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Abstract
In this study, we proposed a new metaheuristic algorithm called Electrical Search Algorithm (ESA). The proposed algorithm
is based on the movement of electricity in high-resistive areas such as wood, glass, and gases. ESA has a unique initialization
scheme that only one agent initializes at the lower and upper bounds of the search space, which creates structures called poles.
After that, ESA uses unique exploration and exploitation strategies to search. The search mechanism is based on electrons
moving to opposite poles. ESAdiffers fromothermetaheuristics compared to its initialization scheme, pole searchmechanism,
and update strategy of the best solutions. ESA was tested with the “100-Digit Challenge” benchmark functions in the IEEE-
CEC-2019, four well-known benchmark functions, and an np-hard clustering problem. For the clustering problem, we used
four well-known datasets: Iris, Wine, Seeds, and Hepatitis C Virus. ESA was compared with seven different metaheuristic
algorithms on these well-known benchmark functions, and the results of the clustering problem were compared with the K-
Means algorithm. Additionally, Friedman Signed Rank and post hoc Wilcoxon Test were run to show the significance of the
results. In all of the well-known benchmark functions, ESA either offered the best results or similar results to other compared
algorithms. The score of the ESA on the IEEE-CEC-2019 benchmark functions shows us that even with the minor evaluation
numbers, ESA can achieve similar results to the competing algorithms. Results show that ESA has a robust mechanism for
not trapping in local points and moves slow but persistent rate.

Keywords Data clustering · Genetic algorithms · Metaheuristic algorithms · Optimization · Particle swarm optimization

1 Introduction

According toBritannica, optimization is a collection ofmath-
ematical principles and methods used in many disciplines to
solve quantitative problems [1]. The optimization process is
applied in almost every field today. While researchers solved
simple optimization problems in traditional ways in the past,
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nowadays, increasingly complex optimization problems are
solved with the help of computers.

Real-world problems in the optimization field are com-
plex and challenging to solve. Algorithms used to obtain
exact results in such complex and challenging to solve prob-
lems are usually slow in execution time. They are designed
to function only in the problem they are intended to solve.
It is impossible to use such algorithms for other challeng-
ing and complex problems. For this reason, algorithms that
do not provide exact solutions and work faster have been
developed. These algorithms are called heuristic algorithms.
Heuristic algorithms are faster than other algorithms and aim
to find a solution close to the best solution by evaluating all
possibilities in the solution space. However, they never guar-
antee that they will find the best solution. Although such
algorithms work fast, they are the algorithms dependent on
the problem they apply since the information of the problem
that the algorithms will use is used in the development phase.
These algorithms are called classical heuristic algorithms.
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Apart from classical heuristic algorithms, meta-heuristic
algorithms are not dependent on the problem. Meta means
high level. In other words, we can evaluate meta-heuristic
algorithms as high-level heuristic algorithms. These algo-
rithms are often designed with inspiration from nature and
can be applied to many problems by simply changing the
objective function [2]. Although meta-heuristic algorithms
do not have any information about the problem, they can
be considered a kind of black box because they can give
the most appropriate variable values for the most appro-
priate solution. Recently, some engineering problems that
we know np-hard problems were solved with metaheuris-
tic algorithms. No Free Lunch Theorem of Optimization [3]
proves that optimization algorithms are not always a suitable
and perfect tool for all optimization problems. That means
metaheuristic algorithms perform better results on specific
optimization problems and not as well on other problems.
Hence, this theorem encourages researchers to develop more
efficient metaheuristic algorithms. Even in the last two years,
researchers solved problems such as damage identification
in plate structures [4], identification of static and dynamic
cracks on mechanical structures [5], and structural damage
detection [6] with metaheuristic algorithms. Also, enhanced
versions of these algorithms are still being researched, such
as a novel version of Cuckoo search [7] in recent years.

The primary purpose of this study is to develop a
new meta-heuristic algorithm. The developed algorithm is
inspired by the movement of electricity in a highly resistive
environment. The proposed algorithm is called Electri-
cal Search Algorithm (ESA). In this work, we compared
our proposed algorithm with some of the early developed
and recently developed metaheuristic algorithms which are
Genetic Algorithm (GA) [8], Particle Swarm Optimization
(PSO) [9], Backtracking Search Algorithm (BSA) [10], Dif-
ferential Search Algorithm (DSA) [11], Marine Predators
Algorithm (MPA) [12], K-Means Clustering Optimization
Algorithm (KO) [13], and Harris Hawks Optimizer Algo-
rithm (HHO) [14].

We compared the performance of the proposed algorithm
with the performance of seven existing algorithms in four
benchmark test functions and the clustering performance
of four UCI machine learning clustering datasets of the K-
Means algorithm. Also, we tested the proposed algorithm in
IEEE CEC (2019) accuracy benchmark functions.

The rest of the paper is organized as follows. Background
work and literature review are presented in Sect. 2. The prob-
lem definition of the clustering problem and the proposed
Electrical Search Algorithm are presented in Sect. 3. Section
4 consists of performance evaluations and an analysis of the
proposed algorithm. As a final, conclusions and future works
are mentioned in Sect. 5.

2 Background work

2.1 Data clustering

Data clustering defines a collection of patterns in a uniform
dataset. The objective is to develop an automatic algorithm
that can accurately classify anunlabeleddataset.Data cluster-
ing is a technique for organizing data intomeaningful clusters
based on similarity criteria to findgroupingswith the smallest
intra-cluster and highest inter-cluster distances. Each clus-
ter contains data that are related to each other but different
from other clusters. The clustering problem is proven that an
NP-hard problem. All clustering algorithms can be classified
into three categories: hierarchical, partitional, and overlap-
ping. Hierarchical algorithms work by taking each data as a
cluster. Then adds, similar data into the same cluster, and this
process reduces the cluster number. The algorithm runs until
the predefined cluster number is achieved. Overlapping algo-
rithms are better expressed as fuzzy clustering. In this type
of clustering, all data is a member of all clusters with a mem-
bership degree. By assigning each data to the cluster with the
highest degree of membership, we can assign these data to
the same clusters. Partitional algorithms take data and assign
them into clusters according to the similarity between data
and cluster center. The partitional clustering method splits a
data set into several clusters according to the fitness function.
The fitness function directly influences the nature of cluster
formation. The partitioning job is transformed into an opti-
mization problem once a suitable fitness function has been
chosen, for instance, clustering data based on minimization
of inter-cluster distance or maximization of the intra-cluster
distance of cluster centers [15].

This approach is the most popular since MacQueen
developed the k-means algorithm [16]. With this approach,
algorithms can cluster large datasets easily. Because of that,
researchers from various fields use these types of algorithms.
These fields include, but are not limited to, signal and image
processing, wireless sensor network coverage, robotics, web
mining, pattern recognition, consumer identification in eco-
nomics, and disease identification in medical sciences [15].

2.2 Data clustering as an optimization problem

Since we can handle clustering as an optimization problem,
we can cluster data with meta-heuristic algorithms. Many
studies have been done on solving clustering problems with
meta-heuristics. Commonly used heuristic algorithms for
solving clustering problems are Genetic Algorithms (GAs)
and swarm-based optimization algorithms such as the parti-
cle swarm optimization algorithm (PSO).

In [17], the genetic algorithm is used to optimize clusters
created during unsupervised clustering. The aim of the [17]
is to assign data to clusters, and the algorithm’s performance

123



Arabian Journal for Science and Engineering (2023) 48:10153–10172 10155

depends on the initial population. Sarkar et al. used evolution-
ary programming for clustering in [18]. The methodology
and the objective functions used for solving the clustering
problem are similar to our approach. In work [19], another
form of the genetic algorithm is proposed for solving clus-
tering problems. However, it differs from [17] in that they
selected initial cluster centers from data that will be clus-
tered. In [20], another genetic algorithm variation is used
to solve the clustering problem. In this work, the structure
of the gene string consists of a representation of assigned
clusters. In [21], the chromosome structure of the genetic
algorithm is represented as strings of real numbers values of
the cluster centers. The Genetic K-Means Algorithm (GKA)
is introduced in [22]. GKA has one step K-Means opera-
tor, which takes assigned data points from coded strings and
reassigns them to the nearest cluster centers. In [23], a hybrid
k-medoid algorithm (HKA) is presented. HKA consists of k-
medoid and local search heuristics, and the heuristic search
part of the algorithm has hybridized with GA. Fast Genetic
K-Means Algorithm (FGKA) is introduced in [24]. FGKA
is inspired by [22]. The difference between the FGKA and
GKA is that the FGKA allows illegal strings, and GKA tries
to eliminate illegal strings. The incrementalGeneticK-means
Algorithm (IGKA) [25] is an extension of the FGKA [24].
IGKA has better running performance than FGKA in cases
when the mutation probability is small. The idea behind the
IGKA is that when the mutation probability is small, calcu-
late the objective value and cluster centroids incrementally.
Both algorithms converge to the same result, but IGKA is
faster than FGKA. In the same paper, the authors also intro-
duced the Hybrid Genetic K-means Algorithm (HGKA), a
hybridized version of the IGKA and FGKA that combines
the best parts of both algorithms. In [26], an algorithm called
COWCLUS is presented. This algorithm is a combination of
GA and hill-climbing algorithms. COWCLUS genes are rep-
resented as an assigned cluster of data points. COWCLUS
acts as a standard GA algorithm, but at the last iteration, the
algorithmperforms a local searchwith the hill-climbing algo-
rithm. COWCLUS uses the Variance Ratio Criterion (VRC)
as the objective function to determine clusters.

Previously mentioned papers take the clustering problem
in fixed cluster numbers. However, in the real world, in most
cases, cluster size cannot be determinedwithout prior knowl-
edge. Algorithms that do not need to specify cluster size are
developed to overcome this problem.

In [27], automatic clustering is proposed. The idea of the
[27] is a weight added into the inter-distance in the objective
function, which consists of subtraction of the inter-distance
from intra-distance that can determine the cluster size. A
small weight value causes clusters to be large numbers and
compact, while a higher value of theweight results in clusters
with a small number and broader. In paper [28], real coded
GA is used for the clustering problem where the number of

the clusters is not fixed prior. The paper’s fundamental idea
is that each gene contains real coded clusters centers in the
gene structure and can have a different length. That means
that each gene can represent a different number of cluster cen-
ters. Another attempt for automatic clustering was made in
[29]. This work also uses real-coded GA, and the gene struc-
ture contains real-coded cluster centers. Each gene’s length is
fixed on a maximum number of clusters. The critical element
of the paper is that in gene coding, there is a symbol repre-
sented as ”do not care,” which means genes can represent an
unfixed number of cluster centers.

There are also swarm-based meta-heuristic algorithms
that can solve the clustering problem. One of the popular
swarm-based metaheuristic algorithms is PSO.

In [30], PSO is used for solving the clustering problem.
The paper shows that the standard PSO algorithm can solve
the clustering problem and develop a PSO hybrid that takes
the initial seed from the K-Means algorithm. A different
approach for clustering with PSO is made in [31]. Despite
other approaches, a particle represents only one cluster center
and is affected by data points in this approach. Each parti-
cle has one part of the solution. All particles must be united
and held as the final solution to solve the clustering problem.
Accelerated chaotic particle swarm optimization (ACPSO) is
proposed to solve the clustering problem [32]. Thiswork uses
chaotic maps in standard PSO velocity updating formulation
to fast convergence.

Besides pure PSO algorithms, hybrid algorithms are used
for solving the clustering problem.

Ahybrid versionof thePSOandK-HarmonicMeans(KHM)
algorithm is introduced [33]. The algorithm called PSOKHM
works sequentially as PSO andKHM.The first eight iteration
works as PSO, and after the eighth iteration, the algorithm
works throughout four iterations as KHM. This switching
process continues until the end of the iteration limit. A com-
bination of PSO and Rough Set (RS) is presented in [34].
Unlike the other approaches, in this work, the dimension
of the data point has a cluster membership. If a data point
reaches a certain amount of membership in that cluster, that
data point is assigned to that cluster. In [35], a hybrid algo-
rithm called FAPSO-ACO-K is proposed that consists of the
combination of fuzzy adaptive particle swarm optimization
(FAPSO), ant colony optimization (ACO), and the K-means
algorithm. The algorithm differs from the PSO as all parti-
cles have their global best value, which can be selected and
updated via the ACO trail intensity mechanism. After the
algorithm reaches the stopping criteria, the final global best
value is considered the initial solution of the K-Means algo-
rithm, and the K-Means algorithm starts clustering. At the
end of the calculation, if the found solution is better than
the global best value solution algorithm considers the output
result of the K-Means solution. If it is imperfect, the algo-
rithm considers the output result of the PSO-ACO part.
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In conclusion, in two decades, comprehensive work has
been done to solve this np-hard problem. In our work, we
selected the objective function, cluster coding scheme in
agents, and clustering performance parameters in light of
these works.

2.3 Particle swarm optimization

Particle Swarm Optimization (PSO) is a swarm intelligence-
based optimization algorithm [9]. The behavior of a flock of
birds searching for a food source has inspired this algorithm.
The algorithm’s core principle is that birds in the swarm
share information about newly discovered food resources.
The birds move toward the best food resource among the
newly discovered resources. While migrating to the best
food source, birds examine the search space for new food
resources, causing the algorithm to scan most of the search
space for alternative food sources, potentially identifying an
approximate best solution. In the algorithm, each bird in the
flock is called a particle. The position update formula of the
particle is given in Eq.(1), and the velocity update formula of
the particle is given in Eq. (2). The mathematical expression
of the search for food behavior can be defined as follows:

xi j (t + 1) = xi j (t) + vi j (t) (1)

vi j (t + 1) = vi j (t) + c1r1 j (t)
[
yi j (t) − xi j (t)

]

+ c2r2 j (t)
[
ϒ j (t) − xi j (t)

]
(2)

where variable xi j and vi j denote the current value and
velocity, respectively, of the particle i in dimension j at iter-
ation t . Variable yi j and ϒ j are the best solutions found by
particle and the best solutions of all particles, respectively.
Constants c1 and c2 are the personal and social learning coef-
ficient, respectively, and the variables r1 j and r2 j are the
random numbers generated in the range of [0.0,1.0].

2.4 Genetic algorithm

The genetic algorithm was introduced in 1975 by Holland
[8]. The genetic algorithm is an evolutionary algorithm based
on the biological reproduction mechanism. In the genetic
algorithm, each optimization agent is defined as a gene, and
the collection of these genes is expressed as a population.
There are two unique steps in this algorithm. The first is
the crossover stage, which combines two genes to create a
new one. The second stage is a mutation, which randomly
modifies different regions of the newly formed gene. With
the help of these unique steps, randomly generated popula-
tions may converge to a good solution. Over time, the genetic
algorithm evolved. Crossover operators [36–38], mutation

operators [39], and gene selection mechanisms [40] were all
introduced in the literature [41–44].

2.5 Differential search algorithm

The seasonal migration of various animals searching for a
productive livelihood is the theory behind the development
of theDSA.All organisms join together to forma superorgan-
ism and begin searching for efficient habitats. The individuals
of the superorganismexaminewhether theyfit the provisional
criteria of randomly chosen places during their travels. Per-
sons of the superorganism announced the stopover quickly
nestle and continue their voyage from that area if any site is
suited for their temporary layover during the trip. During a
stopover, the superorganism uses a random process related
to the Brownian-like random walk to explore the sites left
between the organisms. Then, donors are created by reorga-
nizing all of the superorganisms’ individuals. These donors
are ideal for locating the stopover location. Randomly cho-
sen persons of the superorganismmigrate towards the donor’s
destination to effectively find the stopover area. This change
in the site allows the superorganism to keep moving toward
the global minimum. The DSA is convenient for multimodal
optimization problems because it does not prefer to select the
best possible solution for a presented problem correctly. The
DSA contains two fine-tuning control variables based on the
task at hand. Detailed information on the DSA can be found
in [11].

2.6 Backtracking search algorithm

The BSA [10], which is based on Evolutionary Algorithms
(EAs), is designed to address common issues in EAs, such as
high sensitivity to control parameters and premature conver-
gence. The BSA follows the same five steps as the traditional
EA: initialization, selection-I,mutation, crossover, and selec-
tion II. During selection-I, The BSA computes the historical
population as a pointer of the search path. At the beginning
of each iteration, the algorithm can redefine the historical
people. A person from a prior generation, chosen randomly,
behaves like a memory until it is modified. The BSA has a
different mutation and crossover strategy than the EA and its
improved forms. In the mutation phase, merely one parame-
ter is employed to govern the expanse of the search direction
matrix while producing trial populations. Crossover, on the
other hand, is a difficult concept to grasp. The final trial pop-
ulation is created using two ways. The first method controls
the number of individuals who will mutate in a trial using a
mix rate.

In contrast, the second method enables merely one ran-
domly selected person to mutate in each attempt. The
population is updated using greedy selection in the second
stage of the BSA, in which persons with only high fitness
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values in the attempted population are employed. Despite its
simplistic formation, the algorithm’s usage of the dual pop-
ulation approach may make it time and memory-consuming
to compute.

2.7 Marine predator algorithm

The idea behind the Marine Predator Algorithm (MPA) is
the movements of ocean predators while hunting for their
prey. MPA search agents use both Lévy flight and Brown-
ian motion. This algorithm has three main stages. Phase one
is when the prey is moving more swiftly than the predator.
Phase two is when both predator and prey are moving at
nearly the same rate, and phase three is when the predator
moves faster than the prey. In phase one, exploration stands
out, and Brownian motion is used. Later, in phase two, both
Lévy flight and Brownian motion are used for exploration
and exploitation. After that, in phase three, only Lévy flight is
used for exploitation. The algorithm uses Brownian motion
for giant leaps, and for small steps, it uses the Lévy flight
strategy [12].

2.8 K-means clustering optimization algorithm

The main idea of the K-Means Clustering Optimization
Algorithm (KO) is to find better potential search spaces by
clustering the search space into three clusters. Unlike the
other optimization algorithms, KO focuses on improving the
search space, not the search agent itself. KO updates the
initial population only by the assigned search agent to that
specific population. Besides, the population in KO shrinks
from the initial population number N to four by eliminating
the worst solutions. Search agents search majorly in their
cluster areas within the perimeter, which is calculated and
shrank through the iterations. Also, agents can search outside
their defined search space within the limit of the formulation.
In each iteration, cluster centers are recalculated, and cluster
centers are getting closer to the global best position at the late
stages of the algorithm. Search agents select their strategy in
the next iteration according to a formulation and a threshold
value. More detailed information on the KO can be found in
[13].

2.9 Harris Hawks optimizer algorithm

The Harris Hawks Optimizer algorithm (HHO) is inspired
by the predator bird Harris’ Hawks and their behavior of
foraging with their flock and family members. In nature,
other predator birds search and hunt down the prey alone.
In contrast, Harris’ Hawks have a unique cooperative forag-
ing behavior. HHO has two exploration and two exploitation
strategies. Exploration strategies are based on random loca-
tion perch or other family members’ location perch, and

they have the same chances of selection. The transition from
exploration to the exploitation stage is based on escaping
energy of the prey, which decreases through iterations.While
the prey’s escaping energy is high in the early stages of the
algorithm, the search strategy is selected as exploration. At
the later stages of the algorithm, the search strategy changes
from exploration the exploitation because of the decreased
prey’s escaping energy. For the exploitation stage, HHO has
four possibilities: soft besiege, hard besiege, soft besiegewith
progressive rapid dives, and hard besiege with progressive
rapid dives. More detailed information on the HHO can be
found in [14].

3 Material andmethods

3.1 Definition of clustering problem

Clustering is the operation of dividing a given set of n points
in anN-dimensional Euclidean space by a predefined number
of groups (or clusters), such as K , based on the measure of
similarity/dissimilarity. For example, let us say a group of n
points x1, x2, . . . , xn is represented by S, and a cluster K by
C1,C2, . . . ,CK . In this case, the mathematical expression
of the clustering operation can be defined as follows:

Ci �= ∅ i = 1, . . . , K

Ci j = ∅, i = 1, . . . , K , j = 1, . . . , K ,

i �= j
K⋃

i=1

Ci = S

The variables that we will optimize in the problem are
the cluster centers. In general, this problem is a minimiza-
tion problem. The problem aims to minimize the sum of the
Euclidean distance difference between the points belonging
to each cluster center. For the points x and y given by coordi-
nates in n-dimensional Euclidean space, the distance formula
is given in Eq. (3).

d(x, y) =
√√√√

n∑

i=1

(xi − yi )2 (3)

Since each point in the dataset is assigned to a cluster, the
objective function can be defined as in Eq. (4).

f =
n∑

i=1

d(xi − z j ) (4)

where, xi is the member of the cluster k j with the cluster
center of z j , n is the number of points in the cluster k j and j is
definedbetween1 to K ,which is the number of the predefined
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Fig. 1 Flowchart of the clustering problem algorithm

cluster. Thus, our objective in solving the clustering problem
is the minimize the function f .

Since we have an objective function, we can solve the
problem with metaheuristics algorithms. In our approach,
cluster centers are the variables that need to be optimized.
Firstly, cluster centers for K clusters are randomly gener-
ated. After that, all data is assigned to the nearest cluster
with the nearest cluster center. Thus, each data can have one
cluster. After assigning each point to the nearest cluster, a
new cluster center is found by simply averaging the points
assigned to the cluster to ease the algorithm’s work. After
that, the objective function f is calculated with new cluster
centers. The optimization process continues with new cluster
centers until predefined stopping criteria aremet. Aflowchart
of the process is given in Fig. 1.

3.2 Proposed algorithm

3.2.1 Movement of the electricity

Electricity is a phenomenon that occurs in nature. In nature,
electricity can be found in many forms, such as lightning, the
human nerve system, and some animals’ defense system. The

Fig. 2 Lichtenberg figure created on wood with high voltage electricity
[46]

movement of the electricity is called electric current and is
defined as simply the motion of the atom’s valance electron.
Suppose an existing potential energy source with a conductor
attached to the poles of the energy source has an energy that
is large enough to attract or repel an electron. In that case,
the electrons in this source can move through the negative
pole of the energy source to the positive pole with the help of
the valance electrons in the conductor’s atom. By its nature,
electricity likes to move in low-resistive areas. Since areas
of less resistance require less energy than areas of higher
resistance, it seeks areas of minimal resistance to moving.
While searching the less resistive areas, electricity moves
like Brownianmotion and leaves behind Lichtenberg figures’
pattern.Themathematical structure of the searchmodel of the
proposed algorithm is based on the generation of Lichtenberg
figures generated by electricity in high resistance fields [45].
In Fig. 2, we can see the pattern of the Lichtenberg figure.
Although the shapes have randompatterns, they are similar to
trees that branch. Because of the tree structure, these shapes
are also called Brownian Trees.

The mathematical expression of how the valence electron
moves in a high resistive area is given in Eq. (5) [45].

p(x, t) = N√
4πDt

× exp

(−x2

4Dt

)
(5)

where, N represents the total particle number, D the diffusion
coefficient of the environment, t time, and x position.

The electricity moves to the opposite pole to complete
the loop via low-resistance areas. The main inspiration of
the work is the movement of the electricity while trying to
complete the loop and its search for low resistive paths, not
the shortest paths.

If we examine the Lichtenberg figures, we can see that
electricity diverts to low resistive areas even if it has a chance
to complete the loop via the shortest path. Itmoves around the
high-resistive areas and branches to the low-resistive regions.
The start point of the poles is the edge of thewood surface and
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Fig. 3 Burn marks created on wood on high voltage electricity

searches the low resistive areas to the center. If we imagine
the wood surface as a search space, the initialization scheme
of the proposed algorithm cannot be random. It has to start
at two different and far points, which is different from most
metaheuristic algorithms. The electricity searches the entire
wood surface slowly but stably. This persistence makes our
algorithm tackle the early convergence problem. The elec-
tricity movement was done in the poles, which is a different
mechanic for a search algorithm. In our proposed algorithm
first half of the population searches the search space towards
the opposite pole.

Meanwhile, the best location of the pole and the current
best location of the entire search space is updated. After that
other half of the population starts to search with updated
values of the best locations. The search starts with only one
agent in each pole, and new search agents are created with
local search. While creating the agents, the best locations are
also updated. Thismechanism gives our algorithm a dynamic
structure.

Moving steps of the alternating current high voltage elec-
tricity on wood given in Fig. 3. If we examine Fig. 3, we
can see in 3a that the electricity starts to move with random
branches. Because the alternating current, negative and pos-
itive poles of the electric source are shifting, it causes the
movement of the electric start on both poles, respectively.
Regular electric grid alternates at 50 or 60 Hz, depending on
the country. It means polar shift happens every 0.02 or 0.0167
seconds. Because the shifting is too fast, the human eye can-
not see the shifting motion, and it may seem that electricity
moves from both poles simultaneously. However, it moves
respectively. If we look at 3b right side of the pole is branched
with twomain branches, and the left side branched three sep-
arate ways but only continues from one. Later 3c, we can see
that the left side of the pole continues from one way while
the right side selects the main way to move forward. After
that, in 3d, we can see that left side of the pole, the main
way is abandoned, and a new main way is generated while
the right side of the pole adjusts itself to changes in the left

pole. When we look at the 3e and 3f, it may seem electricity
almost completes the loop, but because of the high resistive
areas main way on the left side of the pole is abandoned. A
newway starts from the earlier main way, which is generated
in 3c, and the right side of the pole adjusts itself and curves
upward to reach the left side of the pole. In images 3g and
3h, we can see both poles search the wood for low resistive
areas and move towards each other. If we look at the start-
ing point of both poles, the shortest way is the linear line,
but electricity chooses to consume less energy to move and
complete the loop. This structure of the search mechanism
creates our algorithm’s search pattern. Our proposed algo-
rithm mimics this natural phenomenon and tries to search
the entire search space with branches while abandoning
high resistive areas and transferring energy to more valuable
areas.

3.2.2 Algorithm steps

The proposed algorithmmimics the event of themovement of
electricity on a high resistive area or surface. Like electricity,
our algorithm has two poles which are negative and positive.
The algorithm starts in these poles. The search agent in the
negative pole starts a search by referencing theminimumval-
ues of the search space dimensions. The search agent starts a
search with maximum values of the search space dimensions
for the positive pole. The search begins with an agent at both
poles sequentially and increases the number of agents while
agents of opposite poles attract each other. The maximum
number of agents for each pole is equal and predefined at
the beginning of the algorithm. Agents are attracted to both
the best of the opposite pole agent and the global best agent,
which can be in the opposite pole or the same pole as the
agent. As shown in Fig. 2, many branches encountered with
very high resistance are terminated prematurely and are not
continued moving to the opposite pole. We can say those
branches failed for search or are trapped in local extremum
points. Tomimic this mechanism, we added a failure variable
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Fig. 4 Flowchart of proposed ESA

for the agents. This variable will be increased whenever an
agent fails to provide a better solution for the problem. That
means our agents have a memory feature that can remember
the best solution of their own.

After an agent passes the limit of the failure variable, the
proposed algorithm will delete the agent, and a new agent
will be created in deleted agent’s assigned pole. This mecha-
nismprovides the algorithm solution for the problemof being
stuck up in the local extremum point. As a result of that, the
population gets better diversity. The flowchart of the pro-
posed algorithm is given in Fig. 4. The proposed algorithm
uses Eq. (6) for global search and Eq. (7) for local search.
Besides that, the local search formula is an adapted version
of Eq. (5).

xi (t + 1) = 0.7 × (
r1 × xi + (1 − r1) × xbesti

)

+0.3 × (
r2 × xi + (1 − r2) × xpolei

)
(6)

xi (t + 1) = xi + 0.3 × �xbest + 0.7 × �xpole√
4πDt

exp

( −1

4Dt

)

(7)

InEq. (6), variable xi denotes the current value of the agent
i . Variables r1 and r2 are the randomnumbers generated in the
range of [0.0,1.0]. Finally, variables xbesti and xpolei denote
the values of the best agents in the search space and opposite
pole in that iteration, respectively. Eq. (6) mimics the attrac-
tion of the opposite poles. The values xbesti and xpolei change
in every iteration, and these values are specific for the run-
ning iteration. The change in values mimics the adjustment
when the pole shifting occurs and a new main way for the
pole is generated. The fixed values 0.7 and 0.3 are attraction
coefficients selected by numerous experiments while devel-
oping the algorithm. Because we want exploration to occur
in small and big steps, we limit the opposite pole attraction
to 0.3 and the best location attraction to 0.7. Attraction steps
have two possibilities: the best location occurs in the opposite
pole, and the best location occurs in the same pole. When the
best location occurs in the opposite pole search agent moves
with big steps to the opposite pole and if the best location
occurs in the same pole search agent moves with small steps
to the opposite pole. Either way, the agents always attract to
opposite poles and tend to move towards opposite poles.

In Eq. (7), same as Eq. (6), variable xi denotes the current
value of the agent i . Variables D and T represent the diffu-
sion coefficient and iteration number, respectively. Finally,
variables �xbest and �xpole indicate the distance between
the current agent’s position and the best agents of the search
space and opposite pole, respectively. With the help of Eq.
(6), the proposed algorithm uses a big step to reach the global
best solution, andwith Eq. (7), the algorithmuses a small step
to approach the opposite pole’s best solution. All properties
and phases of the ESA are visualized in Fig. 5. In section (a)
of Fig. 5, the initialization of theESA is shown. In sections (b)
and (c), global and local search is initiated. Finally, in part (d)
search process is completed. Subdivision (e) of Fig. 5 shows
us the failing branches of the algorithm. In subdivision (f),
we can see the creation of random new twigs and boughs
resulting from the deletion of failing branches through the
iterations. Eq. (7) mimics the branching structure of electric-
ity. The phrase 0.3 × �xbest + 0.7 × �xpole determines the
direction and the phrase 1√

4πDt
× exp

( −1
4Dt

)
determines the

magnitude of the step. The algorithm’s exploitation phase
consists of the agent’s branching movement after the explo-
ration phase. The fixed values 0.7 and 0.3 are selected for the
same purpose as in Eq. (6) to limit the branching with big
and small steps. Also, this exploitation stage has two possi-
bilities: When the best location occurs in the opposite pole,
the search agent branches with big steps to the opposite pole,
and if the best location occurs in the same pole, the search
agent branches with small steps to the opposite pole.
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Fig. 5 a Initialization of ESA, b Global and local search in early stages of ESA, c Global and local search in late stages of ESA, d Completion of
search process of ESA, e Failing Branches, f Randomly created branches

The fixed values 0.7 and 0.3 can be adjusted for the prob-
lem, but we choose not to temper these coefficients. Because
tuning these coefficients to best is itself an optimization prob-
lem.

The failure limit mimics the abandonment of the main
ways and transferring energy to a different area in phenom-
ena. This structure helps the algorithm not to trap in local
points. The failure limit is determined with the ‰3 of the
maximum iteration number. Also, the failure limit can be
tuned. The failure limit determines whether the agents spend
time on exploration or exploitation. For more exploration
failure limit can be decreased, and for more exploitation fail-
ure limit can be increased.

Graphical abstract of the proposed algorithm is given
in Fig. 6 and pseudo code of the algorithm is given in
Algorithm 1

3.3 Test environment setup

We tested the proposed algorithm with four frequently used
benchmark functions. These functions have multi-modal,
unimodal, separable, and non-separable properties. Multi-
modal functions have more than two local extremum points
and are hard to solve compared to unimodal functions
because of the probability of trapping in local extremum
points. Solving a non-separable function is more challeng-
ing than solving a separable function because function’s
each variable depends on the other variables. The compari-
son functions used to test the algorithm are given in Eq.(8),
Eq. (9), Eq. (10), and Eq. (11) and named Rosenbrock,
Ackley, Griewank, and Rastrigin functions, respectively. All
benchmark problems are minimization problems; therefore,
minimum results are better.

Algorithm 1 Psuedo Code of The ESA
1: Initialize the parameters:
2: pop_size
3: max_iteration
4: Diffusion_Coefficient
5: Kill_limit
6: Initialize one spark to positive and negative pole with values of

maximum and minimum of the search space
7: while t < max_i teration do
8: Create sparks with the local search until the maximum number

of pole population is reached
9: Global Search
10: Calculate Fitness value for each spark
11: Update:
12: failure of the sparks
13: best_spark_of_population
14: best_spark_of_each_poles
15: Delete sparks which has failure ≥ Kill_limit
16: t = t + 1
17: end while
18: Return:
19: best_spark_fitness
20: best_spark_variables

f (x) =
d−1∑

i=1

[
100

(
xi+1 − x2i

)2 + (xi − 1)2
]

(8)

f (x) = −20 × exp

⎛

⎝−0.2 ×
√√√√ 1

d

d∑

i=1

x2i

⎞

⎠

−exp

(
1

d

d∑

i=1

cos (2πxi )

)

+ 20 + exp(1) (9)

f (x) =
d∑

i=1

x2i
4000

−
d∏

i=1

cos

(
xi√
i

)
+ 1 (10)
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Fig. 6 Graphical abstract of the proposed ESA algorithm

Table 1 Control parameters of algorithms

Algorithm Control parameters

ESA D=1.49 (Diffusion coefficient of wood),

Failure Limit=15

GA Crossover rate=0.75, Mutation rate=0.1

PSO C1=1.49, C2=1.49

BSA All Parameters Set to Default

DS Method=Surjective DSA (S-DSA)

f (x) = 10d +
d∑

i=1

[
x2i − 10 cos (2πxi )

]
(11)

Rastrigin, Ackley, and Griewank equations have a multi-
modal property, and the Rosenbrock equation has unimodal
property.Also,Ackley,Griewank, andRosenbrock equations
have a non-separable property, and the Rastrigin equation
has separable property.We compared the proposed algorithm
withGA, PSO, BSA, andDS algorithms on these four bench-
mark functions with three different dimension values, which
are 10, 20, and 30, respectively. The control parameters of
these algorithms are given in Table 1. In all test cases, the
population limit was set to 100. Also, for fair evaluation, the
iteration limit was set to 500, 1000, and 1500 for dimensions
10, 20, and 30, respectively.

The primary purpose of selecting the CEC 2019’s 100-
Digit Challenge is that if we expand the time and iteration
limit, our algorithm can perform better because its search
mechanism structure tends to update the best locations.
Besides that, the failure structure of the agents makes the
agents born at different locations in the respective pole,which
gives the algorithm better exploration within this expanded

time and iteration limit. Because of the rounded and shifted
versions of the problems, we can claim that our proposed
algorithm does not tend to memorize the problems and
searches randomly according to our formulations.

The CEC 2019’s 100-Digit Challenge problem can be
found in [47]. The challenge consists of ten problems; seven
of them are shifted and rotated. The other three problems are
new and challenging. The aim is to calculate the accuracy of
the function up to 10 digits without a time limit. Boundaries
and dimension values of the IEEE CEC (2019) functions are
given in Table 2. Control parameters of the proposed algo-
rithm are set to population=30 Diffusion Coefficient=1.49
Iteration Number=1E+06.

The proposed algorithm and the popular clustering algo-
rithm K-Means are compared on performance in solving the
clustering problem. For comparison, we used four real-life
datasets provided by the UCI Machine Learning Repository,
which are Iris [48], Wine [49], Seeds [50], and HCV [51]
datasets. Both for the proposed algorithm andK-Means algo-
rithm, the maximum iteration is set to 150, and the highest
cluster number is set to 10. Besides, the proposed algorithm’s
agent number is limited to 200, and the failure limit is set to
5. The properties of these data sets are given in Table 3. The
Davies–Bouldin index (DB-Index) [52] was used to evaluate
the clustering problem performance. DB-Index measures the
compactness and separateness of the clusters. The smallest
DB-Index indicates that clustering performance is better for
the found cluster centers.

3.3.1 Statistical tests

The comparability of the algorithms has frequently been
inferred through hypothesis testing [53]. However, to con-
clude, it is necessary to determine the null hypothesis H0
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Table 2 The basic parameters of the 100-digit challenge

No. Functions F∗
i = Fi (x∗) Dimension Search range

1 Storn’s Chebyshev plynomial ftting poblem 1 9 (−8192,8192)

2 Inverse Hilbert mtrix poblem 1 16 (−16.384,16.384)

3 Lennard-Jones mnimum eergy custer 1 18 (−4,4)

4 Rastrigin’s fnction 1 10 (−100,100)

5 Griewangk’s fnction 1 10 (−100,100)

6 Weierstrass fnction 1 10 (−100,100)

7 Modified Schwefel’s fnction 1 10 (−100,100)

8 Expanded Schaffer’s F6 fnction 1 10 (−100,100)

9 Happy Cat fnction 1 10 (−100,100)

10 Ackley function 1 10 (−100,100)

Table 3 Dataset properties

Dataset Number of instances Number of attributes

Iris 150 4

Wine 178 13

Seeds 210 7

HCV 615 14

and the alternative hypothesis H1. The null hypothesis is
a statement that often denotes no differences between the
algorithms being compared. The alternate hypothesis, on the
other hand, represents the differences. For our purposes:

H0: There is no difference between compared algorithms
H1: There is a difference between compared algorithms
The statistical test probability value (α) also determines

whether the hypothesis should be disproved. The acceptable
level for our test is 0.05.

A non-parametric statistical test, the Friedman test, was
first presented by Friedman [54,55]. It has been used to
specify differences in how specific algorithms behave. The
Friedman test results for compared algorithms are displayed
in columns, and test cases are represented in rows. The test
begins by ranking each row according to the values of the
columns in the row, after which it calculates the overall rank
values for each column. The X2 (Chi-square) distribution
with k-1 degrees of freedom (d f ), where k is the number of
comparedmethods, is used to calculate the test’s significance.

We can find the appropriate X2 values for df in [56].
Expected X2 = 9.49 from the table in [56] because (d f )=4
and α = 0.05. The null hypothesis must be rejected if the
actual X2 value is higher than anticipated.

Another non-parametric statistical test used to identify dif-
ferences between two samples or algorithms is theWilcoxon
signed-rank test [57]. For creating the difference vector, the
test typically starts with discrepancies between the two algo-
rithms’ outputs, which have sizes of N ∗ 1, where N is the

total number of tests. Then, it assigns a rank of 1 to each row
in the vector, starting with the minimum value. The differ-
ence vector’s R− and R+ values are then calculated. The T
value of the test, min(R−, R+), is calculated based on the
data. As a result, using the T value, the test’s probability
value p is calculated.

4 Results and discussions

4.1 Comparison of the results of benchmark
functions

All test cases are run ten times with relevant settings. Rosen-
brock,Ackley,Griewank, andRastrigin functions’ evaluation
results for 10, 20, and 30 dimensions are given in Table 4.
All values in Table 4 are the mean of the executed ten runs
with corresponding algorithms.

We can see in Table 4 that our algorithm, ESA, has given
almost similar results with MPA, KO, and HHO in each test
case. Our algorithm found an exact solution in all ten runs in
six of the twelve cases. Both HHO and KO have also found
an exact solution in all ten runs in six of the twelve cases.
MPA only found five exact solutions.

We can see in Figs. 7a, 8a, 9a, and 10a that ESA has
performed a tremendous step-down pattern that is a product
of our failure deletion procedure. Those failing agents are
deleted whenever ESA is trapped in a local minimum point,
and brand-new agents are created at corresponding poles.
The Rastrigin function is the easiest of all three benchmark
functions besides the Ackley and Griewank functions, which
are at a similar difficulty.

ESA found better solutions than GA, PSO, BSA, and DS
but only in Ackley with 20 and 30 dimensions; ESA found
better results than MPA, KO, and HHO. Other than ESA
performs similar results compared to MPA, KO, and HHO.
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Fig. 7 Rosenbrock function in a 10 Dimension, b 20 Dimension and c 30 Dimension

Our proposed algorithm is designed to handle the problem
with a wide range of iterations and time limits. If we double
the iterations, our algorithm performs the same as the MPA,
KO, and HHO and always finds the exact solutions for all
test cases.

4.2 Statistical analysis

4.2.1 Friedman test

We can see in Table 5 which algorithm is more successful.
The algorithm that has aminimum rank value has a better per-
formance compared to other algorithms. As shown in Table
5, ESA performs second best in all test functions.

Besides that probability value is found 1, 0245E − 10 is
way less than α = .005, X2 value is 60, 842672, which
is higher than expected value of 14.07. This means null
hypothesis H0, ”There is no difference between compared
algorithms”must be rejected. Itmeans that the H1hypothesis
is true: ”There is difference between compared algorithms”.
Results of the Friedman test were given in Table 6.

4.2.2 Wilcoxon signed rank test

The major differences between the compared methods are
described by p values. For the null hypothesis to be rejected,
these numbers need to be lower than 0.05. If not, it must
accept it, implying that the comparingmethods’ performance
is equivalent.

We can see in Table 7 that ESA has yielded a different
performance than the most of the compared algorithms. It
means our proposed algorithm behaves differently from the
compared algorithms. However, in the case of MPA and KO,
our algorithm performed similar results.

4.3 Comparison of the results of the IEEE CEC (2019)
100 Digit Challenge Problems

100 Digit Challenge is inspired by Æsop’s fabled race
between Tortoise and Hare. The main idea of the fable is
that relying too much on speed as the success criterion is
not suitable for always. Because of that primary goal of the
challenge is to determine whether the algorithms that search
persistently or aggressively are better.
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Fig. 8 Ackley function in a 10 dimension, b 20 dimension and c 30 dimension

The competition results and analysis are published in [58].
We can see in Table 8 that our proposed ESA algorithm
has a score of 63,96. Due to our hardware limitations, we
have to limit our iteration limit to 10E + 06 and popula-
tion size to 30. If we look at the competition results average
iteration is between 7 ∗ 10E + 8 and 8 ∗ 10E + 10, and
the population size is between 200 and 31623. Even with
the hardware limitations, our proposed algorithm achieved
good results. If we examine the [58], our score is above
the bottom in the primary and middle in the secondary
algorithms.

4.4 Comparison of the results of the clustering
problem

We used the Davies–Bouldin index (DB-Index) for the per-
formance analysis of the clustering problem. For all datasets,
cluster number ”k” is started with two and ends with ten. It
means that we have thirty-six test cases. We calculated the

Davies–Bouldin index for each test case for ESA and K-
Means algorithm and compared them. The comparison of
the DB-Indexes is given in Table 9, and graphical compar-
isons of the DB-Indexes for the ESA and K-Means algorithm
are given in Fig. 11.

We can see in Table 9 that ESA has better clustering
performance than K-Means in all test cases. Also, if we
look at the dataset basis, ESA conducted better clustering
than K-Means on each dataset. In test cases where k is two,
ESA and K-Means algorithms have the same DB-Index. The
situation mentioned earlier refers to the fact that ESA has
conducted the same performance on the clustering problem
as the popular clustering algorithm K-Means. That proves
that our algorithm can solve the clustering problem.

DB-Indexes are used to determine the optimal number ”k”
and perform clustering analysis. Smaller DB-Indexes indi-
cate generated clusters are compact and far from each other.
For example, we can see in Fig. 11 that ESA has generated
better clusters than the K-Means algorithm on all datasets for
all tested k values.
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Fig. 9 Griewank function in a 10 dimension, b 20 dimension and c 30 dimension

5 Conclusion

This paper introduces a new nature-inspired metaheuristic
optimization algorithm called the ESA. It is based on the
movement of electricity in high-resistive areas. Like other
metaheuristic algorithms, the ESA needs a population to start
a search. This population consists of search agents who have
a memory and a lifespan. Also, the ESA has a unique struc-
ture called negative and positive poles. Suppose we match
these terms with electrical terms. Then, we can say that pop-
ulation is like the voltage, search agents are electrons, and
pole structure is electrical polarity structure like negative and
positive. Thus, electrons in opposite poles tend to move to
each other. This move tendency is the basis of the search
mechanism of the ESA.

To determine the efficiency and reliability of the proposed
algorithm, the ESA is tested with four benchmark functions
and solved the clustering problem, which is an np-hard prob-
lem with four different datasets. Benchmark functions are
commonly used in literature, and data sets are well-known
datasets. All benchmark function results are compared with
seven different algorithms: GA, PSO, BSA, DS, MPA, KO,

and HHO, and these algorithms have similar search mech-
anisms to the proposed ESA. As a result, the proposed
ESA exhibits gratifying exploitation, exploration, and con-
vergence characteristics with respect to GA, PSO, BSA, and
DS and have similar results with MPA, KO, and HHO. Fur-
thermore, with a great convergence rate, the ESA provides
better results than the GA, PSO, BSA, and DS. Most of the
time, while other algorithms cannot find the exact solutions,
the ESA finds the exact solutions. Besides that, the statistical
findings support the test results and show that ESA performs
better than the other compared algorithms. The test results of
the 100 Digit Challenge show us that our algorithm can han-
dle complex problems even with limitations. Furthermore,
ESA handled the problem efficiently for clustering perfor-
mance and performed better clustering capability than the
K-Means algorithm.

We can see that if we increase the time and iteration limit
for solving the problems, our proposed algorithm can yield
better results. Because of the design of the proposed algo-
rithm, the search mechanism works at a slow but persistent
rate to search valuable search spaces. Instead of using big
steps for exploration, our algorithm uses mostly small steps.
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Fig. 10 Rastrigin function in a 10 dimension, b 20 dimension and c 30 dimension

Table 5 Mean ranks of the
algorithms

Algorithm Mean rank

PSO 7,33

GA 4,17

BSA 7,08

DS 5,92

MPA 3,13

KO 3,21

HHO 2,21

ESA 2,96

Therefore the iteration number for finding the exact solution
is increased. Thanks to the failure mechanism and the ini-
tialization scheme, even in challenging problems proposed
algorithm never traps at the local points. Results show that
the proposed algorithm can get near the exact solution but,
due to iteration limits, in some cases, never reaches the exact
solution. The proposed algorithm differs from other meta-

Table 6 Friedman test statistics of the algorithms

Friedman test statistics

N 12

Chi-Square X2 60, 842672

df 7

p 1, 0245E − 10

heuristics compared to its initialization scheme, pole search
mechanism, and update strategy of the best solutions.

We used a fixed ratio for exploration and exploitation
movements. A dynamic ratio can be applied to the algorithm
to overcome the slowness and late convergence. We used the
diffusion coefficient of wood in our experiments; for future
work, different diffusion coefficients can be used, and the
effect on the algorithm can be compared. In addition, dif-
ferent initialization schemes of the initial population can be
examined.
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Table 7 p values for the Wilcoxon signed rank test

Algorithm PSO GA BSA DS MPA KO HHO ESA

PSO 1 0,049860204 0,157939311 0,136097381 0,002217721 0,049860204 0,002217721 0,002217721

GA 1 0,002217721 0,346521712 0,020879263 0,085281059 0,020767229 0,042522478

BSA 1 0,034170473 0,002217721 0,002217721 0,002217721 0,002217721

DS 1 0,002217721 0,002217721 0,002217721 0,004741768

MPA 1 0,498962299 0,017960478 1

KO 1 0,10880943 0,400236144

HHO 1 0,035465865

ESA 1

Table 8 Fifty runs for each function sorted by the number of correct digits

Function Number of correct digits Score
0 1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 0 0 0 0 50 10

2 0 0 1 1 24 23 0 0 0 0 0 4,32

3 0 0 0 0 0 0 0 0 0 0 50 10

4 0 0 5 11 34 0 0 0 0 0 0 3,58

5 0 0 0 0 0 1 4 34 10 1 0 7,12

6 0 0 0 9 22 4 5 10 0 0 0 4,7

7 0 0 38 2 4 4 2 0 0 0 0 2,6

8 0 0 0 0 0 0 4 2 6 37 1 8,58

9 0 0 0 0 0 0 0 0 0 0 50 10

10 0 0 4 40 5 1 0 0 0 0 0 3,06

Total: 63,96

Table 9 Comparison of the DB-indexes

Dataset Algorithm K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10

Iris ESA 0,40429 0,39350 0,67089 0,63155 0,78563 0,80173 0,74129 0,70217 0,52010

K-Means 0,40429 0,99374 0,87238 0,89309 0,87041 0,93865 1,10046 1,18861 1,10818

Wine ESA 0,478784 0,469158 0,544345 0,396696 0,340718 0,397525 0,293482 0,441473 0,363269

K-Means 0,478784 0,534243 0,546019 0,572231 0,539896 0,582457 0,556637 0,590100 0,508098

Seeds ESA 0,690980 0,576185 0,616844 0,879355 0,712961 0,715775 0,738131 0,479106 0,648619

K-Means 0,690980 0,753314 0,870294 0,915267 0,928449 0,945042 0,931533 0,993250 0,933083

HCV ESA 1,01460 0,63705 0,86314 0,62969 0,61198 0,62158 0,52562 0,60620 0,52728

K-Means 1,01460 1,35145 1,27062 1,01429 1,23783 1,25735 1,23565 1,28411 1,25329

Bold values are the smallest values of each corresponding test case
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Fig. 11 DB-indexes of ESA and K-means algorithm on a Iris dataset, b Wine dataset, c Seeds dataset and d HCV dataset
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