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Abstract
Demand side management (DSM) separates elastic and inelastic loads and reorganizes a distribution system’s load demand
model while reducing the overall cost of the operation. This is accomplished by shifting flexible loads to hours with lower
utility costs per unit. In this study, a bi-level optimization technique is used to reduce the operating costs of a low voltage
microgrid system that uses battery energy storage, renewable energy sources, and fossil fuel generators while running in
grid-connected mode. The load model is reorganized at the first level of optimization according to the DSM involvement
level. Thereafter, the restructured load demand models are taken into account, and distributed generator scheduling ideas are
percolated for reducing the microgrid system’s generating costs in the second level. The optimization tool for the study was
a newly established hybrid swarm intelligence algorithm that has previously been utilized to solve a variety of power system
optimization challenges. For various grid participation models and grid pricing schemes, both with and without taking into
account DSM, the generating cost was reduced. When 10%, 20%, and 30% DSM involvement was taken into consideration,
the numerical findings reveal 25%, 50%, and 70% reduction, respectively, in costs.

Keywords Grid-connected microgrid · Dynamic economic dispatch · Demand side management · Distributed energy
resources, optimization · CSAJAYA

1 Introduction

1.1 Brief Overview

When all equality and inequality requirements are met, the
economic load dispatch (ELD) approach distributes genera-
tion among the assessed generating units in order to reduce
overall generation costs. Therefore, properly distributing a
portion of the power demandmight potentially result in lower
fuel costs. The distribution of the power demand across sev-
eral producing units has an influence on various processes,
including estimating, invoicing, unit commitment, and oth-
ers. Thewhole amount of electricity generatedmust equal the
total amount of power demanded. EconomicDispatchmaybe
separated into two categories depending on the type of load
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demand. Static Economic Load Dispatch (SELD) is the first,
while Dynamic Economic Load Dispatch (DELD) is the sec-
ond one. Static Economic Load Dispatch is used when there
is a single constant load demand, but dynamic Economic
Load Dispatch requires a dynamic load demand. In order
to provide large outputs, DELD predicts the power demand
for the upcoming hours and distributes the electricity across
numerous producing units. It appears that research is being
done to incorporate renewable energy in ELD to address the
problem of the depletion of fossil fuel reservoirs. Since tradi-
tional techniques like the Lagrange multiplier are unable to
handle the practical limits involved, which cause the fitness
function to be nonlinear and non-convex, the artificial intelli-
gence andMetaheuristic swarm are essential for overcoming
this difficulty. DSM, on the other hand, refers to the deliber-
ate creation and implementation of plans to alter customers’
dispatchable energy utilization.

1.2 Literature Review

TheEnhanced exploratorywhale optimization algorithmwas
developed in article [1], where the authors solved dynamic
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economic dispatch considering various effects and con-
straints. The authors of article [2] and [3] introduced Alter-
nating biogeography-based optimization with brain storm
optimization and a memory-based global differential evo-
lution algorithm to address non-convex dynamic economic
dispatch, respectively. Dey Bhattacharyya [4] considers a
variety of costs, including installation, operation, mainte-
nance, and depreciation, all of which has to dependent upon
the lifespan of the resources of the distributed energy used, as
well as fuel and emission costs, and the operating expenses
is minimized using a neighbourhood-based differential algo-
rithm. Ma et al. [5] proposed an ELD model for charging
plug-in electric vehicles in order to reduce the cost of pro-
duction and environmental pollutants. Authors of article [6],
dealt with DELD in an islanded microgrid considering ramp
rate constraints by novel alternating direction method of
multipliers. A Modified self-organizing hierarchical particle
swarm optimization with jumping time-varying accelera-
tion coefficients algorithm was proposed in article [7] to
deal with non-smooth DELD problem. Similarly, in article
[8], Improved slap–swarm optimizer was introduced with
accurate forecasting model for the DELD problem. Authors
in article [9] introduced grasshopper optimization algo-
rithm (GOA) for explaining dynamic economic load dispatch
(DELD) problem with hybrid wind-based power system. In
article [10], MABC-ANN (Hybrid Artificial Bees Colony
(ABC) with Bat Search Algorithm (BAT) and Artificial Neu-
ral Network (ANN)) technique was proposed for the optimal
scheduling of a microgrid system. Li [11] employed Multi-
objective Pareto optimal solution to solve the optimization
problem of space adaptive division for environmental eco-
nomic dispatch. Demand side management with dynamic
economic and emissiondispatchwasmergedbyLokeshgupta
and Sivasubramani [12]. One of the important parts of power
system [13, 14] is cost-effective load dispatch or Economic
Load Dispatch. The authors in article [15] created a DEED
system that included high wind penetration, uncertainty,
and intermittency, along with the energy storage system by
utilizing the direct search method (DSM) using weighted
sum methodology. Authors in article [16], proved the use-
fulness of the Interior search algorithm to cope with the
CEED and ELD in an isolated microgrid scenario. ELD
aids in finding the best and cost-effective schedule by bal-
ancing the electrical output in terms of power for multiple
generators delivering the power demand [17, 18]. For four
distinct load sharing situations, the authors [19] employed
a neighbourhood-based differential algorithm to manage a
sustainable integrated microgrid’s economic dispatch. In the
article [20], authors performed both static economic load
dispatch and dynamic economic dispatch problems using
Cuckoo Search Algorithm (CSA) and results compared to
particle swarm optimization (PSO) and differential evolu-
tion (DE). In article [21], genetic algorithm (GA), whale

optimization-differential evolution (WODEGA) algorithm
were used to solve optimal scheduling problem considering
unit commitment. The authors in [22] employed the lambda
iteration strategy to find the optimal scheduling for a 6-
unit system considering transmission losses. For tackling the
dynamic economic dispatch problem, authors [23] suggested
an improvised genetic algorithm approach. The ELD were
examined on 10 and 24 units considering valve point effects
to establish the method’s effectiveness. Linear, quadratic and
cubic wind profiles were modelled to estimate wind power
contribution from the dynamic wind velocity in the article
[24], and thereafter, utilizing CSAJAYA, five different test
systems were tested to perform dynamic economic dispatch.
The authors of [25] used a demand side management with
the novel CSAJAYA to lower the total generating expenses
of a grid-connected microgrid system. Kumar and Dhillon
[26] proposed a dynamically adjusted amalgamation of the
simplex Search method (SSM) and artificial algae algorithm
(AAA), AAA acting as a global optimizer and SSM provid-
ing local search. The created approach was tested on VPE on
13, 40, and 80 units including VPE effect, POZs and VPE on
140generators, and VPE including transmission losses on 40
generating units. The major objective in article [27] was to
reduce total power generating costs while taking into con-
sideration various constraints. Authors of [28], dealt with
the power dispatch problem with demand side management
using load profile management tool by a Newton-like par-
ticle swarm optimization. In reference [29], ISA not only
outperformed the cuckoo search algorithm (CSA), but also
outperformed the reduced gradient technique (RGM) and ant
colony optimization while dealing the problem of the iden-
tical objective function. To handle out the uncertainty and
system variability due to wind, the authors [30] employed a
two-stage stochastic DELD model with a stochastic decom-
position approach,whichwas performed and tested onPJM-5
and RTS-24 systems. To deal the ELD problem on a micro-
grid, the authors [31] employed lambda iteration, lambda
logic, PSO, and DSM-optimization techniques. The reli-
able functioning of microgrids was also specified after the
move from islanded mode to grid-connected mode and vice
versa. An improved technique for Optimal Power Genera-
tion under the Energy Deficient Scenarios using Bagging
Ensembles Algorithm was presented by the authors in arti-
cle [32]. They also evaluated an IEEE 30-bus test system
Bagging Ensembles Algorithm and artificial neural network
(ANN)with feed-forward back-propagationmodel. The neu-
ral network-based ensemble classifier was utilized on the
IEEE 30-bus test system to deal with the Short Term power
dispatch model in article [33]. Authors in [34] did Combined
EconomicEmissionDispatch cost by Fully InformedParticle
Swarm Optimization (FIPSO). By comparing the result with
the PSO on IEEE 30 bus benchmark system it was shown
that the FIPSO was superior. To deal with the Short Term
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LoadForecasting for economic scheduling the authors of arti-
cle [35] presented Bootstrap Aggregating Algorithm which
is Based on Ensemble Artificial Neural Network. In article
[36], authors optimized short term optimal scheduling prob-
lem like article [35] for a hydro-thermal unit by the Artificial
Bee Colony Algorithm.

Demand side management (DSM) is an economic strat-
egy which aims to restructure the load model by optimally
shifting the elastic or dispatchable loads to hours when elec-
tricity market price is less. Apart from peak reduction, DSM
also plays a crucial role in improving the load factor of the
system. Numerous articles are published for minimizing the
generation cost of a distributed system likemicrogrid but only
a few of them incorporate an economic strategy like DSM.
Authors in [37] implemented DSM to perform dynamic eco-
nomic emissiondispatchwhereas the dispatchable residential
loads were optimally scheduled using DSM by authors in
[37] to minimize the generation cost of the system. Likewise
DSM was implemented for solving dynamic optimal power
flow algorithm by authors in [38] using a multi-objective
harmony search algorithm. The primary factor for implemen-
tation of DSM is a dynamic time-of-usage-based electricity
market pricing, which means DSM won’t be economical if
the electricitymarket price is fixed throughout the scheduling
horizon. DSM is explained in much detail in Sect. 3.

1.3 Research Gap and Novel Contribution

Every day numerous new articles are being published in
reputed journals which reports diverse range of fitness func-
tion evaluating economic energy management of microgrid
systems. The complexity in these publications remain con-
fined to the constraints of various DERs used including
electric vehicles and combined heat and power systems but
in some way or other ignore the most easy yet standard econ-
omization strategy such as demand side management. In this
paper, different electricitymarket prices have been contrasted
and examined to deal with optimal scheduling on low voltage
microgrid system. Furthermore, the impact of the demand
side management (DSM) has been thoroughly investigated
while carrying out the bi-level optimal scheduling process.
The novel contribution of this article is:

i. Optimal restructuring of load demand model for various
levels of DSM participation and thereafter analysing the
peak reductions and load factor improvement.

ii. Detailed technoeconomic analysis of theMG system for
different cases.

iii. Comparative analysis of the proposed algorithm with
similar other algorithms.

1.4 Paper Orientation

The remaining sections of the paper are as follows: In
Sect. 2, the problem formulation is structured. DSM scheme
is described in Sect. 3; the case studies, results and the dis-
cussion have taken place in Sect. 4; and Sect. 5 concludes the
entire work.

2 Problem Formulation

The prime objective of economic dispatch is to generate elec-
trical energy at minimum cost while considering all equality
and inequality constraints.

2.1 Cost-Based Fitness Function

The cost function viz. the objective function can be described
as below.

CT �
24∑

t�1

n∑

i�1

(
ai P

2
i , t + bi Pi , t + ci

)
+ ctgrid ∗ Pt

grid (1)

The entire expense for 24 h is CT according to Eq. (1),
where t is the hour indicator.a,b and c are the cost coefficients
of DG (Diesel Generator), MT (Micro-turbine) and FC (Fuel
cell). ctgrid is the electricity market price charged by the grid.

2.2 Inequality Constraint

The equation of the inequality constraint of the DERs can be
written as below.

Pi , min ≤ Pi ≤ Pi , max (2)

where Pi,min and Pi,max are the lower and upper limit of ith
unit.

PGrid, min ≤ PGrid ≤ PGrid, max (3)

where PGrid,min and PGrid,max are the lower and upper limits
of the associate grid.

2.3 Equality Constraint

Theoverall power generation should have tomeet the demand
as per Eq. (4) that do include RES and BES.

n∑

i�1

Pi , t + PRES, t + PGrid, t + PBES, t � PD, t (4)

The outputs of RES, grid, and battery energy storage in
terms of power, at time interval t, can be denoted by, PRES,t ,
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PGrid,t , and PBES,t , respectively. PD,t is the power demand at
hour t.

2.4 Energy Storage SystemModelling

Let Sst , chi , t and Sst , dchi , t be the charging and discharging pow-
ers, respectively, for the ith distributed storage at hour t. So
the maximum charging rate and maximum discharging rate
can be described by (5) and (6).

0 ≤ Sst , chi , t ≤ Sst , chi , max (5)

0 ≤ Sst , dchi , t ≤ Sst , dchi , max (6)

SoCmin
i ≤ SoCi , t ≤ SoCmax

i (7)

SoCi , t+1 ≤ SoCi , t + ηi S
st , ch
i , t (8)

SoCi , t+1 ≤ SoCi , t − ηi S
st , dch
i , t (9)

While charging, the distributed storage facility’s state of
charge (SoC) at hour t is given by (8), and when discharging,
by (9). When analysing SoC, the charging and discharging
efficiency are also taken into account. Each storage facility’s
upper and lower SoC values are limited by Eq. (7).

2.5 Uncertainty Modelling

Uncertainty modelling [24] is a probabilistic and futuristic
predictive research that identifies the highest variation which
can be obtained by expected data, while accounting for the
unpredictable stochastic nature of renewable energy sources.
The following diagram depicts the uncertainty modelling of
solar and wind power in this article.

PV t
un � dPVun ∗ n1 + PV t

f c (10)

dPVun � 0.7 ∗
√
PV t

f c (11)

where the deviation of PV output is denoted by PVt
un and

PVt
fc is the day ahead forecasted PV output.

Wt
un � dPW ∗ n2 +Wt

f c (12)

dPW � 0.8 ∗
√
Wt

f c (13)

where Wt
un is uncertainty of wind, dPW is the deviation of

wind power and standard distribution function is denoted by
n2.

3 Demand SideManagement

The management of microgrid energy with a focus on its
economic operation has been and will continue to be a pop-
ular study area. However, if DSM strategy is not taken into
account, the economic functioning of a microgrid system is
essentially incomplete. If DSMhad been taken into consider-
ation, all the studies covered in the literature review section
would become even more cost-effective. DSM specifically
targets the subject network’s elastic loads and optimally
moves them to off-peak times. Even if the overall load
demand at the end of the scheduling period (often a day)
doesn’t change, the peak demand is significantly decreased,
which raises the load factor. Peak Clipping, Load shifting,
Strategic growth, valley filling, strategic conversion, flexible
load shape, etc. are some load shaping methods of DSM [25,
39–41].

The various load shaping methods are displayed in Fig. 1
for the DSM scheme. Authors in [25] employed the CSA-
JAYAwithDSMtechnique to reduce theoverall cost of a grid-
connected microgrid’s generation. Following are the stages
for implementing DSM:

Step 1 Input the number of hours.
Step 2 Input TOU grid price.
Step 3 Input the DSM % according the elastic load share.
Step 4 Calculate hourly elastic and inelastic load.
Step 5 Calculate the minimum, maximum, and sum for

the inelastic load. The control variables must be tuned for
the elastic load requirement.

Step 6 Using optimization technique,

Minimize [cos t tgrid ∗ (elastic_load t + inelastic_load t )]

(14)

where

0 ≤ elastic_load t ≤ elastic_loadmax (15)

Sum of load Demand �
T∑

t�1

(elastic_load t + inelastic_loadt )

(16)

Step 7 The inelastic load demand for each hour is added
to the newly restructured load demand model using the DSM
approach, with the ideal elastic load values determined.
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Fig. 1 Various load shaping
methods under DSM scheme [40]

Table 1 Generator parameters
[45] Units Max Min a (e/kW2) b (e/kW) c (e)

DG 600 30 0.0000073 0.0660 0.0045400

MT 300 0 0 0.0865 0

FC 300 0 0 0.1306 0

Grid 800 − 800 Refer to Fig. 3

4 Descriptive Analysis of the Case Study

4.1 System Description

A low voltage grid-connected microgrid systemwith two PV
systems, one wind farm, and a battery energy storage system
was the primary test system taken into account for this study.
A diesel generator, a micro-turbine, and a fuel cell were the
additional fuel-consuming DGs. Table 1 shows the generat-
ing characteristics, and Fig. 2 displays a visual depiction of
the microgrid system. The anticipated load demand and the
market price for electricity based on time of consumption
(TOU) are displayed in Fig. 3. Figure 4 depicts the expected
hourly production of the wind farm and photovoltaic systems
for the area where the microgrid was installed. The opti-
mization tool for the study was a recently developed hybrid
CSAJAYA algorithm, which has already demonstrated its
superiority in solving a number of power systemoptimization
problems, including reactive power problem [42], dynamic

economic emission dispatch [43, 44], and microgrid energy
management problem [25]. In the appendix section, the
details of the algorithm are tabulated. There were 10 pop-
ulations in this study, and a maximum of 100 iterations were
considered. An 8 GB RAM and Ryzen 5 5600 h processor
HP laptop with theMATLABR2021b environment was used
to carry out the optimization process.

4.2 Case Study

A microgrid system’s DSM-based fuel cost reduction
approach is essentially a bi-level optimization procedure.
In the first level, the predicted load demand for each hour
was divided into elastic and non-elastic loads depending on
various DSM participation percentages. In order to create
a revised load demand model for different percentages of
DSM involvement, the elastic loads were then optimized in
accordance with the TOU-based electricity market pricing.
In Sect. 3, this topic is covered in detail. Figure 5 depicts
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Fig. 2 Pictorial representation of the grid-connected microgrid model

Fig. 3 Microgrid system load demand and electricity price [45]

the restructured electrical load demand model for both the
levels and the electricity market price under the assumption
that 10–30% of the total hourly load demand was elastic
and took part in DSM modelling. Table 2 shows the benefits
of this load demand restructuring with DSM participation.
DSM lowers the peak of the demand curve without altering
the distribution system’s average as well as total electrical
demand. For 10, 20 and 30 per cent DSM involvement, the
peak demand was decreased to 0.1202 per cent, 0.1854 per
cent, and 2.06654 per cent, respectively.

For all load demand, the producing cost for the microgrid
system is now decreased in four different situations. Four
cases are investigated using this second level optimization
technique to evaluate producing costs. For all cases and four
different DSM schemes, generation costs are listed in Table
3.

• Case 1, Active Grid: In this scenario, it is considered that
the grid actively engages in purchasing and selling elec-
tricity to and from the microgrid system. In this instance,
the generation costs were determined to be $1538.7466,

Fig. 4 Power output from PV1, PV2 and Wind [45]

Fig. 5 Load demand curve without DSM, 10% DSM, 20% DSM, 30%
DSM
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Table 2 Load demand (kW)
characteristic with and without
DSM

Without DSM With 10% DSM With 20% DSM With 30% DSM

Peak (kW) 2382 2379.1380 2377.5845 2332.78

Average (kW) 1715.4167 1715.4167 1715.4167 1715.42

Total (kW) 41,170 41,170.0006 41,170.0004 41,170.00

Peak Reduction (%) Ref 0.1202 0.1854 2.06654

Load Factor (LF) Ref 0.6641 0.6827 0.7005

Table 3 Generation cost ($) for various cases under different DSM schemes

DSM Schemes With active grid With passive grid Without battery and active grid Active grid but fixed grid price

CASE 1 CASE 2 CASE 3 CASE 4

Without DSM (Base Case) 1538.7466 1934.9457 1536.7861 2668.22

10% DSM 1159.9583 1866.3836 1158.4768 2668.22

20% DSM 774.9913 1827.6109 773.1922 2668.22

30% DSM 434.6957 1815.4967 440.2007 2677.12

$1159.9583, $774.9913, and $434.6957 for without DSM,
10% DSM, 20% DSM, and 30% DSM, respectively. That
indicates that the 30%DSM plan had the largest reduction
in generating costs, which is about a 72% reduction over
the without DSM scheme. Figure 6a, b, c, and d shows
the hourly output of the DERs when the minimum gener-
ation cost was evaluated without DSM, 10% DSM, 20%
DSM, and 30% DSM scheme, respectively. It should be
highlighted that the grid’s hourly production has a sig-
nificant impact on the decrease in grid generating costs.
The cost of production decreases when the grid purchases
more electricity. Figure 7 displays the battery energy stor-
age system’s hourly output and its SOC throughout the day
when the minimal generating cost for case 1 was assessed.

• Case 2, Passive Grid: In this scenario, it is considered
that the grid passively engages in selling electricity to
the microgrid system. In this instance, the generation
costs were determined to be $1934.9457, $1866.3836,
$1827.6109 and $1815.4967 forwithoutDSM, 10%DSM,
20%DSM, and 30%DSM schemes, respectively. It can be
seen that the 30% DSM scheme is having the better cost
than the others. During this hour the rest of the DERs suf-
fices the total load demand of the microgrid system. Due
to the grid’s passive participation, it was unable to pur-
chase electricity, which increased the cost of generating
compared to Case 1.

• Case 3, Without Battery And Active Grid: Without taking
BES into account, the minimum generation cost was also
assessed in order to analyse the impact of the storage sys-
tem. Compared toCase 1, when theBESwas not taken into
account in the microgrid system, there was a significant
increment in generating costs. Figure 8 displays theDERs’

hourly output when BES was not taken into account.
Like case 1 and case 2, generation costs were investi-
gated under four different DSM schemes and the costs
can be seen in the second last column of Table 3. Figure 9
shows the hourly output graph for the case, without battery
and with 30% DSM.

• Case 4, Active Grid But Fixed Grid Price: Only the impact
of electricity market price, as described by authors in [46,
47], was the purpose of this case study. DSM participation
levels are not facilitated by fixed grid pricing. The grid’s
best approach to charging microgrid consumers is to use
a TOU-based power market pricing model. In this situa-
tion, the grid fixed the market price of electricity at 0.572$
[45]. Compared to Case 1, the generating cost in Case 4
increased from 1538.7466 to 2668.22 $. Afterwards, the
generation cost did not change as a result of the DSM par-
ticipation levels as shown in Table 3.

For a descriptive comparative analysis of the proposed
algorithm, Case 1 was minimized using different algorithms
like grey wolf optimizer (GWO) [48], whale optimization
algorithm (WOA) [49], hybrid whale optimization algorithm
sine cosine algorithm (WOASCA) [50] and hybrid modified
GWO-SCA-crow search algorithm (MGWOSCACSA) [46,
47]. All of these algorithms were execute for 30 independent
individual trials and the statistical results are displayed in
Table 4. It can be seen that proposedCSAJAYAoutperformed
all the algorithms yielding least value of fitness functionmax-
imum number of times (28 out of 30). Furthermoreminimum
value of standard deviation and elapsed time points towards
the robustness and efficiencyof the proposedCSAJAYAalgo-
rithm.
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Fig. 6 Hourly output graph of active grid case: a without DSM, b10%
DSM, c 20% DSM, and d 30% DSM

Fig. 7 Hourly output of the battery storage system and its state of charge
(SOC) for case 1

Fig. 8 Hourly output graph of passive grid case: a without DSM and
b 30% DSM
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Fig. 9 Hourly output graph of without battery case with 30% DSM

Figure 10 shows Table 3 in visual form. This graph indi-
cates the 25–72% reduction in generating costs with and
without DSM. The generating costs of the microgrid system
did not changewhen the grid imposed afixed price electricity,
as can also be seen in this figure. Figure 11 shows the conver-
gence curve characteristics of various algorithms when Case
1 was evaluated without considering DSM. The minimum
value of fitness function attained by CSAJAYAwithin 50–60
iterations can be seen from the figure.

5 Conclusion

An LV microgrid system performed a descriptive economic
study. The benefits of DSM involvement, grid pricing as
well as grid participation were highlighted in this study. The
study’s concluding observations are stated below:

• Active grid involvements crucial for lowering the system’s
generation costs. A comparison between the generation
costs of Cases 1 and 2 portrays the same.

• Involvement of DSM minimizes the generation cost up to
25–72% w.r.t cost calculated without DSM. Furthermore,
the added advantages of DSM also include reducing the
peak demand and increasing the load factorwithout chang-
ing the total load and average load of the demand.

Fig. 10 Pictorial representation of costs for different cases studied with
and without DSM

Fig. 11 Convergence curves for various algorithms

• The effectiveness of DSM completely depends on TOU-
based power market pricing; hence, the price of electricity
should change from hour to hour in response to demand.
Electricity fixed prices have no bearing onDSM loadmod-
elling. On the other hand, when the grid price is set, the
system’s generation costs increase.When comparing cases
1 and 4, the same behaviour can be seen.

• Detailed statistical analysis also portrays the robustness
and efficiency of the proposed hybrid algorithm which
have been used as the optimization tool for the study.

Table 4 Detailed statistical
analysis among various
algorithms for Case 1 (without
DSM)

Algorithms Min Cost ($) Max Cost ($) Mean Cost ($) SD Time (sec) Hits

WOA 1759.3605 1770.1450 1762.9553 5.1708 11.25 20

GWO 1671.1305 1685.6540 1675.0034 6.5323 12.36 22

WOASCA 1616.2334 1625.6578 1617.4900 3.2584 15.41 26

MGWOSCACSA 1593.4052 1601.2120 1594.1859 2.3821 9.47 27

CSAJAYA 1538.7466 1539.2340 1538.9801 0.1508 6.36 28
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Fig. 12 Flow chart of CSAJAYA
for DED in grid-connected
microgrid

Future scope of work: This issue may be resolved by
incorporating unit commitment of theDERs, Incentive-based
demand response, etc. in order to increase the complexity and
comply with the recent trend of ongoing research related to
microgrid energy management (see Fig. 12).

Appendix

The optimization tool used for minimization of generation
cost for the microgrid system is a hybrid algorithm used by
the amalgamation of crow search algorithm and JAYA algo-
rithm. The mathematical modelling details of the algorithm
are discussed below.

Xu, iter+1

�
{
Xu, iter + randu × flu × (mv, iter − Xu, iter), if randv ≥ APv

a random position, otherwise

(17)

mu, iter+1 �
{
Xu, iter+1, if f (Xu, iter+1) < f (mu, iter)

mu, iter, otherwise
(18)

(19)

Xk, q , iter+1 � Xk, q , iter + c′ ∗ (Xk, best, iter − ∣∣Xk, q , iter
∣∣)

− c′′ ∗ (
Xk, worst, iter − ∣∣Xk, q , iter

∣∣)
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Xu, iter+1 �

⎧
⎪⎪⎨

⎪⎪⎩

Xu, iter + rand1 × flu × (mv, iter − Xu, iter) , when rand j ≥ AP & k � 1 : n

Xu, iter, k + rand1 × mk
best ×

∣∣∣Xu, iter, k
∣∣∣ − rand2 × mk

worst ×
∣∣∣Xu, iter, k

∣∣∣ , when rand j ≤ AP & k � 1 : n

end
(20)

where X is solution of current iteration ‘iter’. AP, m, and fl
are awareness probability, memory matrix, and flight length
of the crow, respectively. Xbest and Xworst are best and worst
solution for iteration ‘iter’.

CSA
[51]

JAYA
[52]

CSAJAYA
[42–44]

Governing Equation (17) (19) (20)

Memory Update (18) NA (18)
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