. Then, many researchers proposed more
pixel-level segmentation models for surface defect detection
(including pavement cracks [24], steel surface defects, welds

andwood [25]). As an auxiliary tool, GAN technology [26] is
also applied to the defect detection task of steel surfaces [27].
In the latest research, a pyramid network model (namely,
PGA-Net [2]) was used to achieve multi-scale feature fusion,
and competitive accuracy was achieved in the SSDD.

Pixel-level segmentation technology can effectively and
accurately obtain the distribution path and shape of defects
and provide more accurate information for further quanti-
tative analysis of defects (e.g., length, width, area). With
the continuous development of the pixel-level segmenta-
tion algorithm, the state-of-the-art DeepLab_v3+ algorithm
[28] has achieved more accurate segmentation accuracy.
It uses the atrous spatial pyramid pooling (ASSP) sub-
module to obtain the multi-scale features of defects, and the
encoder–decoder structure can better capture the boundary
of the objects [29]. In previous studies, it has been applied to
crack detection of asphalt pavement [29] and walls [30]. In
this paper, the novel DeepLab_v3+ is applied to the complex
SSDD task to evaluate the performance of the model. Addi-
tionally, the detection results of pixel-level segmentation are
used for subsequent defect quantification tasks, so the main
contribution of this paper is to establish an integrated defect
detection and quantification method, which provides the
main decision-making basis for industrial generation. This
article specifically includes the following contents: (1) Com-
pare different backbone network models to obtain the best
DeepLab_v3+ detection model; (2) compare different pixel-
level segmentation models, and the latest research results
confirm the reliability of the proposedmethod; and (3) imple-
ment defect quantification tasks and compare themwith other
quantification methods.

2 Methods

In this paper, an automatic steel surface defect detection
and quantification method is established. In the detection
stage, the well-known DeepLab_v3+ algorithm is employed
to obtain the accurate defect pixel distribution. In the quan-
tification stage, the reliable region extraction algorithm is
used to calculate the corresponding physical parameters of
defects. In both stages, it compares with some other popular
technologies. The specific workflow is shown in Fig. 1.

2.1 DeepLab_v3+

The overall architecture of theDeepLab_v3+model is shown
in Fig. 2, with an encoder–decoder structure. The main body
of the encoder is a classification network (a DCNN) with
strong feature extraction ability and an atrous spatial pyra-
mid pooling (ASSP) sub-module with atrous convolution
and pooling layers. It uses the DCNN to extract the features
of the object and uses the ASSP sub-module to obtain the
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Fig. 1 Specific workflow of the
proposed method

Fig. 2 The DeepLab_v3+ architecture

multi-scale information of the object. In the decoder mod-
ule, the low-level features (feature domain I, primary feature
extraction of the DCNN (backbone network)) and high-level
features (feature domain II, advanced feature of the ASPP
sub-module) are further fused to improve the accuracy of the
segmentation boundary.

The atrous convolution is one of the key operations of
the DeepLab_v3+ model. It can control the receptive field
of convolution kernels without changing the size of feature
images, which is helpful for extracting multi-scale informa-
tion. The atrous convolution is shown in Fig. 3, where the
rate controls the size of the receptive field, and the larger the
rate is, the larger the receptive field.

In DeepLab_v3+, the ASSP module is used to further
extract the multi-scale information. Here, the atrous convo-
lution of different rates is used to achieve this. The ASPP
sub-module includes the following parts: (1) one standard

convolution layer (its rate is 1) and three atrous convolutions
(its rate is 6, 12 and 18), (2) an average pooling layer is used
to obtain image-level features, and then it is sent to a convolu-
tion layer (1× 1 convolution kernel), and (3) the five different
scale features obtained from (1) and (2) are concatenated in
the channel dimension and then sent to the convolution layer
(1 × 1 convolution kernel) for fusion to obtain new features.

Subsequently, in the decoder module, for the first branch
input (Feature domain II), the transposed convolution is used
to upsample the input (extending the dimension of the fea-
ture map). The second branch input (Feature domain I) of the
decoder comes from the backbone network and uses the spe-
cial convolution operation (1 × 1 convolution kernel). After
the concatenation, convolution (3 × 3 convolution kernel)
and upsampling, the feature maps are gradually restored to
their original spatial dimensions, and the output layer out-
puts each pixel classification of the raw image, that is, marks
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Fig. 3 Atrous convolution

Raw data (rate=1) Raw data (rate=2) Raw data (rate=3)

kernel kernel kernel

the cracks, thereby achieving pixel-level segmentation of the
object region.

In the DeepLab_v3+ model, a DCNN is used as a feature
extractor, which provides the primary features for subse-
quent processing. To compare the impact of differentDCNNs
on the results, this paper employs five well-known DCNN
models as the backbone network of DeepLab_v3+, which
are ResNet18, ResNet50, MobileNetv2, Xception, Incep-
tionResNetv2, EfficientNet-b0 and Place365GoogLeNet.
Compared with the other popular pixel-level segmentation
algorithms (FCN, SegNet and U-Net).

2.2 Defect quantification

Defect quantification is the focus of further research on
SSDD. Quantitative analysis of the steel surface defects can
effectively evaluate the damage level of the steel and/or steel
plate and determine whether it needs to be repaired. The
quantitative parameters (physical properties) of steel sur-
face defects usually include length, width, area and ratio.
A quantitative method of the asphalt pavement [29] provides
the most advanced automatic evaluation inspiration for the
surface defects: using the most advanced pixel-level seg-
mentation technology to segment the surface defects, then
employing the skeleton extraction algorithm to extract the
bones of segmented defects, and calculating the length of
defects according to the extracted bones of the defect (Fig. 4).
The calculation method is defined as follows:

L =
n∑

i=1

√
(xi+1 − xi )2 + (yi+1 − yi )2 (1)

where (xi+1 − xi )2 + (yi+1 − yi )2 is the distance between
adjacent points.

However, the quantization results will be affected by the
skeleton extraction results (that is, poor skeleton extraction
results will reduce the quantization accuracy). Therefore,

on this basis, this paper proposes a new defect quantifi-
cation method (removing the skeleton extraction), that is,
employing a function (‘regionprops’ of the image processing
toolbox) of MATLAB, which can generate multiple ellipses
in the length direction, and the long axis of each ellipse is the
length of the subregion (Fig. 5). Therefore, the total length
of the defects is defined as:

L total =
n∑

i=1

Li (2)

where Li is the length of the major axis of an ellipse.
The area of the defect is the number of pixels of all defects,

and the average width of the defect is calculated according to
the length of the defect. The ratio of defect pixels is calculated
according to the number of pixels in the entire image.

WAverage =
∑N

i
Areai
Li

N
(3)

Ratio = Area

IArea
(4)

where Areai is the defect area of length Li and IArea is the
number of all pixels in the entire image.

To evaluate the proposed quantization algorithm (‘region-
props’ function of MATLAB), the average relative error
(ARE) is used to evaluate the effectiveness of the quanti-
zation algorithm, which is defined as follows:

RE = Rp − Rr

Rr
× 100% (5)

ARE =
M∑

j=1

Rp − Rr

Rr
× 100% (6)

where Rp and Rr are the prediction results and real labels,
respectively. M is the number of detection samples.
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Fig. 4 Previous methods and our
methods
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Fig. 5 The acquisition method of
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2.3 Experimental Setup

The dataset contains 900 images of steel surface defects
(NEU dataset [31], including 300 images of inclusions, 300
images of patches and 300 images of scratches) with 200 ×
200 pixels. It is collected through relevant literature and can
be obtained on GitHub. The image is resized to 299 × 299
by using the ‘imresize’ function, and the image is annotated
by using the ‘ImageLabeler’ toolbox of MATLAB. Twenty
percent of them were used as the validation data (10%) and
testing data (10%). Several labeled examples are shown in
Fig. 6.

The operating platform is on a computer with an Intel (R)
Core(TM) i7-10700/10700F CPU and an NVIDIA GeForce
RTX2060, 6 GBGPU. Software configuration:Windows 10,
MATLAB 2020a. The pixel-level segmentation algorithm
DeepLab_v3+ is established by the ‘deep learning toolbox’
and ‘computer vision toolbox.’ The quantitative analysis is
implemented by the ‘image processing toolbox.’

The precision of the pixel-level segmentation algorithm is
evaluated using the following indicators:

Intersection over union (IoU) is an indicator for evaluating
the overlap between the predicted (Ap) and real (Ar) object
pixels. IoU is defined as:

IoU =
area(Ap ∩ Ar)

area(Ap ∪ Ar)
(7)

The mean IoU of all classes is defined as:

MIoU =
IoU

N
(8)

where N is the number of classes (in this paper, N = 2, i.e.,
the crack and noncrack).

The accuracy and F-score were used to evaluate the clas-
sification effect (crack and noncrack):

Accuracy = TP + TN

TP + FP + FN + TN
(9)

Precision = TP

TP + FP
(10)

Recall = TP

TP + FN
(11)

F - score = 2 × Precision + Recall

Precision × Recall
(12)

where true positive (TP) denotes that a real defect pixel is
predicted correctly. False positive (FP) denotes that a real
non-defect pixel is predicted as a defect pixel. False negative
(FN) denotes that a real defect pixel is predicted as a non-
defect pixel. Truenegative (TN)denotes that a real non-defect
pixel is predicted correctly.
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Fig. 6 Labeled examples of some
defect images

Labelled

3 Results and Discussion

3.1 Training Process and Testing Results

To identify a high-precision pixel-level segmentation model,
the training data were used to trainDeepLab_v3+ of different
backbone networks. The training process is shown in Fig. 7
(360 iterations). Among them, ResNet50 as a backbone net-
work has achieved the highest training accuracy and the low-
est loss, andXception has the worst performance. The testing
data were used to assess the generalization capability of the
network. The testing results are shown in Table 1. ResNet50
has the highest detection precision (withMIoU= 0.81, accu-
racy= 97% and F-score= 0.81, some detection examples in
Fig. 8, the detection results were basically consistent with the
real labels). ResNet18, MobileNetv2, InceptionResNetv2,
EfficientNet-b0 and Place365GoogLeNet have similar detec-
tion precision, and the precision of Xception is the lowest.
ResNet50 has a detection speed comparable to those of other
models.

Table 2 shows the detailed testing results of DeepLab_v3+
based on the ResNet50 backbone network. The results
show that different defect categories have different perfor-
mances in evaluation indices, the highest MIoU value (0.85)
was obtained for patches, the highest accuracy (99%) was
obtained for scratches, and the highest F-score value (0.78)
was obtained for inclusions. This means that for the overall
evaluation of the model, multiple evaluation indicators are
necessary. For small defects, the F-score and accuracy can
be employed for evaluation; for block defects, the MIoU and
accuracy can be employed for evaluation.

Then, an ablation experiment was carried out in
DeepLab_v3+, and the backbone network ResNet50 of
DeepLab_v3+ was frozen (the weight did not change during
network training). Table 3 shows the test results of vari-
ous defects. The results show that the detection effect of
DeepLab_v3+ of the frozen backbone network for various
defects has decreased, especially for the scratches (MIoU
decreased by 17.6%, accuracy decreased by 13%, and F-
score decreased by 20%).

3.2 Comparative Study

To further demonstrate the effectiveness of the proposed
method, the results of Sect. 3.1 are compared with those of
other popular pixel-level segmentation algorithms. The test-
ing results are shown in Table 4. The results show that the
detection precision of the FCN, SegNet and U-Net (MIoU
= 0.23, accuracy = 25%, F-score = 0.6 to 0.78) was lower
than that ofDeepLab_v3+. Therefore, the results confirm that
DeepLab_v3+ was the best algorithm for SSDD.

Subsequently, we compared our method with the rele-
vant steel surface defect segmentation algorithm [2]. Figure 9
shows some detection examples. The comparison shows that
our method was more competitive than the previous method
in the detection of steel surface defects. The previous method
has an ideal detection effect for clear defects (there was a
clear boundary with the background), but for some fuzzy
defects, the method is invalid (marked by the red box in
Fig. 8).
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Fig. 7 Training process of the
DeepLab_v3+ using different
backbone networks
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Table 1 Segmentation results of DeepLab_v3+ using different backbone networks

Evaluation
indicators

Backbone network

ResRet18 ResRet50 MobileNetv2 Xception InceptionResnetv2 EfficientNet-b0 Place365GoogLeNet

MIoU 0.74 0.81 0.74 0.71 0.76 0.75 0.73

Accuracy 97% 97% 96% 94% 97% 97% 95%

F-score 0.72 0.81 0.71 0.67 0.72 0.75 0.76

Detection time (per
image)

0.6 s 0.7 s 0.3 s 0.4 s 0.4 s 0.8 s 1.6 s

Fig. 8 Testing results of the
DeepLab_v3+. I: Raw image, L:
Label, P: Prediction

L          PI L          P L          PI I

Table 2 Detailed testing results
of different defects Evaluation indicators Defect category

Background Inclusion Patches Scratches

MIoU 0.97 0.68 0.85 0.74

Accuracy 98% 95% 97% 99%

F-score 0.89 0.78 0.63 0.75

123



10220 Arabian Journal for Science and Engineering (2023) 48:10213–10225

Table 3 Detailed testing results
of the ablation experiment Evaluation indicators Defect category

Background Inclusion Patches Scratches

MIoU 0.93 0.53 0.82 0.61

Accuracy 92% 92% 95% 86%

F-score 0.82 0.73 0.59 0.60

Table 4 Detection results of
popular pixel-level segmentation
networks

Evaluation indicators Popular pixel-level segmentation network

FCN SegNet U-Net DeepLab_v3+

MIoU 0.23 0.23 0.23 0.84

Accuracy 25% 25% 25% 97%

F-score 0.78 0.60 0.78 0.81

Detection time (per image) 0.9 s 0.6 s 0.7 s 0.7 s

Fig. 9 Comparison with related
steel surface defect segmentation
technology. I: Raw image; D:
Dong et al. method [2]; O: Our
method

D         OI D          O D          OI I

Fig. 10 Quantitative results of
the inclusions

Real length: 73.0, Predicted:  82.0

Average width: 6.4, Predicted: 10.8

Max_width: 8.5, Predicted: 12.5

Real area: 468, Predicted: 881

Real ratio: 0.005, Predicted:  0.009

Real length: 111.0, Predicted:  110.0

Average width: 12.7, Predicted: 13.8

Max_width: 12.7, Predicted: 13.8

Real area: 1419, Predicted: 1509

Real ratio: 0.016, Predicted:  0.017

Real length: 255.0, Predicted: 256.0

Average width: 30.1, Predicted: 36.6

Max_width: 30.1, Predicted: 36.6

Real area: 7731, Predicted: 9364

Real ratio: 0.086, Predicted:  0.105

(a)

(b)

(c)
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Fig. 11 Quantitative results of
the patches

Real length: 213.0, Predicted:  223.0

Average width:41.0, Predicted: 38.3

Max_width: 47.3, Predicted: 44.6

Real area: 8738, Predicted: 8535

Real ratio: 0.098, Predicted:  0.095

Real length: 362.0, Predicted:  375.0

Average width: 92.7, Predicted: 93.6

Max_width: 106.6, Predicted: 109.9

Real area: 33493, Predicted: 35106

Real ratio: 0.375, Predicted:  0.393

Real length: 138.0, Predicted:  143.0

Average width: 36.8, Predicted: 35.5

Max_width: 44.4, Predicted: 46.2

Real area: 5066, Predicted: 5093

Real ratio: 0.057, Predicted:  0.057

(a)

(b)

(c)

Fig. 12 Quantitative results of
the scratches

Real length: 673.0, Predicted:  701.0

Average width: 16.5, Predicted: 18.5

Max_width: 23.4, Predicted: 24.8

Real area: 11084, Predicted: 12929

Real ratio: 0.123, Predicted:  0.145

Real length: 153.0, Predicted:  172.0

Average width: 5.5, Predicted: 7.2

Max_width: 5.7, Predicted: 7.6

Real area: 843, Predicted: 1231

Real ratio: 0.009, Predicted:  0.013

Real length: 835.0, Predicted:  847.0

Average width: 9.7, Predicted: 13.1

Max_width: 17.2, Predicted: 21.1

Real area: 8142, Predicted: 11062

Real ratio: 0.091, Predicted:  0.123

(a)

(b)

(c)

3.3 Quantification and Comparison

The high-precision defect segmentation results obtained in
Sect. 3.1 were applied to the quantitative task of defects,
and the length, width, area and ratio of various defects
were extracted by using the function ‘regionprops’ of MAT-
LAB. Some detection examples of inclusions, patches and
scratches are shown in Figs. 10, 11 and 12, respectively. All
results of the testing data are shown in Fig. 13 (including
predefined labels and predicted results). The average relative
errors of the length, average width, maximum width, area
and ratio were 10%, 18%, 17%, 23%, and 23%, respectively.

Figure 10a shows the detection results of small inclusions,
with low length measurement error and high width measure-
ment error (average relative error of approximately 47%),
which results in high area and ratio errors. Figure 10b shows
the detection results of fuzzy inclusions, and all the indices
achieved excellent accuracy. Figure 10c shows the detection
results of large inclusions, with correct length measurement
and poor measurement accuracy of width (average relative
error of approximately 20%). Figure 11a shows the detection
results of different sizes of patches, and all the indicators
achieved excellent accuracy. Figure 11b shows the detec-
tion results of large patches, and all the indices achieved
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Fig. 13 Comparison of real results and predicted results

Fig. 14 The label and predicted result of Sample 44

excellent accuracy. Figure 11c shows the detection results
of curved patches, and all the indices also obtain excellent
accuracy. Figure 12a shows the results of the different scratch
detection widths, and all the indicators achieved excellent
accuracy. Figure 12b shows the detection results of inter-
mittent scratches, and all the indicators achieved excellent
accuracy. Figure 12c shows the detection results of complex
scratches, the length measurement is correct, and the width
detection has a high relative error (35%). Therefore, the pro-
posed method has the highest accuracy for patch detection
and cannot detect small inclusions and scratches accurately.

The statistical results in Fig. 13 show that the relative
error of Sample 44 was the largest. The raw image (Sample
44), label and prediction results are shown in Fig. 14. It is
found that the artificially labeled defects were incomplete
(in the label image, the small defects in the edge area are

not labeled), and the predicted results are more consistent
with the defect distribution of the raw image. Therefore, it
has a great influence on the quantitative calculation results of
labels and prediction results (large relative error), which is
due to manual error labeling, so the quantitative calculation
of prediction results was more reliable.

To further examine the performance of this method, this
paper employs the previous method [29] (skeleton extraction
in Sect. 2.2) to quantitatively analyze the hot-rolled steel sur-
face defects. The average relative errors (Table 5) of defect
length, average width, maximum width, area and ratio were
12%, 22%, 22%, 23% and 23%, respectively, and bold rep-
resents excellent detection effect. The average relative errors
of our method (10%, 18%, 17%, 23%, and 23%) were 20%,
22%, 29%, 0%and 0% lower than those of previousmethods,
respectively.

Subsequently, the error of the previous method was ana-
lyzed. Figure 15 shows someextraction results of the skeleton
extraction algorithm for defects. It was found that the skele-
ton extraction algorithm has high precision for some small
defects (inclusions), but the extraction effect is poor for
blocky (patches) and/or wide (scratches) defects, which
forms many branches, resulting in the predicted results
being higher than the real results, thus affecting the positive
effect of quantification precision. Therefore, for the previous
defect quantification method based on the skeleton extrac-
tion algorithm, there are some limitations. For small defects,
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Table 5 Detection results of the previous method and our method

Previous method Our method

L (%) AW (%) MW (%) A (%) R (%) L (%) AW (%) MW (%) A (%) R (%)

I 14 27 21 29 29 11 21 22 29 29

P 10 12 17 12 12 11 9 7 12 12

S 12 29 28 28 28 7 25 24 28 28

Total 12 22 22 23 23 10 18 17 23 23

L, AW, MW, A and R are the length, average width, max width, area and ratio, respectively. I , P and S are the inclusion, patches and scratches,
respectively

Fig. 15 Skeleton extraction
results of steel surface defects

the skeleton extraction algorithm will be a highly accurate
method, while for some coarse defects, this method has some
disadvantages.

4 Conclusions

This paper presents an automatic method for detecting and
quantifying steel surface defects. In the detection stage, a
well-known pixel-level segmentation model DeepLab_v3+

is employed to detect the defect images, and an optimal
DeepLab_v3+ model is identified. Compared with other
popular pixel-level segmentation algorithms (FCN, SegNet,
U-Net and PGA-Net), its detection precision (with MIoU =
0.81, accuracy= 97% and F-score= 0.81) is competitive. In
the quantization stage, the reliable region quantization func-
tion (‘regionprops’) ofMATLAB is employed to quantify the
defects in the image. The relative errors of the length, average
width, maximum width, area and ratio are 10%, 18%, 17%,
23% and 23%, respectively. Moreover, our method is more
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competitive than the latest quantization algorithms proposed
in a related reference (12%, 22%, 22%, 23% and 23%).

Based on the above results, the following conclusions are
drawn:

(1) For steel surface defect detection, ResNet50 is the best
backbone network of DeepLab_v3+.

(2) DeepLab_v3+ is more suitable for detecting steel sur-
face defects than other algorithms (FCN, SegNet, U-Net
and PGA-Net).

(3) For the quantification of steel surface defects, the
‘regionprops’ function of MATLAB is more effective
than the related quantification algorithm.
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