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Abstract
Ensemble-based data assimilation methods have been extensively investigated for inverse problems of fluid flow in porous
media. However, when the permeability field is characterized by fine-scale gridblocks, the problem can be ill-posed and result
in non-unique solutions. To address this issue, the principal component analysis with truncation was presented, but it may
lead to biased estimation. In this paper, we propose to keep all eigenfunctions without truncation and add an additional sorting
step after principal component analysis: sorting the initial samples according to the dimensional variability and assigning the
dimensions with large variances to the leading eigenfunctions. The estimation is expected to be more accurate as the subspace
spanned by the ensemble favors the dominant components. The proposed method is tested for multiple synthetic flow and
transport cases. The results show that it provides more accurate estimation of the permeability fields and generates better
history matching and prediction results for the production data (by 10–15%) than the results from the standard ensemble
smoother, with the same computational cost. This sorting approach can be readily extended to the ensemble Kalman filter as
well, for inverse modeling and estimating reservoir properties.

Keywords Inverse problems · Data assimilation · Ensemble smoother · Enhanced initial samples

Abbreviations

C Covariance
f Eigenfunction
h Hydraulic head, m
k Absolute permeability, mD
krα Relative permeability for a phase fluid
N Normal distribution
pc Capillary pressure, psia
pα Pressure of αα phase fluid, psia
qα Source/sink term, kg/s
Sα Saturation of the α phase fluid
Sor Residual oil saturation
Swc Irreducible water saturation
t Time, day
uα Velocity of α phase fluid, m/s
x Location in space, m
Y Log-permeability, mD
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λ Eigenvalue
ξ Independent random variable
η Correlation length, ft
σ 2 Variance
μα Viscosity of α phase fluid, Pa·s
ρα Density of α phase fluid, kg/m3

φ Porosity
RMSE Root mean square error
BHP Bottom hole pressure, psia or bar
OPR Oil production rate, bbl/day or m3/day
WPR Water production rate, bbl/day or m3/day
GOR Gas–oil ratio
WCT Water cut
FOPT Field oil production total, bbl/day or m3/day
FGPT Field gas production total, bbl/day or m3/day
FWPT Field water production total, bbl/day or m3/day

1 Introduction

A solid understanding of geological formation properties is
fundamental for analyzing geophysical systems [1–3]. These
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properties are usually heterogeneous and contain substan-
tial uncertainties due to limited knowledge and large scales
in space [4–6]. Data assimilation of indirect measurements
plays an important role in characterization of formation
properties and uncertainty reduction [7]. The most common
properties are spatially correlated parameters, such as con-
ductivity/permeability and porosity. These parameter values
are usually updated to match the available data, such as
hydraulic head, pressure and fluid flow rate [8–10].

Ensemble-based data assimilation methods, such as the
ensemble Kalman filter (EnKF), have attracted a great deal
of attention and have been successfully applied in geophysi-
cal problems recently. The EnKF, which is basically a Monte
Carlo-type Kalman filter, has been widely used for data
assimilation of nonlinear problems in oceanic [11], atmo-
spheric [12], hydrological [13–17] modeling and petroleum
industry [18–23]. However, as a sequential data assimila-
tion technique that updates model parameters and states
simultaneously at each step, the EnKF may suffer from
the inconsistency between updated parameters and states in
strongly nonlinear problems [24]. Although this issue can be
alleviated by an iterative or restarting approach [19, 25], addi-
tional computational cost is required. In this case, computing
a global update by simultaneously assimilating all observa-
tions is preferred, which leads to the ensemble smoother (ES)
[26–28]. It has been shown that the ES obtains results similar
to those from theEnKF, but in amore efficient and convenient
way, for some reservoir history matching problems [29].

In the above ensemble-based methods, the quality of ini-
tial samples is important for a successful application of data
assimilation. Considering that the ensemble size (i.e., the
number of samples in the ensemble) is limited to computa-
tional cost or storage space, it is usually in order of hundreds
and much smaller than the number of parameters, which is
usually in order of thousands to millions. That is, the initial
samples essentially construct a subspace whose dimension
or degree of freedom is one less than the ensemble size,
if the samples are linearly independent. When the number
of observations is larger than the ensemble size, especially
when the measurements are in time series [30], the system
becomes an overdetermined problem, i.e., a larger number
of equations than the number of unknowns. In this situation,
the subspace spanned by the initial samples becomes more
crucial to the performance of data assimilation than that in
the conventional cases.

Several approaches have been proposed and implemented
to alleviate this issue. Firstly, the ensemble size may be
increasedby sampling additionalmodel states, hence increas-
ing the dimension of the subspace spanned by the ensemble,
albeit at a cost of extra computational burden. The second
choice is to find an ensemble that possibly best represents
the covariance matrix for a given ensemble size, which can
be achieved by principle component analysis and is usu-
ally implemented by proper orthogonal decomposition, e.g.,
eigenvalue decomposition or singular value decomposition.
Specifically, only the first few dominant eigenfunctions are
retained (by truncation) and used to generate the initial sam-
ples. Such an idea has been applied to the ensemble-based
data assimilation for geophysical models [31–34]. However,
as pointed out in [35, 36], these approaches may lead to too
smooth realizations and biased estimation.

In this paper, we propose a simple yet effective approach,
the sorted ensemble smoother, to address the above issue
by enhancing the initial samples for improved accuracy
in parameter estimation. We sort the samples according
to the variance in each dimension and assign the dimen-
sions with larger variances to the dominant components. In
this way, the dominant components are more likely to be
updated/corrected while all eigenfunctions are retained with-
out truncation. We remark that an iterative scheme of ES to
assimilate themeasurementsmultiple times can be adopted to
achieve satisfactory data match in nonlinear problems. This
paper is organized as follows: Themethodology is introduced
in Sect. 2. The numerical examples are given in Sect. 3. Some
discussions are presented in Sect. 4. Finally, the conclusions
are provided in Sect. 5.

2 Methodology

2.1 Governing Equations

The steady-state, single-phase groundwater flow in the
aquifer satisfies the following equation [37]:

∇ · [−k(x)∇h(x)] = q(x) (1)

where x is the location, k(x) is the hydraulic conductivity,
h(x) is the hydraulic head, and q(x) is the source/sink term.
In this study, the hydraulic head and the source/sink term are
assimilated to estimate the conductivity, which is treated as
a random field in space.

The oil/water two-phase immiscible flow model can be
expressed by the following continuity equation as [38]:
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∂(φραSα)

∂t
= −∇ · (ραuα) + qα , α = w, o (2)

where φ is the porosity, and each phase has its own density
ρα , saturation Sα , phase velocities uα , and source/sink term
qα . Darcy’s law for multiphase flow is:

uα = −kkrα
μα

(∇ pα − ραg∇z), α = w, o (3)

where k is the absolute permeability; g is the gravitational
acceleration; z is the depth; and krα , μα , and pα are the
relative permeability, viscosity, and pressure for phase α,
respectively. Equations (1) and (2) are usually coupled with:

Sw + So = 1, pc(Sw) = po − pw (4)

where pc is the capillary pressure; which is a function of
Sw. In this study, the absolute permeability is considered as a
random field and updated using the observations of pressure
and flow rate at wells.

In geostatistics, the log-conductivity or log-permeability
Y = ln k is usually treated as a second-order stationaryGaus-
sian random field with a mean of Y and a covariance of [38]

Cln k(x, x′) = σ 2
ln k exp

×
⎡
⎣−

√(
x − x ′

ηx

)2

+
(
y − y′

ηy

)2

+
(
z − z′

ηz

)2
⎤
⎦ (5)

where σ 2
ln k is the variance and η is the correlation length.

2.2 Ensemble Smoother

If we represent the solution of the flow and transport equation
as the following forward simulation:

d = g(m) + ε (6)

where d is a Nd × 1 vector for the measurements, g(·) is
the system model, m is a Nm × 1 vector for the uncertain
parameters, ε is a Nd × 1 vector for the measurement errors.
Here we use Nd to denote the total number of measurements
and Nm the number of parameters. After the forecast stage
by forward simulations, the unknown model parameters are
updated using the measurements/observations as:

mu
j = m f

j + C f
MD(C f

DD + CD)−1

× (d j − g(m f
j )), j = 1, ..., Ne (7)

wheremu
j is the j-th updated ensemble member,m f

j is the j-
th prior ensemble member, u indicates “update,” f represents
“forecast,” j is the ensemble member index, and Ne is the

ensemble size.C f
MD is theNm ×Nd cross-covariance matrix

between the prior parametersM f = [m f
1 , . . . , m

f
Ne], and the

predicted data D f = [g(m f
1 ), . . . , g(m f

Ne)]; C f
DD is the Nd

× Nd covariance matrix of predicted data Df ; CD is the Nd

×Nd covariance matrix of measurement errors; d j = d+ε j

is the j-th realization of the perturbed measurements; and ε j

is a random realization of the measurement errors. The ES
procedure can be repeated for nonlinear models, which is
usually referred to as iterative ES.

2.3 Principle Component Analysis

The initial samples in the ES should be generated such that
best represents the statistics of the log-conductivity including
mean and covariance. Conceptually, the realizations in the
initial ensemble should be linear combinations of the princi-
ple components of the covariance matrix. Such an algorithm
is known as Karhunen–Loève expansion [39]:

Y (x; ξ) = Y (x) +
∞∑
n=1

√
λn fn(x)ξn (8)

where Y (x) is the mean log-conductivity, {ξn} are indepen-
dent random variables normally distributed as ξn ∼ N (0, 1),
and {λn , fn(x)} are the eigenvalues and eigenfunctions from
solving the Fredholm integral equation of the second kind:

∫
Cln k(x, x′) fn(x)dx = λn fn(x′) (9)

and the covariance matrix can be decomposed as:

Cln k(x, x′) =
∞∑
n=1

λn fn(x) fn(x′) (10)

Although the theorem provides a series of infinite eigen-
functions, the number is finite in real applications (e.g., no
more than the number of gridblocks for a random field in
space). SinceY (x) and {λn , fn(x)} are fixed for given statisti-
cal properties, there is a one-to-onemapping relation between
Y (x; ξ) and {ξn}. Therefore, we just need to update the ran-
dom variables {ξn} for updating Y (x; ξ); thus, the parameters
to be updated arem = [ξ1, ..., ξNm ]T .

2.4 Sorted Ensemble Smoother

Assume the ensemble size is Ne, the dimension of the sub-
space spanned by the ensemble is hence Ne – 1. We may
keep the first Ne – 1 dominant components (i.e., leading
eigenfunctions) of the covariance. By doing so, the subspace
spanned by the ensemble minimizes the total mean square
error in decomposition and optimally compacts the energy.
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Similar ideas such as the discrete cosine transform [40] also
play a similar role for re-parameterization. However, these
approaches lead to too smooth realizations and biased esti-
mation [35, 36].

One of the reasons why the random sampling in the
standard ES may generate poor initial samples is that the
sample variances in the dominant components could be very
small. For example, consider a simple mathematical model
y = 10x1 + x2, xi ∼ N (0, 1), i = 1, 2. Apparently,
x1 is the dominant parameter compared to x2. Assume we
use only two samples, which consists a 1D subspace, i.e., a
straight line. If the line is parallel to the x1-axis, it means the
update or adjustment is for x1 only, which is equivalent to
keeping only the first (dominant) component by truncation.
However, if the line is orthogonal to the x1-axis, it means
there is no update or adjustment for x1, which is equivalent
to keeping only the second (less-important) component.
Clearly, the second case is what we are attempting to avoid.
The differences in these two cases can be detected from the
sample variances in each dimension of the components: in
the first case, the variance for x1 is larger than that for x2,
and vice versa in the second case.

If wewould like to enhance the initial samples without too
smooth realizations, we may keep all components without

truncation, while making the sample variances in the domi-
nant components larger than the sample variances in the less
important components. Based on this idea, we propose a sim-
ple and efficient way by sorting the variances of the samples
in each dimension of the components and then adjusting the
samples by assigning the dimensions with larger variances to
the dominant components. For example, in the above math-
ematical model, assume we randomly generated two sample
points (x1 = 0, x2 = −1) and (x1 = 1, x2 = 2). That
is, x1 = 0, 1 for the first dimension and x2 = −1, 2 for the
second dimension. Since the variance for x2 is larger than the
variance for x1, considering that x1 is the dominant compo-
nent, we will assign the random variables –1 and 2 to the first
dimension for x1 and 0 and 1 to the second dimension for x2.
Hence, the new sample points become (x1 = −1, x2 = 0)
and (x1 = 2 x2 = 1). By this means, the dominant compo-
nents are more likely to be updated than the less-important
components. Then, the standard ES approach can be per-
formed after the above sorting process. It should be noted
that for strongly nonlinear problems, wemay use the iterative
ES, and the sorting process is only implemented once for the
initial samples. Complete scheme of the iterative sorted ES
algorithm is presented in Algorithm 1. The sorted ES with-
out iteration can be performed easily by setting the iteration
counter to one.
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Fig. 1 One hundred ensembles of log-conductivity in 1D linear example: a the red lines represent the ES results; b the blue lines represent the
sorted ES results. The black line shows the true reference. Readers are referred to the online version for the color lines

3 Numerical Examples

In this section, the proposed method was tested in flow and
transport problems. We start with relatively simple models
because we would like to compare the performance of the
ES and the sorted ES statistically, which requires running
the forward model many times. First, we consider a 1D lin-
ear model, in which the conductivity is observed in some
locations directly. The second example is a 1D single-phase
flow model, in which the hydraulic head is assimilated to
infer the conductivity field. The third example is a 2D mul-
tiphase flow model, in which the pressure and flow rate are
observed in injection and production wells.

We remark that we use multiple ensembles (each contains
a certain number of ensemblemembers) in this study, in order
to analyze the performances statistically. This does not mean
that we need to use multiple ensembles in real applications,
where one ensemble is used in the traditional way.

The following terms are defined to quantify accuracy.
Denote ỹ(n) the true model parameter (i.e., ln(k)) at grid-
block n, n= 1,…,Nb, whereNb is the total number of blocks.
yi j (n) is the estimated parameter in the i-th ensemble and
the j-th ensemble member. Hence, the mean (over samples
in each ensemble) ln(k) for ensemble i is:

yi (n) = 1

Ne

Ne∑
j=1

yi j (n) (11)

The error of mean ln(k) for ensemble i is:

mean error =
√√√√ 1

Nb

Nb∑
n=1

[
yi (n) − ỹ(n)

]2 (12)

The spread of mean ln(k) for ensemble i is:

spread =

√√√√√ 1

Nb

1

Ne

Nb∑
n=1

Ne∑
j=1

[
yi j (n) − yi (n)

]2 (13)

The root mean square error (RMSE) of ln(k) for ensemble
i is:

RMSE =

√√√√√ 1

Nb

1

Ne

Nb∑
n=1

Ne∑
j=1

[
yi j (n) − ỹ(n)

]2 (14)

And the relation of the above three is:
mean error2 + spread2 = RMSE2.

3.1 1D Linear Model

Consider a linear problem inwhich the log-conductivity ln(k)
in a 1D space of Nb = 100 gridblocks is treated as a Gaus-
sian random field with a mean of 0 and a covariance of
Cln k = σ 2

ln k exp(−|x1 − x2|
/
η), where σ 2

ln k = 1.0 and the
correlation length is η = 20 gridblocks. The true reference
is randomly generated from the above statistics as shown in
Fig. 1 (in black). We set the ensemble size to be Ne = 10 and
measure the log-conductivity at Nd = 20 equispaced loca-
tions x = 1, 6, 11, . . . , 96 with standard error of 0.01 and
infer the log-conductivity in the whole space. Clearly, it is
a linear problem since we observed the parameters directly.
Therefore, the ES or the sorted ES is performed only once
without iteration.

Figure 1a shows 100 ensembles after data assimilation in
the ES. Note that the degree of freedom isNe − 1= 9, which
is less than the number of observation Nd = 20. Thus, it is
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Fig. 2 Log-conductivity in 1D linear example. The black line shows the
true reference. The red lines show the P10, P50 and P90 (over 10,000
ensembles) of the mean estimation in ES. The blue lines show the P10,
P50 and P90 of the mean estimation in sorted ES

an overdetermined problem and the solution is in a least-
square sense. Since the observation error is relatively small
as 0.01, the 10 realizations in each ensemble are very close
to each other (overlapped in the figure). Figure 1b shows
100 ensembles after data assimilation in the sorted ES. The
deviation becomes smaller compared to the results from the
ES, e.g., the overshoots near x = 18 and x = 38 in the ES
disappear in the sorted ES.

We can see that different initial samples result in different
results. To compare the performance of the two methods sta-
tistically, we generateNs = 10,000 ensembles, each of which
contains 10 samples. Figure 2a presents the percentiles (over
10,000 ensembles) of themean (of 10 samples in each ensem-
ble) log-conductivity using the ES (in red) and the sorted ES
(in blue). It can be seen that the P50 from the sorted ES has
a smaller deviation than that from the ES. For example, the
value from the sorted ES is closer to the true reference than
the value from the ES near x = 40. It can also be observed
that the confidence interval (represented by P10 and P90) in
the sorted ES is narrower than that in the ES, indicating the
former is likely to provide a more accurate result than the
latter.

Figure 3 shows the distribution of RMSE for the 10,000
ensembles. It is clear that the RMSE of the sorted ES has a
lower expectation and a smaller variance than the RMSE of
the ES. Table 1 compares the mean error, spread and RMSE
from the two approaches. The error ranges denoted by ‘ ±
’ are the standard deviations from 10,000 ensembles. In this
case, the spread is almost negligible, because the number of
unknown is smaller than the number of equations. Actually,
although there are 100 parameters (one at each block), there
are only 9 degree of freedom in the subspace formed by 10

Fig. 4 Histogram of the ratio of the RMSE in sorted ES to the RSME
in ES, using 1,000 true references, each uses 10,000 ensembles. The
black vertical line shows the mean of the ratio

Fig. 3 PDF of the RMSE in 1D linear example using 10,000 ensembles.
The red solid line shows the ES results. The blue dashed line shows the
sorted ES results

Table 1 1D linear test

Mean error Spread RMSE

ES 0.671 ± 0.116 1.3e−4 ± 3.7e-5 0.671 ± 0.116

Sorted
ES

0.600 ± 0.096 9.1e−5 ± 2.3e-5 0.600 ± 0.096

samples.Hence, the ES approaches tend to find the best linear
solution in the least-square sense. To quantify the improve-
ment in ES using the sorted process, we compute the ratio of
the RMSE expectation (over 10,000 ensembles) in sorted ES
to the RMSE expectation in ES. The value is 0.600/0.671 =
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Fig. 5 Effect of the variance of log-conductivity field: a RMSE expectations in ES and sorted ES; b the ratio of the RMSE expectation in sorted ES
to the RMSE expectation in ES

Fig. 6 Effect of the correlation length of log-conductivity field: a RMSE in ES and sorted ES; b the ratio of the RMSE in sorted ES to the RMSE
in ES

0.894, which less than 1, indicating the accuracy is improved
by 10.6%.

Considering that the results may vary if the true reference
is changed, we randomly generated 1,000 true references;
each uses 10,000 ensembles. Figure 4 shows the histogram
of the RMSE ratio in these 1,000 tests. It can be observed
that in all tests, the sorted ES is expected to be more accurate
than the ES. The black vertical line depicts the mean of the
ratio, which equals to 0.892.

Finally, we performed another two tests on the sensitivity
of the RMSE ratio to the statistics of the log-conductivity
field, including the variance σ 2

ln k and correlation length η as
in Eq. (5). Figure 5 shows the effect of the variance of log-
conductivity field. We can see from Fig. 5a that both RMSEs
(in ES and sorted ES) increase as the variance increases,
which is reasonable because a larger uncertainty in the prior

makes the inverse problem more challenging. Figure 5b
reveals the ratio of the RMSE in sorted ES to the RMSE
in ES. This value is not sensitive to the variance since the
total variance does not change the ratio of eigenvalues in the
decomposition. Figure 6 shows the effect of the correlation
length of log-conductivity field. We can see Fig. 6a that both
RMSEs (in ES and sorted ES) are reduced as the correlation
length grows. This is because a larger correlation length leads
to larger eigenvalues in the dominant components, and hence,
it is easier for the initial samples, which forms reduced-order
subspace, to represent the statistics of the prior. Figure 6b
shows that the ratio of the RMSE in sorted ES to the RMSE
inES is also reduced as the correlation length increases. In the
extreme case when the correlation length approaches 0 (i.e.,
uncorrelated), all the eigenvalues become the same; there-
fore, the sorting process does not have any effect. On the
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Fig. 7 Log-conductivity in 1D single-phase flow example. The black
line shows the true reference. The red lines show the P10, P50 and P90
(over 10,000 ensembles) of the mean estimation in ES. The blue lines
show the P10, P50 and P90 of the mean estimation in sorted ES

other hand, when the correlation length is significantly large,
only the first eigenvalue becomes dominant, and thus, the
improvement in the sorted ES compared to the ES will be
stable.

3.2 1D Single-phase FlowModel

Let us consider a 1D spacewith the same statistical properties
as above. We use the same true reference as shown in Fig. 1
and also observe the hydraulic heads at the same locations
x = 1, 6, 11, ..., 96 with standard error of 0.01 and estimate
the log-conductivity in the whole space. Now we assume
the groundwater flow has following boundary conditions (a
constant flux at the left end and a constant head at the right
end):

k
dh

dx

∣∣∣∣
x=0

= −q0, h|x=L = 0 (15)

whereq0 = 1.0.This is a nonlinear problem, and thus, 10 iter-
ations in both the ES and the sorted ES were performed. We
still use 10,000 ensembles with 10 members in each ensem-
ble.

Figure 7 illustrates the updated log-conductivity after the
last iteration. It is observed that the sorted ES matches the
true reference better than the ES. Figure 8 shows the dis-
tribution of the RMSE. Again, we see that the error of the
sorted ES is likely to be less than the ES error. These find-
ings are validated in Table 2, where the mean error, spread
and RMSE are compared in details. In this case, the ratio of
RMSE expectation in the sorted ES to the RMSE expectation
in the ES is 0.707/0.796= 0.888, which is close to that in the
1D linear tests. Note that the differences of RMSE between

Fig. 8 PDF of the RMSE in 1D single-phase flow example using 10,000
ensembles. The red solid line shows the ES results. The blue dashed line
shows the sorted ES results

Table 2 1D single-phase flow test

Mean error Spread RMSE

ES 0.795 ± 0.228 0.037 ± 0.004 0.796 ± 0.228

Sorted ES 0.706 ± 0.230 0.035 ± 0.004 0.707 ± 0.230

the two methods are due to the differences in mean errors,
while the spreads in the two methods are very close, indicat-
ing the sorting process honors the variability/uncertainty in
the ensemble.

3.3 2DMultiphase FlowModel

As our last example, we test the proposed method using a
multiphase flowmodel in a 2D heterogeneous formation: the
third layer in the SPE10 benchmark problem. The domain
contains 60 × 220 cells, and each size is 20 × 10 ft. The
true log-permeability (in mD) has a large variability from
− 5–10 as shown in Fig. 9. We assume the porosity is
0.2, the relative permeabilities follow quadratic functions
as krw(Sw) = (S∗)2 and kro(Sw) = (1 − S∗)2, where
S∗ = (S − Swc)/(1− Swc − Sor ), Swc = 0.2 and Sor = 0.2.
The initial pressure is 6,000 psi, and the initial saturation
is 0.2. The log-permeability is taken as a random field with
a mean of 3.0, a variance of σ 2

ln k = 6.0 and correlation
lengths as ηx = ηy = 300 ft. To infer the permeability,
flow is induced from 15 injection wells to 8 production wells
(Fig. 9). The injection wells are controlled by constant rates
of 200 bbl/day and the productionwells by constant pressures
at 4,000 psi. The bottom hole pressure (BHP) at the injec-
tion wells, as well as the oil production rate (OPR) and water
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Fig. 9 True log-permeability ln(k) and well configuration for the 2D
example. The hollow circles indicate injectionwells and the solid circles
indicate production wells

production rate (WPR) at the production wells, is observed
monthly up to 3 years. In the ensemble smoother approaches,
five iterations are performed and 1,000 ensembles with 50
members in each ensemble are used.

Figure 10 shows three ensembles (randomly chosen out of
1,000 ensembles) of themean log-permeability (each ensem-
ble contains 50 samples) from the ES and the sorted ES after
the last iteration. Both methods capture the high permeabil-
ity zones at the top left and in the center, as well as the low
permeability zone at the right. The results from the sorted ES
are closer to each other and to the true reference, too.

Figure 11 shows the confidence interval using percentiles.
We can see that the P50 of both methods is similar, whereas
the P10/P90 of the sorted ES is greater/less than that of the
ES, indicating the sorted ES is more stable. Figure 12 shows
the detailed results along two lines (i.e., y= 30 and x = 110).
It is clear that the sorted ES provides a smaller confidence
interval than the ES. The ratio of RMSE expectation in the
sorted ES to the RMSE expectation in the ES is 2.26/2.66 =
0.85, i.e., the improvement is about 15%. Figure 13 reveals
the injection and production data. The updated results from
the ES and sorted ES are closer to the true observations than
the prior results. In addition, the sorted ES improves matches
compared to the ESwith a smaller confidence interval, which
is consistent with the results in permeability.

3.4 3D PUNQ-S3 Benchmark Case

The PUNQ-S3 case study is a benchmark reservoir model
based on a real field example set up by the Production fore-
casting with Uncertainty Quantification (PUNQ) project and
widely used for historymatching and prediction [41, 42]. The
model contains 19 × 28 × 5 gridblocks, the dimensions of
which in the x- and y-directions are 180 × 180 m2. The field
contains 6 production wells, but no injection wells, as it links
to a strong aquifer. The true porosity and permeability data
are given and used to produce the true observation. A full
description of this case study can be found on the PUNQ-S3

webpage [43], following which we follow randomly gener-
ate 40 realizations of the static state as in [42], including
porosity, horizontal permeability and vertical permeability
using a sequential Gaussian simulation/co-simulation mod-
ule in SGeMS (Stanford Geostatistical Modeling Software)
with Gaussian random fields for each layer. The project uses
the production history of the first 8 years, including 1 year
of well testing, 3 years of field shut-in and 4 years of actual
production. Starting from year 5, the oil production rate is
capped at 150 m3/day, the minimum bottom hole pressure is
120 bar, and all wells are shut-in at the first 2 weeks in each
year. The production data, including well bottom hole pres-
sure (WBHP), well oil production rate (WOPR), well gas–oil
ratio (WGOR) and well water cut (WWCT), are assimilated
once a year. Then, the model is simulated up to 16 years, i.e.,
the last 8 years’ forecasting results are used for comparison.

Figure 14 shows the history matching (from year 0–8) and
prediction (from year 9–16) results for well PRO-11 gener-
ated from the prior (first row), and the final updated porosity
and permeability. The thin curves indicate the ensemble fore-
casts, and the thick black curve indicates the reference. We
can see that the ES (second row) roughlymatches the produc-
tion history, but fails to predict the forecast period forWBHP,
WOPR and WWCT, due to poor estimation in porosity and
permeability. However, the sorted ES matches the reference
much better and reduces the uncertainty associated with the
prior estimation. Similar conclusion is drawn from Fig. 15,
where the results of field oil production total (FOPT), field
gas production total (FGPT) and field water production total
(FWPT) are illustrated. We remark that the FOPT and FGPT
have relatively small variability, due to the fact the well is
essentially controlled by the oil rate (caped at 150 m3/day),
while the FWPT clearly shows the improvement using the
sorted ES over the traditional ES.

4 Discussions

In this study, we aim to test the proposed method statistically
with a large number of ensembles. Hence, we start with lin-
ear and single-phase flow models in relatively small spatial
domains tomake it affordable to run the forwardmodel many
times. Consider that the spatial domain could be very large
with a great number of parameters (e.g., up to millions) in
real field while the ensemble size is often much fewer (e.g.,
in hundreds), and the number of observations could be also
very large especially in time series analysis. This is actually
a severely overdetermined problem, i.e., greater number of
observations than the degree of freedom in parameter space.
Therefore, in the 1D examples, we set the ensemble size
to be 10, which is smaller than the number of observations
as 20. In the 2D case, we observe the BHP in 15 injection
wells and OPR and WPR in 8 production wells monthly up
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Fig. 10 Three scenarios of the mean (of 50 samples) log-permeability ln(k) after matching the history: the left column is from the ES; the right
column is from the sorted ES

to 36 months. Therefore, the total number of observations is
(15 + 2 × 8) × 36 = 1116, which is much larger than the
ensemble size of 50. Although we can use more samples to
improve the matching results, it is usually unaffordable to
set an ensemble size close or greater than to the number of
observations.

In the above tests, the improvements in the sorted process
are not significant possibly because although the ensemble
in the standard ES may be spanned in the unimportant com-
ponents, this does not always happen, and the sorted process
just improves these ensembles. However, the improvement
is stable for different input variances, since the variance does
not change the ratio of the eigenvalues. Moreover, the sorted
process is more promising with larger correlation lengths,
where the eigenvalues decay faster. The improvements in the
1D (about 10%) and 2D (about 15%) tests suggest that the
improvement could be more obvious for complicated mod-
els. Note that the computational cost in the sorting process
is negligible, indicating the improvement is still favorable.

Note that the dominant components as we presented here
do not necessarily have the largest impact in the observations.
This is because the dominant components from the principle
component analysis only account for the prior information
but not themodel or the likelihood. Actually, sensitivity anal-
ysis is required to determine themost important components,
but with additional cost in forward simulations. If such a
sensitivity analysis is affordable, the sorted process can be
applied as well, in which the samples with larger variances
should be assigned to more sensitive components.

5 Conclusions

Application of the ensemble smoother (ES) to groundwater
model calibration and data assimilation has been investigated
in recent years. In this work, we proposed a sorted ES by
adding a sorting process in initial sampling to improve accu-
racy. Specifically, we perform principle component analysis
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Fig. 11 Percentiles of the mean (of 50 samples) log-permeability ln(k) after matching the history: the left column is from the ES; the right column
is from the sorted ES

Fig. 12 Percentiles of the mean log-permeability ln(k) after matching
the history along: a horizontal line y = 30; b vertical line x = 110. The
black line shows the true reference. The red lines show the P10, P50

and P90 (over 1,000 ensembles) of the mean estimation in ES. The blue
lines show the P10, P50 and P90 of the mean estimation in sorted ES
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Fig. 13 Percentiles of observations: a oil production rate at P6; b water
production rate at P6; c bottom hole pressure at I4. The black line shows
the exact result from the true reference. The green lines show the P10,
P50 and P90 (over 1,000 ensembles) of the mean estimation in prior.

The red lines show the P10, P50 and P90 of the mean estimation in ES.
The blue lines show the P10, P50 and P90 of the mean estimation in
sorted ES

Fig. 14 History matching and prediction of well PRO-11: the first row
is from the prior; the second row is from the ES; the third row is from
the sorted ES. The first column is the well bottom hole pressure; the

second column is the well oil production rate; the third column is the
well gas–oil ratio; and the fourth column is the well water cut
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Fig. 15 History matching and prediction of whole field: the first row is
from the prior; the second row is from the ES; the third row is from the
sorted ES. The first column is the field oil production total; the second

column is the field gas production total; the third column is the field
water production total

and assign the dimensions with large variances to the domi-
nant components. By this means, the dominant components
are more likely to be updated than other components, and
thus, there is a higher chance that the main features are cap-
tured.

Four numerical tests were presented to evaluate the perfor-
mance of the ES and the sorted ES, from the simple synthetic
test to the three-dimensional black-oil benchmark test. It was
seen that the sorted ES provided smaller root mean square
errors than the standard ES. The error reductionmainly came
from the reduction in the ensemblemean error, while keeping
a similar spread value. In addition, we analyzed the effect of
prior statistics and found that the improvement is not sensitive
to the variance of the input parameter, but is more obvious

if the correlation length is larger. In conclusion, the sort-
ing process improved the ES estimation, especially when the
time-lapse data are observed. This idea can also be extended
to other ensemble-based methods such as ensemble Kalman
filter.
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