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Abstract
The finite difference method with the single-/multi-objective particle swarm optimization (PSO) are used to obtain and
improve the thermoelastic behaviors of a rotating nonuniform thickness sandwich (multilayer) disc made of functionally
graded materials. The disc is exposed to a complex thermomechanical loading and is composed of multiple layers, where
each layer has its particular constant volume fractions. For PSO, three constraints are implemented while minimizing the
disc’s weight, maximum absolute circumferential stress, and maximum circumferential stress-jump. Outputs are related to
the disc’s profile and layers’ volume fractions. Results revealed that the nonoptimized disc weight dropped by almost 37%,
as it is the PSO’s goal for a ten-layer disc, for example. Furthermore, a minimum circumferential stress value of 361.1MPa
is obtained for the same disc, which resembles ∼ 53.2% reduction. Moreover, altering the value of the angular speed has
significantly impacted the outcomes of the optimization problem in hand.

Keywords Finite difference method · Particle swarm optimization · Sandwich (multilayer) disc · Functionally graded
materials · Stress-jump

1 Introduction

Rotating discs are essential parts of many engineering appli-
cations (e.g., turbines, compressors, propellers, brake discs,
electronic devices). Colossal trials are executed to decrease
their weights and to increase their load capacity. Thus, fabri-
cating discs with nonuniform thickness is found to be highly
beneficial for load capacity escalation and weight reduction
[1, 2]. Similarly, functionally graded materials (FGMs) are
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used to allow discs withstanding higher loads than mono-
materials’ discs. They were considered by many researchers
while investigating, for example, buckling [3] and vibration
of different structures [4, 5].

In general, FGMs are used with a specific function con-
trolling the variation of a property [6–9]. However, in this
study, a novel FGMs fabrication approach is considered to
overcome the deleterious consequences of having any abrupt
changes of common FGMs’ volume fractions [2, 10, 11]. It
relies on using number of layers with a unique volume frac-
tion for each one. These layers are stacked together to form a
multilayer (sandwich) disc [2, 10, 11]. Also, these layers are
assumed to be perfectly bonded (no delamination present).
Recently, there have been enormous efforts exploring the
behaviors of such structures [10, 12, 13].

Rotating FGM discs were vastly investigated in many
researches. Their behaviors were substantially impacted by
many parameters under various loads (e.g., thermal and/or
mechanical) [14–16], and this was proven through various
methods, such as the finite difference method (FDM), the
finite element method, and homotopy analysis method [2,
10, 11, 17, 18]. Generally, most articles revealed that cir-
cumferential stress is the critical stress for the disc behaviors
compared to the radial stress [19–21]. In addition, various
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researches indicated that the temperature dependency of the
material properties had paramount influences on the behav-
iors of single-layer discs/cylinders [21–23], and multilayer
discs [2]. On the other hand, Eldeeb et al. [11] investigated
the influences of deceleration on a multilayer disc made of
functionally graded (FG) layers. They posed that circumfer-
ential stress-jumps were induced at the layers’ interfaces,
motivating occurrence of delamination (failure). Their anal-
ysis was conducted through the simple FDM, which proved
its stability and ability to have a convergence for the asymp-
totic solution. The severity of such deleterious impacts could
be reduced through increasing the number of layers and per-
forming optimization [2, 10, 11].

Regarding optimization, several methods were used to
detect the optimal solution of distinct problems [24–26].
Over the past 25 years, new optimization methods were
developed, and their usage skyrocketed. For instance, the
particle swarmoptimization (PSO) [27], a hysteresismethod,
known for its straightforwardness, and capability to find the
global optimum of any problem in numerous fields [28,
29]. It also requires less computational size compared to
the other methods, i.e. the classical Karush–Kuhn–Tucker
method [30]. PSO was a reliable option while optimizing
the performance of different multilayer structures [31–33].
Some researchers illuminated that PSO outcomes had sub-
stantial effects on lowering theweights ofmonolayer rotating
discs that is advantageous for their performance [30, 34]. Fur-
thermore, it was referred that the proper selection of certain
geometry and/or material parameters led to striking impacts
on decreasing the failure likelihood of a sandwich disc [11]
and cylinder [10].

In view of the foregoing review, sandwich structures
are gaining remarkable attention. Therefore, a nonuniform
thickness rotating FGM disc is considered in this study
to enhance its behaviors through applying PSO, which is
used in the forms of single-objective (SOPSO), and multi-
objective (MOPSO). Those objectives of the PSO are: the
disc’s weight, maximum absolute circumferential stress, and
maximum circumferential stress-jump. In addition, a suit-
able penalty function used to apply proper three constraints.
In terms of the design variables, they included the thickness
parameters and the volume fractions of the intermediate lay-
ers (ILs) that represent the disc’s core. On the other hand,
the innermost and outermost layers are made of metal and
ceramic (represent the faces), respectively. The related gov-
erning differential equations (GDEs) are solved numerically
through the FDMwhile considering the presence of external
pressure and thermal load.

2 General Equations

The considered disc in this study has a nonuniform thickness.
Many models are available in the literature describing the
variation of the disc’s thickness (hr) versus the radius (r ) [1,
35]. In this study, the power-law model was adopted. Thus,
hr for an annular disc with inner and outer radii r0 and rL,
respectively, is be expressed as [35]:

hr � H [1 − ξ(r/rL)]ϕ (1)

where ξ and ϕ are two geometrical parameters, and H is the
thickness of the disc at r � 0. Table 1 presents the different
convergent disc profiles obtained by altering the values of ξ

and ϕ.
On the other hand, the proposed disc is composed of

number of FG layers (L) as depicted in Fig. 1a. Referring
to a certain layer is done through using subscript l, where
1 ≤ l ≤ L . In other words, any layer within the disc starts
with r � rl−1 and ends at rl .

The innermost layer of the disc (l � 1) is chosen to be
made of metal (m), whereas the outermost layer (l � L)
is pure ceramic (C). Additionally, the ILs are treated as
FGM layers composed of both m and C . These ILs’ vol-
ume fractions (V ) altere radially according to the simple rule
of mixture (Eq. 2). However, V is assumed to be constant
within each layer. Hence, a material property (β) through
each layer can be written as:

βl(r) � βCVC
l + βmVm

l , r1 ≤ r ≤ rL−1 (2)

Here β comprises elastic modulus E , density ρ, thermal
expansion coefficient α, Poisson’s ratio v, and yield strength
σy . Another formula, presented in Eq. 3, is used to describe
the variation of the V for a nonoptimized case, which is used
for the sakeof comparison. It allowshaving constantV within
the one layer with constant property mismatch between the
layers [2, 11].

VC
l � (l − 1)/(L − 1), Vm

l � 1 − VC
l (3)

Table 1 Disc Profiles variation with the geometrical parameters [1]

Thickness profile Thickness parameters

ξ ϕ

Uniform −− 0

0 −−
Conical 0 < ξ < 1 1

Convex 0 < ξ < 1 0 < ϕ < 1

Concave ξ < 0 ϕ < 0

0 < ξ < 1 ϕ > 1

123



Arabian Journal for Science and Engineering (2023) 48:4067–4079 4069

Inner layer (metal face)Outer layer (ceramic face)

IL(s)

(FGM Core)

(a) (b)

Fig. 1 a Sandwich (multilayer) disc general configuration, and b Face and core of three- and five-layer discs. (IL(s): intermediate layer(s))

Based on this description, it can be stated that the disc
consists of a face and core. The face is represented by two
layers: the inner (VC

1 � 0) and outer (VC
L � 1) layers, and

the core is made of number of ILs having different V . For
example, and as shown in Fig. 1b, the core of a three-layer
disc is composed of only one layer, while for a five-layer
disc; it is made up of three layers.

Regarding loading, and in addition to rotation, a thermal
load prescribed by a polynomial function of the third order
acts through the radial direction of the disc as follows:

Tr � K0 + K1r + K2r
2 + K3r

3 (4)

where T is the temperature in ◦C, and K0, K1, K2 and K3

are temperature coefficients [1].

3 Mathematical Modeling

3.1 Problem Formulation

For axisymmetric conditions, the GDE of a rotating nonuni-
form thickness disc in the polar coordinates (rθ z) can be
written as follows [1]:

(rhrσr )
′ − hrσθ + hrρrω

2r2 � 0 (5)

where the subscript r denotes radial variation (e.g., hr �
h(r )) Also, ω is the angular speed. In addition, σr and σθ are

the radial and circumferential stresses, which are evaluated
via Hooke’s law for an isotropic material under plane stress
hypothesis as [1]:

{
σr

σθ

}
�

[
C11 C12
C12 C11

]{
εr

εθ

}
− Yr Tr

{
1
1

}
,

⎧⎪⎨
⎪⎩
C11
C12
Yr

⎫⎪⎬
⎪⎭ � Er

1 − v2r

⎧⎪⎨
⎪⎩

1
vr

αr (1 + vr )

⎫⎪⎬
⎪⎭ (6)

where εr � u′ and εθ � u/r are the radial and circumfer-
ential strains, respectively, calculated in terms of the radial
displacement u. Also, C11, C12 and C22 are the coefficients
of the material stiffness tensor. Then, Eq. 6 is substituted in
Eq. 5 to yield:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A1u
′ ′
+ A2u

′
+ A3u � A0

A1 � rhrC11, A2 � A
′
1

A3 � (hrC12)′ − hrC22r−1

A0 � r(hrYr Tr )
′ − hrρrω2r2

(7)

where the single and double primes refer to the first and
second derivatives, in turns, with respect to r .

Before proceeding and looking at Fig. 1a, it is seen that
the disc domain in r -direction is discretized into number of
nodes n, and symbol i refers to the node number, i.e. 1 ≤
i ≤ n. Thus, Eq. 7 is usable through the whole nodes except
for the ones at r � r0 (i � 1), r � rL (i � n), and any

123



4070 Arabian Journal for Science and Engineering (2023) 48:4067–4079

interface node. At i � 1, the disc is free to deform (u �� 0
and σr � 0), and at i � n, there is an acting external pressure
of P (σr � −P) [2]. On the other hand, at every interface,
it is always ensured to have two coincident nodes (i , i + 1)
to detect the value of the circumferential stress-jumps (�σθ )
occurring there. The boundary conditions at such nodes can
be expressed as below while considering the continuity of u
and σr [2, 10, 11]:

u|li � u|l+1i+1 (8a)

σr |li � σr |l+1i+1 (8b)

3.2 Numerical Solution

In this study, the simple and effective FDM is used to solve
the foregoing set of equations. Table 2 presents the proper
FDM terms used to substitute the first and second deriva-
tives, where � and δ represent any parameter in the previous
equations and radial distance between any two consecutive
noncoincident nodes, respectively [2].

Consequently, Eq. 7 can be written in the following sim-
plified FDM form:

ui±1

[
A1

δ2
± A2

2δ

]
i
+ ui

[
A3 − 2A1

δ2

]
i
� [A0]i (9)

Also, the boundary conditions at the disc’s inner and outer
surfaces are, respectively written as:

(10a)

ui

(C12
r

− 3C11
2δ

)
i
+ ui+1

(
2C11

δ

)
i
+ ui+2

(
−C11

2δ

)
i

� Yi Ti , i � 1

(10b)

ui−2

(C11
2δ

)
i
+ ui−1

(
−2C11

δ

)
i
+ ui

(C12
r

+
3C11
2δ

)
i

� Yi Ti − P , i � n

Similarly, Eqs. 8a and 8b are expressed as:

u|l+1i+1 − u|li � 0 (11a)

ui−2

[C11
2δ

]l
i
+ ui−1

[−2C11
δ

]l
i
+ ui

[[
3C11
2δ + C12

r

]l
i
+

[
3C11
2δ − C12

r

]l+1
i+1

]

+ ui+2

[−2C11
δ

]l+1
i+1

+ ui+3

[C11
2δ

]l+1
i+1

� [
Y T

]l
i − [

Y T
]l+1
i+1 (11b)

Thereafter, Eqs. 9–11 are solved simultaneously to yield
the distribution of u across the disc. Afterwards, the distri-
butions of stresses and strains are obtained based on their
definitions and using Table 2. Then, the equivalent stress

(σeq) is obtained based on the von Mises yielding criterion
as shown below:

σeq �
(
σ 2
r − σrσθ + σ 2

θ

) 1
2

(12)

3.3 Optimization

A typical optimization problem can be described as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
find →  � {φ1, φ2, . . . , φnv}
min → F() � { f1(), f2(), . . . , fno()}
Subjectto → Mq1() ≤ 0, q1 � 1, 2, . . . ., ni
Subjectto → ψq2() � 0, q2 � 1, 2, . . . ., ne

(13)

where  represents the design variables (φ1, φ2, . . . , φnv),
F() resembles all the objective functions of the optimiza-
tion problem, Mq1() and ψq2() are the inequality and
equality constraints, respectively. Besides, nv, no, ni and ne
are the numbers of the design variables, objectives, inequality
constraints and equality constraints, respectively.

In this study, the considered disc is composed of a num-
ber of layers, metal-FGMs-ceramic, with different Vm for
the ILs. In other words, the properties of these layers are
dependent on these volume fractions. Accordingly, the opti-
mal Vm values for the ILs are to be determined according to
certain objectives. Additionally, as the thickness of the disc
has profound impacts on its behaviors, the two geometrical
parameters (ξ and ϕ), shown in Eq. 1, comprise the rest of the
design variables. Therefore, it could be stated that the cur-
rent optimization problem is amulti-variable problem,where
nv � 3 when L � 3, and nv � 10 when L � 10.

Additionally, three objectives are to beminimized individ-
ually or simultaneously. Firstly, minimizing the maximum
absolute value of the circumferential stress (

∣∣σθmax

∣∣) within
the disc. Secondly, the value of themaximum circumferential
stress-jump (�σθmax ) is also considered for its serious conse-
quences [2, 10, 37]. Finally, and for its crucial role, theweight
of the disc (W ) is the third objective that can be estimated
through Eq. 14a. For convenience, it would be expressed in
a dimensionless form (W ) through dividing by the weight of
a complete ceramic disc as shown in Eq. 14b [34]:

W � 2πg
∫ rL

r0
rρr hrdr � 2πg

L∑
l�1

ρl

∫ rl

rl−1

rhrdr (14a)

W �
(

L∑
l�1

ρl

∫ rl

rl−1

hrrdr

)
/

(
ρC

∫ rL

r0
hrrdr

)
(14b)

where the gravitational acceleration g equals 9.81m/s2.
On the other hand, several constrains are considered, in

order to limit the search space of the optimization problem.
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Table 2 FDM terms for first and
second derivatives [10, 36] Derivative Formula Node

Central second derivative � ′′ � (�i+1 − 2�i + �i−1)/δ
2 Intermediate nodes

Central first derivative � ′ � (�i+1 − �i−1)/2δ Intermediate nodes

Forward first derivative � ′ � (−3�i + 4�i+1 − �i+2)/2δ First node

Backward first derivative � ′ � (�i−2 − 4�i−1 + 3�i )/2δ Last node

The first two ones, Eqs. 15a and 15b, are thickness-related.
The former is introduced to prevent the disc from having
more than 80% thickness reduction at r � rL compared to
H , and hence a stress concentration edge is formed [20, 21].

The latter one prevents the disc from excessive increase
of hr |r�rL , which has a negative impact on W . The third
constraint, Eq. (15c), is related to the occurrence of plasticity.
It is desired to prevent any area through the disc from being
plastically deformed. This is achieved via ensuring that σeq
of each node is less than σy .

hr |r�rL ≥ 0.2H (15a)

hr |r�rL ≤ H (15b)

σeq < σy (15c)

4 Particle Swarm Algorithm

Based on our previous research experience, PSO is a reli-
able method able to attain the global optimal for such similar
problems; therefore, it is used in the current analyses. More-
over, a comparison between its results and other methods’
outputs is illustrated in Sect. 5.1.

PSO is a population-based method that rests on a hypoth-
esis of sharing social information among conspecifics, which
simulates the behaviors of birds’ flocks or schools of fish [27].
It solves a problem by having a population of candidate solu-
tions (particles) randomly and homogeneously distributed in
the solution space. Each particle (k) uses its local best posi-
tion (Bk) and the global best position (G(τ )) of the solution set
to decide its next movement during the following iteration.
In each iteration (τ ), particles’ positions (xk) and velocities
(ϑk) are updated by the subsequent equations [38]:

x (τ+1)
k � x (τ )

k + ϑ
(τ+1)
k (16a)

(16b)

ϑ
(τ+1)
k �

(
Y × ϑ

(τ )
k

)
+

(
ζ1 × R1 ×

(
B(τ )
k − x (τ )k

))
+

(
ζ2 × R2 ×

(
G(τ ) − x (τ )k

))

where ζ1 and ζ2 are the cognitive and social acceleration
components, respectively, and Y is the inertia (constriction)
coefficient. In addition, R1 and R2 are uniformly distributed
numbers between zero and one.

However, Eq. 16b is only used for SOPSO, and it is mod-
ified to the form presented in Eq. 17 for the sake of MOPSO,
where an external repository (R(τ )) to store the nondomi-
nated solutions of the randomly generated particles through
each τ is used [38].

(17)

ϑ
(τ+1)
k �

(
Y × ϑ

(τ )
k

)
+

(
ζ1 × R1 ×

(
B(τ )
k − x (τ )k

))
+

(
ζ2 × R2 ×

(
R(τ ) − x (τ )k

))

For MOPSO, there cannot be one unique solution. There
exists multiple points that graphically represented by the
Pareto optimal solutions curve. Designers can select any
point on the curve based on the desired requirements [10].
Furthermore, a death penaltymethod is employed to penalize
particles that violates anyof the priorlymentioned constraints
[39].

5 Results and Discussion

The following section is divided into a number of subsec-
tions; the first one presents the verification of the solution
scheme. The rest subsections are related to the optimization
process of the disc behaviors.

5.1 Solution SchemeVerification

In this study, two separate MATLAB codes were used. The
first was developed by the authors to solve the GDEs through
the FDM. For the sake of brevity, this code was previously
validatedwith different case studies in the literature. This can
be found at length in Ref. [2, 11].

For the optimizationprocess, fourmethodswere examined
at the beginning: PSO, genetic algorithm (GA), sequen-
tial quadratic programming (SQP), and ant lion optimizer
(ALO). Both of GA and SQP are built-in functions in MAT-
LAB, while freely online-availableMATLAB codes for PSO
[40] and ALO [41] were used. For each method, five trials
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for minimizing�σθmax were executed considering the same
stopping criterion (minimum function tolerance of 1e − 6).

As prescribed in Table 3, (i) PSO had the tiniest variations
range (more stability) and managed to reach a unique value
compared to the other three methods. (ii) GA, SQP and ALO
were not as stable as PSO due to their different variation
ranges. (iii) SQP managed to obtain a value very close to
the minimum value of PSO, but it has the drawback of being
dependent on initial guess to start searching that may result
in stucking in a local optima. Such results confirm the great
reliability and stability of PSO in such problems.

5.2 Disc Parameters

In the following subsections, discs’ optimal designs in terms
of hr and Vm

l for minimum objectives are assayed, depicted,
and discussed. The considered disc has a nonuniform profile
(Eq. 1), where H � 0.1m, r0 � 0.1m and rL � 1m [2]. It
is composed of number of laminated equal width layers, i.e.
L � 3, 5, 8 and 10. The innermost and outermost layers are
always made of metal (Aluminum alloy 7075) and ceramic
(Zirconia), respectively, and their properties are prescribed
in Table 4. These materials are assumed to be completely
isotropic.

Conversely, the ILs are made of FGMs of these two con-
stituents with constant V within each layer. For loadings,
the disc rotates with ω � 500rad/s, and is subjected to
P � 50MPa at r � rL . Also, it is exposed to a thermal load
defined by Eq. 4, and the coefficients K0, K1, K2 and K3

are set to 20◦C, 10◦C/m, 100◦C/m2 and 100◦C/m3, respec-
tively.

In this study, three objectives are sought: minimalizing∣∣σθmax

∣∣,�σθmax andW . It is aspired to find the optimal values
of the two geometrical parameters (ξ and ϕ) and Vm of the
ILs. The range of ξ is [0, 1], 0 ≤ ϕ ≤ 2 [1], and Vm ∈ {0, 1}.
Additionally, three constraints, prescribed in Eqs. 15a–15c,
are used. Moreover, at the same loading, a nonuniform disc
is provided to act as a comparing (nonoptimized) case. The
distribution of σθ and σeq � σeq/σy for this case are shown
in Fig. 2.

5.3 Solution Scheme Stability

To ensure the outcomes’ reliability of the proposed algo-
rithms, their stability should be assured primarily. For the
FDM, it is found that the solution stability is influenced by δ.
For similar problems, results showed that the convergence of
the FDM asymptotic solution occurs at δ � 0.0005m [2, 11].
For the PSO, the values of Y , ζ1 and ζ2 are set to 0.729, 1.49
and 1.49 that are chosen based on previous researches’ expe-
rience [10, 38, 43], and also proved high stability as shown
in Table 3.

Afterwards, the proper values of k and τ need to be found.
Several values were tested while minimizing, for instance,
both of

∣∣σθmax

∣∣ and �σθmax for the extreme case (L � 10). At
the beginning, different numbers of k are examined, and k �
800 is assigned to be used. By moving to τ while k � 800,
Fig. 3a showsPareto frontiers at different values starting from
τ � 150 until τ � 1500. At small values, for instance τ �
150 and 300, it is crystal clear that the increase of τ yielded
better Pareto optimal solutions. Therefore, stabilization is
still absent, and rising τ is compulsory for improved results.
From τ � 750, the range of the optimal solutions started
to remain approximately static. This range almost has the
same divergence as τ goes up, but with relatively dissimilar
diversity.

It is decided that τ � 1500 would be used throughout the
whole study. As beyond these two values (k � 800 and τ �
1500), no substantial enhancement occurred for the Pareto
frontiers. This can be proven by exploring Fig. 3b. It shows
the variation of the optimal solutions with each individual
iteration when τ is set to 1500. Stabilization is noticed to
occur starting from τ � 800, and continues to improve by
the end of the 1500th iteration. Also, it is time-consuming to
increase either of them, which resembles a major drawback
for PSO in certain problems that requires great values of τ

and k.

5.4 Single-Objective Optimization (SOPSO)

In subsections 5.4 and 5.5, a series of optimization models is
conducted to enhance certain objective(s). In this subsection,∣∣σθmax

∣∣, �σθmax and W are minimized individually through
SOPSOwith k and τ set to 800 and 1500, respectively. These
two values are assigned for this SOPSO problem since it
is less complicated than the previous problem discussed in
subsection 5.3. Outcomes (design variables) of three SOPSO
problems are listed in Table 5. These Outcomes ensure that
no plasticity is taking place through the disc based on the
constraint priorly defined in Eq. 15c. This implies that the
4.8%of the discs’ area (Fig. 2b)which is plastically deformed
based on the developed elastic solution disappeared. In other
words, the failure probability can be reduced by applying the
present analyses.

For ξ and ϕ, and while reducing the value of
∣∣σθmax

∣∣, sim-
ilar values are obtained regardless of the number of L . These
values are also obtained while lessening �σθmax except at
L � 10. On the other hand and while assigningW as the aim
of the optimization process, dissimilar values are obtained.
These resulting ξ and ϕ are utilized to draw discs’ profiles
(Fig. 4). It can be remarked that the attained profiles are
concave and so far congruous while minimizing

∣∣σθmax

∣∣ and
�σθmax . Conversely, optimizing W yielded concave profile
only for L � 3, which turned to be convex for L � 5, 8 and
10. Therefore, this study is worthy from the viewpoint of
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Table 3 Comparison between the
results of different optimization
algorithms for minimizing
�σθmax of a ten-layer disc

Optimization
Method

Max. value
(MPa)

Min. value
(MPa)

Average value
(MPa)

Variance
(MPa2)

Root mean
square
(MPa)

PSO 46.19 46.07 46.13 0.0035 46.14

GA 46.24 86.98 58.10 316.46 60.24

SQP 50.41 46.08 47.41 3.69 47.44

ALO 52.62 46.17 47.57 7.99 47.63

Table 4 Properties of metal
(aluminum alloy 7075) and
ceramic (Zirconia) [42]

E(GPa) ρ (kg/m3) α(10−6/◦C) σy(MPa) v

Metal 71 2800 23.4 505 0.33

Ceramic 205 6000 9.6 1500 0.31

Fig. 2 Nonoptimized case for
comparison: a σθ , and b σeq

(a) (b)

(a) (b)

Fig. 3 Convergence of Pareto frontier of optimal designs for minimizing
∣∣σθmax

∣∣ and �σθmax : a For different values of τ , and b For τ � 1500
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Table 5 Results of SOPSO (optimum values of the design variables)

L Objective Design Variables

ξ ϕ Vm
2 Vm

3 Vm
4 Vm

5 Vm
6 Vm

7 Vm
8 Vm

9

3
∣∣σθmax

∣∣ 0.55 2 0.72 – – – – – – –

�σθmax 0.52 2 0.46 – – – – – – –

W 0.69 1.35 1 – – – – – – –

5
∣∣σθmax

∣∣ 0.55 2 0.47 0.97 1 – – – – –

�σθmax 0.55 2 0.74 0.45 0.19 – – – – –

W 0.83 0.89 1 1 1 – – – – –

8
∣∣σθmax

∣∣ 0.55 2 0.58 0.31 1 1 1 1 – –

�σθmax 0.55 2 0.86 0.7 0.53 0.37 0.22 0.1 – –

W 0.9 0.69 1 1 1 1 1 1 – –

10
∣∣σθmax

∣∣ 0.55 2 0.64 0.4 0.2 1 1 1 1 1

�σθmax 0.55 1.98 0.9 0.78 0.65 0.52 0.39 0.27 0.16 0.07

W 0.91 0.63 1 1 1 1 1 1 1 1

Fig. 4 Optimized disc profiles of single-objective optimization

obtaining light discs for sophisticated applications including
aerospace ones.

Regarding Vm
l presented in Table 5, it can be noticed that

while optimizing W , a value of Vm � 1 is obtained for
all the ILs since ρm < ρC . On the other hand, minimizing∣∣σθmax

∣∣ for L � 3 revealed that the IL should have approxi-
mately 72.2% of its composition as metal. This value drops
by nearly 36% as �σθmax becomes the solo goal of the PSO.
Additionally, for L � 5, 8 and 10, it can be figured out that
Vm
l decreases steadily from l � 2 to the last IL, for the same

objective (minimizing �σθmax ). This trend is logical, as the
innermost layer is metal, whereas the outermost layer is com-
pletely ceramic. However, for the same three discs, different
behaviors are observed as the target of the PSO becomes
minimizing

∣∣σθmax

∣∣.
For example, it is found thatmetal comprise almost 48%of

l � 2 for the five-layer disc. This value experienced slightly

more than a doubling in the third layer, and then levelled
off at 100% through the fourth layer. Contrariwise, for the
eight- and ten-layer discs, Vm started at relatively high value
(0.589 and 0.6441, respectively), thenwent down for the next
one and two layers, respectively. These values, afterwards,
experienced qualitative leaps and hit their upper limit val-
ues, indicating that the following ILs of both discs should be
completely made of metal.

Furthermore, these findings, listed in Table 5, are used to
calculate and generate the distributions of σθ and compare
them with the nonoptimized cases as shown in Fig. 5. More-
over, Table 6 presents some salient numbers of the attained∣∣σθmax

∣∣, �σθmax and W , at the instant of minimizing any of
them, in comparison with the nonoptimized case.

Looking at Table 6, it can be concluded that
∣∣σθmax

∣∣ expe-
rienced a substantial decline ranging from nearly 38−53.1%
for L � 3 − 10 as it is the PSO’s goal if compared to the
nonoptimized cases readings. However, the values of�σθmax

substantially skyrocketed at that instant. On the other hand,∣∣σθmax

∣∣ significantly declined by around 38% while setting
�σθmax as the target of the SOPSO. This occurred alongside
the expected reduction in the values of �σθmax , which varied
between almost 26% (206.36MPa when L � 3) and 46%
(46.07MPa when L � 10) compared to the original values
that were about 278.1MPa and 85.05MPa, respectively.

Furthermore, it is obvious that W lessens as a result of
minimizing either

∣∣σθmax

∣∣ or�σθmax . For instance,W � 0.83
for L � 3 if no optimization is conducted. This value went
down moderately by nearly 14.5% and 8% while optimizing∣∣σθmax

∣∣ and �σθmax , respectively. However, if minimizing W
becomes the target of the PSO, improved results are expected,
as it decreases by about 21% (W � 0.65) for the same
disc. This percentage climbed close to 36% (W � 0.512)
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(d)(c)

(a) (b)

Fig. 5 Comparison between the distributions of σθ for nonoptimized and optimized discs: a L � 3, b L � 5, c L � 8, and d L � 10

Table 6 Comparison between the values of |σθmax|, �σθmax, andW at the instant of minimizing any of them with respect to the nonoptimized case

L Nonoptimized min
(∣∣σθmax

∣∣) min
(
�σθmax

)
min

(
W

)
3 5 8 10 3 5 8 10 3 5 8 10 3 5 8 10

∣∣σθmax

∣∣(MPa) 775 778.1 773.4 770.4 476.5 410.1 373.5 361.1 481.8 482.4 479.3 477.8 545.9 463.7 465.4 467.7

�σθmax (MPa) 278.1 155.4 101.8 85.05 310.7 386.1 383.5 375 206.4 102.6 59.02 46.07 423.9 423.8 423.2 423.3

W × 10−2 83 82 81 81 71 63 60 61 76 76 76 76 65 65 52 51

for L � 10. Alongside this reduction, the values of
∣∣σθmax

∣∣
similarly witnessed a considerable drop. For example, it
decreased by almost 40% for L � 8 compared to 773.4MPa
for the corresponding nonoptimized case. On the contrary,
�σθmax jumped as an inverse reaction. The nonoptimized
cases have �σθmax � 278.12 and 101.83MPa for L � 3 and
8, respectively. After optimization, these two numbers soared
to around 423.9MPa for the two discs. Eventually, the cur-
rent proposed model helps designers for not only decreasing
stresses but also for attaining lightweight discs.

5.5 Multi-objective optimization (MOPSO)

As seen from the preceding subsection, studying of any
objective individually proportionately/inversely affects the
other two objectives. Therefore,multi-objective optimization
should be accomplished in order to help a decision-maker for
his choice. Also, it is noticed that the range of variation of the
parameters increases, and improved results are obtained with
considering more L . Additionally, the objectives for L � 8
and 10 are, as expected, improved than those of L � 3 or
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Fig. 6 Multi-objective
optimization (MOPSO) at
ω � 500rad/s for: a L � 8, and
b L � 10

(a) (b)

Table 7 Values of W , |σθmax| and �σθmax at their optimum positions
according to MOPSO results for L � 8 and 10 (Extracted from Fig. 6)

L Point of W
∣∣σθmax

∣∣(MPa) �σθmax (MPa)

8 min
(∣∣σθmax

∣∣) 0.601 373.5 383.5

min
(
�σθmax

)
0.767 479.3 59.2

min
(
W

)
0.526 465.4 423.5

10 min
(∣∣σθmax

∣∣) 0.608 361.1 374.9

min
(
�σθmax

)
0.766 477.8 46.07

min
(
W

)
0.512 467.7 423.2

5. Furthermore, it can be noticed from Fig. 2a that �σθmax

decreases with the increase of the L due to the reduction of
the propertymismatch between successive layers. Therefore,
increasing the structural safety can be attained by increasing
the number of layers. Accordingly, the rest of this article
would consider only discs with L � 8 and 10.

In this subsection, a combined case of the previously-
stated three objectives is examined through a MOPSO
problem to minimize them concurrently. The design vari-
ables for all calculations are likewise the ones in the SOPSO
problem.

According to the MOPSO results, the optimal geometri-
cal parameters are almost in line with those resulted from
SOPSO. These values yielded convex, concave and linear
disc profiles. In terms of Vm

l , there is such a great variation
in its values. It can be mentioned that the more the desired
decline in W the more the increase in Vm

l , and this is prac-
tically logic as the density of the metal is lower than that
of the ceramic (Table 4). Alternatively, seeking for decreas-
ing �σθmax to its minimum feasible value entails a reduction
in the metallic constituent percentage through the ILs. This
percentage keeps dropping by moving towards the outer-
most layer. Between these two trends comes the behavior
of lessening

∣∣σθmax

∣∣. In general, it can be stated that there is a
compromise between the shares of the metal and the ceramic
through each IL. It cannot be stated explicitly that metal’s
percentage is surpassed by the ceramic amount or vice versa.

Numerically, some extreme points are presented in Fig. 6
and Table 7. It is seen that minimizing W produces a sig-
nificant rise for �σθmax and vice versa. For example, W has
its minutest value of 0.526 that corresponds to �σθmax �
423.15MPa for the eight-layer disc (Fig. 6a and Table 7). On
the other hand, if the configuration of the minimum value
of �σθmax is chosen for design, which is marginally above
59.01MPa for the same disc;W would be equal to 0.767 that
still outweighs the value ofW at the point ofminimum

∣∣σθmax

∣∣
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Fig. 7 Multi-objective optimization (MOPSO) at ω � 200rad/s for a
ten-layer disc

by about 27%. Furthermore, if the configuration yielding the
least

∣∣σθmax

∣∣ is chosen for design, a reduction in the other
two objectives would take place unlike nominating either
their two corresponding minimum-value configurations. For
instance,

∣∣σθmax

∣∣ has a minimum value of 361.1MPa when
L � 10, according to Fig. 6b and Table 7. With this value,
�σθmax is slightlymore than374MPa.Suchvalue ismore than
eightfold of theminimum reachable�σθmax (46.07MPa), and
it is exceeded by about 48MPa at the minimum point of W .

As seen from all the previous set of results, the ceramic
constituent for some objectives is rare or even absent in
some ILs despite the presence of Tr , which is rather per-
plexing. This behavior depends on: (i) the centrifugal force
(hrρrω2r2), and (ii) the proposed Tr values.

Although, the considered problems encompass both of Tr
and a centrifugal action; the impacts of the latter one are
the dominant due to the great value of ω. Thus, the stresses
stemming from the centrifugal force greatly outweigh those
of the thermal load even if metal, which has smaller (greater)
ρ (α) than ceramic, is used. Therefore, the PSO nondominant
particles would go for the small ρ constituent avoiding the
substantial increase for the centrifugal force. Obviously, this
is not always to be occurring. It relies on ω, Tr , β, and some
in-site conditions.

For that sake, another case of MOPSO, shown in Fig. 7 is
provided for a ten-layer disc with ω � 200rad/s in order to

figure outwhether therewould be a great impact on the design
variables or not. Results are comparedwith those displayed in
Fig. 6b (ω � 500rad/s). Some salient numbers are grouped
in Table 8, where it is evident that the values of

∣∣σθmax

∣∣ and
�σθmax decreased by the corresponding decline of ω. This
is attributed to the significant drop of the centrifugal force.
Additionally, larger applicable minimum W is obtained. On
the other hand, it is seen that there are no great variations
for the thickness profile at the minimum applicable values of
each objective. In other words, the same profile (concave or
convex) is obtained, butwith a small variation in its curvature.

Regarding Vm
l , a great swing in the behaviors can be

detected at the minimum
∣∣σθmax

∣∣ and�σθmax by the decline of
ω. Generally, the percentage of metal increased by approx-
imately 6 and 24% for l � 2 and 3, respectively, at the
minimum

∣∣σθmax

∣∣. This percentage skyrocketed at l � 4 to
be fully composed of metal. In contrast, this drop of ω led to
the presence of ceramic at the final two ILs, where it com-
prised nearly 51 and 81%, respectively, of their composition.
This can be traced back to the strong effect of Tr defined in
Eq. 4, which increases towards the outer surface and requires
smaller α, and hence smaller deformation. Similar readings
can be observed through the same layers at the smallest W ,
but with lesser values. For example, the final IL that was fully
metal atω � 500rad/s became composed ofmetal (79%) and
ceramic (21%) at the new considered ω. In contrast, at min-
imum �σθmax , one common behavior is observed. The share
of metal through all the ILs declined by the considered drop
of ω. This reduction ranged from around 7 - 41%.

Accordingly, no single configuration can be obtained for
all discs at all working conditions. An optimum configu-
ration depends on the geometrical, operating, and material
parameters (disc radii, hr , ω, Tr , ρ and α). This is definitely
alongside the desired objectives and prescribed constraints
of the optimization problem.

6 Conclusion

In this article, a nonuniform thickness sandwich (multilayer)
disc was considered. Its inner and outer layers (faces) were
pure metal and ceramic, respectively. The disc’s core was
made of number of equal width layers with unique V for
each one forming an FG structure. The considered rotating
disc was exposed to a nonlinear thermal load and an external
pressure. The numerical FDM was used to attain the ther-
moelastic behaviors that were enhanced through the notable
PSO. Under prescribed constraints, there were three objec-
tives considered: W ,

∣∣σθmax

∣∣ and �σθmax . These objectives
were minimized through having the optimal hr and Vm

l , i.e.
l ∈ {2, L − 1}. Some salient conclusions can be abbreviated
to the following points:
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Table 8 Comparison between the extreme values of TOPSO. For each objective, upper and lower values are for ω � 200rad/s and ω � 500rad/s,
respectively

Objective Design variables

ξ ϕ Vm
2 Vm

3 Vm
4 Vm

5 Vm
6 Vm

7 Vm
8

∣∣σθmax

∣∣ 0.56 1.98 0.68 0.51 1 1 1 1 0.49

0.55 2 0.64 0.41 0.2 1 1 1 1

�σθmax 0.58 1.79 0.84 0.68 0.51 0.36 0.26 0.16 0.09

0.55 1.98 0.9 0.78 0.65 0.52 0.39 0.27 0.16

W 0.89 0.71 1 1 0.99 1 1 1 0.79

0.91 0.63 1 1 1 1 1 1 1

• For SOPSO: Vm
l witnessed a significant variation depend-

ing on the considered objective and L . For example, all the
ILs should be made of 100% metal to have the minimum
W , that is consistent with the constituent of low density.
Regarding objectives, minimalizing

∣∣σθmax

∣∣ led to a signif-
icant jump (drawback) for the value of �σθmax , which, in
contrast, resulted in reducing

∣∣σθmax

∣∣. Additionally, a ben-
eficial reduction for the values of W occurred by setting
either

∣∣σθmax

∣∣ or �σθmax as the PSO’s target.
• In terms of MOPSO: It was observed that the ceramic
percentage through all the ILs exceeded (was surpassedby)
the metal’s share while targeting smaller values of �σθmax

(W ). Alternatively, it could not be generalized that one
constituent outweighed the other while considering lesser
values of

∣∣σθmax

∣∣.
• There was a variety in the obtained profiles depending on

L and the desired objectives. For L � 5, 8 and 10, convex
(concave) profiles were the best to have least W (

∣∣σθmax

∣∣
and �σθmax ). However, concave profiles were always the
optimal choice for the three-layer disc.

• Increasing the disc’s layers, which decreases the property
mismatch at the interfaces, yielded better performance and
reduced the stresses at a certain W , or a smaller W was
feasible if the same value of

∣∣σθmax

∣∣ or�σθmax to be chosen
for design.

Eventually, these findings are confined to the considered
disc, load, geometry, and materials in this study. Therefore,
it is recommended to optimize the performance of any disc
before fabrication to meet certain requirements, ensure effi-
cient and stable working, and limit its failure probability.
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