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Abstract

Heterogeneous cross-project defect prediction (HCPDP) aims to predict defects in a target project with limited historical
defect data via a defect prediction (DP) model trained with defect data of another source project. The accuracy of a DP model
is highly dependent on the set of features selected in feature engineering (FE) phase. The study evaluates the effectiveness of
proposed four-phase HCPDP framework with more focus on FE phase using the stacking-based ensemble learning method.
Auto-encoder (AE), a deep learning-based FE technique is used for the proposed analysis. In addition, two novel techniques
to deal with imbalance dataset and to determine correlation between features are also proposed in this paper. For comparative
analysis, accuracy, recall, F-score and area under curve (AUC) are used as the output parameters. To compare DP model’s
output with or without FE phase, ten prediction pairs from four open source projects have been considered. The experimental
results show that the AE technique is able to reduce the number of features by an average of 50% as compared to data-driven
approaches. Also, the proposed model gave better performance in comparison with traditional heterogeneous models with

highest AUC of 0.8901.

Keywords Feature Engineering - Cross-Project - Classification - Heterogeneous - Ensemble - Cross-Validation

1 Introduction

Software has become an indispensable part of every human’s
day-to-day activities. In today’s scenario, many important
fields such as education, marketing, banking and transport
need highly reliable, defect-free and high-quality software
applications, as any failure in these applications can result
in enormous losses from finance to human lives. Software
errors may be due to inconsistencies, ambiguities, oversights
or misinterpretation of the specifications to be met by the
software, carelessness or negligence in writing code, insuffi-
cient testing, inappropriate or unexpected use of the software
or other unforeseen issues. In order to reduce the signifi-
cant cost of software development, it is very important to
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identify these software defects at the right time. "Software
testing should be done for early identification of software
faults because amendments in maintenance phase will lead
to huge cost that grows exponentially if faults are identified in
later stages of Software Development Life Cycle (SDLC)", as
described in [1]. In comparison, the SDLC’s software testing
phase absorbs 60% of the overall cost of software develop-
ment. Therefore, it is very critical that testing on the right
modules should be performed at the right time.

According to the state of the art, software defect prediction
(SDP) can be broadly divided into two groups- with-in project
defect prediction (WPDP) and cross-project defect prediction
(CPDP). In WPDP, the available defect dataset is split up
into two parts in order to build the DP model in such a way
that the DP model is trained using one part of the dataset
(referred to as labeled observations) and the other part is
used to validate DP model as shown in Fig. 1. Testing the DP
model involves finding labels that are either faulty or non-
faulty for unidentifiable instances in the target dataset [2].

According to the state of the art, software defect prediction
(SDP) can be broadly divided into two groups- with-in project
defect prediction (WPDP) and cross-project defect prediction
(CPDP). In WPDP, the available defect dataset is split up
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into two parts in order to build the DP model in such a way
that the DP model is trained using one part of the dataset
(referred to as labeled observations) and the other part is
used to validate DP model as shown in Fig. 1. Testing the DP
model involves finding labels that are either faulty or non-
faulty for unidentifiable instances in the target dataset [2].

CPDP is another class of SDP in which software projects
that lack the needed local defect data can use data from other
projects to construct an accurate and effective DP model.
In addition, CPDP can be further categorized into homoge-
neous CPDP (HoCPDP) and heterogeneous CPDP (HCPDP)
subcategories. The common software measures/features are
collected by HoCPDP from both the source application
(whose defect data is employed to train the SDP model) and
the target application (for which the SDP model is made) [3].
But, there are no uniform metrics between the prediction pair
datasets when using HCPDP. Through measuring the coef-
ficient of correlation between all feasible software feature
combinations, uniform features may be found between two
applications. In order to forecast project-wide defects, the
combinations of feature pairs displaying some sort of analo-
gous distribution in their values are used as common features
between source and target datasets in case of HCPDP. For
example, (A,Q), (B,P) and (D,S) are correlated feature pairs
for HCPDP category as depicted in Fig. 2. More information
about both CPDP categories is shown in Fig. 2.

Irrelevant or useless software features chosen during the
FE step can be one of the key explanations for less accu-
rate DP model as redundant collection of features can lead
to skewed or misleading prediction performance. Therefore,
the important issue that should be tackled first in order to
build a highly reliable SDP model is the selection of the right
set of features from a given pool of input features. The arti-
cle studies tests the prediction performance of three-phased
WPDP model and four-phased HCPDP-AE model with or
without FE phase using different classification algorithms.

Data-driven FE techniques such as principal component
analysis (PCA) can only model linear relationships among
input features. In contrast to data-based FE models, neural
nets can model nonlinear transformations of features and per-
form better as the number of features grows.

Auto-encoder (AE), an unsupervised artificial neural net-
work (ANN) and encoding—decoding-based FE technique,
has been used in the proposed research study to map higher-
dimensional feature data to lower one along with elimination
of redundant and noisy features. The motivation behind
this study is to evaluate the prediction performance of the
four-stage HCPDP-AE model with introduction of the novel
approach to implement each stage with a greater emphasis
on the FE stage. In addition, two novel techniques to deal
with imbalance dataset and to determine correlation among
features in HCPDP are also proposed in the paper. Both tech-
niques overcome the shortcomings of traditional methods in
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Fig. 1 With-in project defect prediction

their domain as described in later section. The main contri-
bution areas of the study are as follows:-

RQI1. Compare and contrast the use of data-driven and
deep learning-based FE strategies with the conventional
approach of DP, i.e. WPDP.

RQ2. Compare the prediction performance of proposed
HCPDP framework with or without FE phase.

RQ3. Whether and to what extent DP results of HCPDP’s
model are comparable to the outcomes of WPDP’s model?

RQ4. Compare and validate the performance of the
proposed HCPDP framework with existing benchmarked
heterogeneous prediction models.

The outline of the paper is as follows:—Section 2 includes
a comprehensive analysis of HCPDP’s related work, Sect. 3
describes the four-phase HCPDP-AE model and the three-
phase WPDP model with detailed explanation of each phase,
Sect. 4 describes the datasets used to execute the proposed
work and the output metrics used to assess the experimental
results, the development part of the experiments is explained
in Sect. 5, the experimental outcomes are discussed in Sects.
6 and 7 explains the threats to construct validity and the con-
clusive findings are outlined in Sect. 8.

2 Related Work

In 2002, Melo et al. [4] reported the first known study
in CPDP. They introduced the MARS (Multivariate Adap-
tive Regression Spline) paradigm for defect prediction and
data architecture in two Java-based frameworks, Xpose and
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Jwriter. They used their proclivity for fault to forecast the
classes in Jwriter. They did this by using a model trained on
the Xpose dataset. They compared MARS’ efficiency to that
of linear regression (LR) and discovered that MARS outper-
forms LR and is much more cost-effective.

Menzies et al. [5] used data from ten projects from two
different sources in 2009. They filter down the data for suc-
cessful defect prediction by eliminating noisy, repetitive and
irrelevant data and train the model with this unblended data.
The tests were carried out using the nearest neighbor (NN)
method on data from ten projects. The findings showed that
the tests were effective at predicting defects within a project.
Meanwhile, using these experiments, the CPDP task was
unable to outperform the project defect prediction task.

In same year 2009, Camargo et al. [6] used log transforma-
tion for the first time to identify related instances in training
and analyzing project data to eliminate project-based data
instances. The classification for defect prediction on Internet
Explorer and Mozilla Firefox as training and testing projects
was suggested by Menzies et al. [5] in the same year. For
the classification task, they used the coding model and pro-
cess parameters. They used Mozilla Firefox defect data to
train the proposed DP model, which was then used to predict
defects in Internet Explorer. These experiments revealed that

when the proposed model was used as a training project and
Mozilla Firefox was used as a testing project, the proposed
model outperformed.

Menzies et al. [7] argued in 2011 that relevancy varies
depending on interpretation. They said that relevance differs
with interpretation, and that data relevance can be contradic-
tory depending on how it is perceived. When viewed globally,
data that seems to be significant can be meaningless when
viewed locally. They supported their claims with experi-
ments, concluding that local behavior was superior to global
behavior and that condition-based laws should be prioritized
over taking into account other factors.

In 2012, Bellenburg et al. [8] added to Menzies et al. [7]
arguments by demonstrating that local models were better
for a specific dataset, but global models were better for gen-
erality. In the same year, Rahman et al. [9] conducted studies
to show that performance indicators such as F-score, accu-
racy and recall are not sufficient for quality assurance when
defect prediction is made using various models. They said
that AUC gives the comparable results in WPDP models.

To address the shortcomings of single objective model
[9], in 2013, Canfora et al. [10] suggested a multi-objective
approach. They used a non-dominated sorted generic algo-
rithm (NSGA-II) to practice the logistic regression (LR)
model.

In 2011, Gao et al. [11] developed a universal defect
prediction (UDP) model using 1398 projects from Google
code and source forge. This model compares the metrics in
the training and testing projects’ datasets, and if at least 26
of them fit, then only predictions could be made on target
project. He et al. [3] overcame this constraint by developing
a new metric based on instance characteristic vectors. They
also found unfavorable effects when comparing CPDP to fea-
ture disparity. The tests were carried out on 11 projects using
three different datasets.

In 2014, He et al. [3] compared the output findings for
WPDP and CPDP using feature selection approaches. They
discovered that the lower the number of training project fea-
tures used to train classifiers, the higher the precision in
WPDP and the greater the F-score and recall performance
in CPDP. Various ensemble classifiers are also trained and
validated for the CPDP task [12, 13].

Dong et al. [14] suggested canonical correlation analysis
(CCA) approach to model defects. They became the first
to put the study for heterogeneous defect prediction (HDP)
to the public’s attention. By supplementing dummy metrics
with null values, they eradicate the metrics disparity issue
between the training and testing project datasets. They tested
14 projects using four different datasets.

In 2015, Fu et al. [15] performed studies on 34 projects
with 5 datasets. They suggested HDP task using transfer
learning system. They do not use null values to augment

@ Springer



2542

Arabian Journal for Science and Engineering (2023) 48:2539-2560

metrics as Dong et al. [14] suggested, but their findings are
equivalent to WPDP.

Ryu, Jang and Baik [16] used a new approach called the
transfer cost-sensitive boosting method to execute the CPDP
challenge in the same year. For the CPDP task, their approach
generated state-of-the-art performance. They also suggested
a CPDP challenge that takes into account class-imbalance
using a multi-objective Naive Bayes technique (MONBT)
[17]. All WPDP models, as well as single objective models,
were outperformed by their MONBT.

Jing et al. [18] created a novel unified metric representa-
tion (UMR) for predicting heterogeneous defects in 2015. Fu
et al. [15] suggested an HDP challenge based on metric col-
lection and metric matching in the same year. They studied
28 projects and found that the proposed approach was supe-
rior to WPDP and, in some circumstances, outperformed it
statistically.

Ni et al. [19] proposed FESCH in 2017, a novel approach
that outperformed both TCA+ and WPDP in most scenar-
ios and gave state-of-the-art results for the baseline methods
used. Furthermore, the findings indicated that FeSCH’s suc-
cess was self-sustaining and independent of the classifiers
used.

In same year, Li et al. [20] compared the four filtration
approaches for defect data. They said that the fault data filtra-
tion approach chosen has a significant impact on the model’s
ability to predict defects. They compared four different fil-
tering techniques: data characteristic-based filter (DCBF),
target project data-guided filter (TGF), source project data-
guided filter (SGF) and local cluster-based filter (LCBF).
They also introduced a new filter, the hierarchical selection-
dependent filter (HSDF), to resolve the shortcomings of the
previous four filters in terms of scalability when dealing
with massive datasets. The proposed filtering strategy out-
performed existing filtering techniques.

Xu et al. [21] proposed a domain adaptation approach
for reducing the higher-dimensional features of training and
analyzing project domains in 2018. To learn the difference
between function spaces, they used the dictionary learning
technique. They compared heterogeneous defect adaptation
(HDA) [21], CCA+ [14] and HDP [15] using three open
source projects: NetGene, NASA and AEEEM, and three
performance measures: recall, F-score and balance.

In 2020, Lee and Felix [22] concentrated on method-level
(ML) defect estimation using regression models in a recent
software release after gathering-related data from previous
versions of the same system. The authors used three perfor-
mance measurement variables, such as defect density, defect
velocity, and time to implement defects that show a signifi-
cant relationship with ML defects. The proposed work also
facilitated the study and evaluation of pre-to-post system data

@ Springer

preprocessing classifiers and entropy values in average out-
put datasets. The defect velocity had the highest correlation
with the count among ML faults among all three factors, with
a 93% correlation.

Majd et al. [23] suggested using deep learning models
to forecast statement class defects (SCD) in same year. The
authors of this paper sought to relieve the burden on software
developers by defining places or modules that are more vul-
nerable to defects. The authors used Code4Bench’s Broad
Short-Term Memory (BSTM) deep learning model to run
experiments on 1,19,989 C/C++ programs. The authors have
put the SCD model to the test for predicting defects in unseen
data (i.e., new statements) and found that it performed well,
with high memory, precision and accuracy.

In the field of HCPDP, Grassmann manifold optimal trans-
fer defect prediction (GMOTDP) is a recent novel work in
year 2020. Jiang et al. [24] gave a three-phase HDP model
that proposed Mahalanobis distance-based class imbalance
learning (CIL) framework for dealing with class imbalance
problem (CIP) in the source dataset, as well as a classifica-
tion and regression trees (CART)-based ensemble learning
methodology for finding the best subset of the source dataset
for metric matching. To check the feasibility of the proposed
approach, the authors used nine projects from three public
domain software defect repositories and compared them to
four known advanced approaches. The findings of the exper-
iments show that the proposed approach is more reliable in
terms of AUC.

Wu et al. [40] presented the multi-source heteroge-
neous cross-project defect prediction (MHCPDP) approach
in 2021, which employed AE to extract intermediate features
from the original datasets rather than merely deleting redun-
dant and unrelated features. To limit the impact of negative
transfers and improve the performance of the classifier, the
MHCPDP developed a multi-source transfer learning algo-
rithm. The authors tested MHCPDP on five open source
datasets in depth. The results of the experiments revealed
that MHCPDP not only improved two performance mea-
sures but also addresses the drawbacks of traditional HCPDP
approaches.

3 Proposed Defect Prediction Model

While HoCPDP allows more than one homogeneous
project’s datasets for training and testing of DP model, on
the contrary, HCPDP-AE begins its DP process with a pair
of datasets as source dataset Sp#, and target dataset Tp«q.
Each row and column represents an instance and a software
metric, respectively in both datasets.
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Preprocessing of datasets is performed in the very first
phase to make them compatible for their employment in the
model as shown in Fig. 3. This phase entails the treatment
of missing values, the labeling of a categorical/dependent
variable, eradication of the CIP in an imbalanced training
dataset, and the normalization of a given collection of data
values. The far disproportionate ratio of instances in two
groups referred to as CIP is the most challenging and sig-
nificant problem that should be addressed in this phase. If
one wants to use data resampling techniques [25] to tackle
CIP, so there would be two ways to equalize the number of
cases in majority and minority class. In the first way termed
as random over-sampling (ROS), one attempts to generate
more synthetic minority class observations, and in the other
way termed as random under-sampling (RUS), one tries to
minimize majority class observations in order to achieve an
equivalent count of observations in both classes for a binary
classification problem [26].

But, as per the state of the art, both approaches have
drawbacks of their own [26]. The former approach induces
redundant observations for minority class that can over-
generalize the minority class without taking into account the
distribution of instances in the majority class. On the other
hand, the latter method can exclude some helpful or rele-
vant observations from the majority class without taking into
consideration their significance in predicting the expected
outcome.

Therefore, a novel hybrid approach named as chunk bal-
ancing algorithm (CBA) is proposed in the research study to
treat CIP in order to obtain benefits as well as to overcome the
shortcomings of both ROS and RUS techniques. SMOTE’s
overgeneralization and over-fitting issues are addressed in
CBA by balancing minority class instances via creating
chunks as stated in CBA, rather than introducing synthetic
examples that cause duplication in the dataset distribution.
RUS, on the other hand, eliminates majority class occur-
rences regardless of their significance in predicting the final
outcome. To create n balanced chunks, CBA also entails the
random selection of instances from the majority class. How-
ever, it provides all majority class instances an equal chance
to become a part of the model’s training rather than discarding
them entirely. In this manner, CBA overcomes the constraints
of data re-sampling methodologies used to handle CIP. The
first phase of the HCPDP-AE model is completed throughout
this way.

This algorithm takes an imbalanced dataset as an input
and returns n chunks with almost equal numbers of instances
from both the majority and minority groups as the output.

Original Pair Of Dataset

Source Target
Dataset Dataset

(Sa~p)

(Tp-q)

<

Involves handling of missing values,
class imbalance issue and
normalization of data values.

Pre-Processing Phase

(_
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Report Defect Prediction
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Fig. 3 Four-phased HCPDP-AE framework

Algorithm 1. Chunk Balancing Algorithm (CBA)

Input: Imbalanced Dataset Dp«q with p & q number of
imbalanced observations and software features
respectively.

Output: n balanced chunks & each chunk contains nearly equal
count of observations from both categories.

1. Randomly shuffle all observations in dataset D;

Split up D into two subsets S; & S,. Each subset is depicting
the majority & minority category respectively;

n; < count of observations of majority category;

n, < count of observations of minority category;
nl

n— [k
Split up S; into n chunks of nearly same size;

for each chunk C;such thati=1 to n do,

Merge S; with C; in order to form a balanced chunk C’; of
size nearly equals to 2ny;

9. end for

10. return n balanced chunks (C’1, C’2, C’s,............ ,C’h);

N

® NS N kW
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Fig. 4 Characteristics of auto-encoder

Today’s age is known as era of data. So, it is prime
need of time to extract meaningful, relevant and highly dis-
criminating data that has higher significance in comparison
with excluded data from pool for prediction of the expected
results. The second phase of the model, i.e., feature engi-
neering (FE), focuses on the same problem. It involves both
feature selection and feature extraction [26]. Feature selec-
tion methods help to delete unnecessary and outdated features
that are not crucial in determining expected outcomes. How-
ever, by introducing new lower-dimensional feature set along
with discarding the original higher-dimensional feature set,
feature extraction helps to decrease the dimensionality of
the given pool of features. The accuracy and reliability of
a SDP model is therefore strongly influenced by the col-
lection of the most suitable and substantial features in the
FE process. Deep learning-based FE techniques are not yet

Fig.5 Three stage architecture of
auto-encoder Original
Input
(pxq)

well explored with robust metric matching technique in the
prediction of defects among projects with homogeneous and
heterogeneous features, as per the literature survey carried
out for the research analysis. So, auto-encoder (AE), a deep
learning-based FE technique is applied to implement the sec-
ond phase of HCPDP-AE model. The principle behind the
use of the AE technique is to extract a feature set of lower
dimension that can reproduce the original input using the
encoding—decoding model. The purpose of using this tech-
nique is an unsupervised learning technique; it also employs
feed-forward neural network (FFNN) for compact represen-
tation of original input known as representation learning [27].
In contrast to other related approaches, it provides better out-
comes if some of the features used in the dataset have some
kind of correlation between them rather than being entirely
independent. The more detail of AE method is shown in
Fig. 4.

All of the properties listed in Fig. 4 are implemented in
the proposed HCPDP_AE model. For example, using the hid-
den layer’s features, the output features cannot be determined
exactly the same as the input feature set. As demonstrated in
Table 6, the model generates varied RMSE values depend-
ing on the reduced number of features at the hidden layer
for a given source dataset. This shows that the model’s
transformation of a higher-dimensional feature set to a lower-
dimensional feature set is always lossy.

The weights of each link between a hidden layer and an
output layer or an input layer and a hidden layer at the next
iteration are calculated by the weights of links between cor-
responding layers at the previous iteration and with the loss
Junction (RMSE) that is used to estimate the transformation
loss.

The model only accepts vectors of feature values as input,
with no class labels, means HCPDP_AE is adhering to the
unsupervised nature of the AE approach. It simply tries to
learn a function that maps the higher-dimensional input x to
the lower-dimensional input y, and then attempts to recreate
X using y.

Reconstructed
Output
(pxq)

Encoding Stage

Decoding Stage

=
]
>

&
<

i

Bottleneck Stage

Compressed form
of input(pxq’)
such that g'<q

Decoding layer is the mirror image of encoding layer
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The model uses a deep learning strategy to extract the
features, but only one hidden layer was employed because
one hidden layer is adequate to train the FFNN considering
the feature cardinality of employed datasets.

The detailed encoding—decoding architecture of AE is
well shown in Fig. 5. It consists of three constituent stages:
encoding stage, bottleneck stage and decoding stage. In
the encoding stage, it is possible to have n numbers of
encoding layers that are En-LAYER(1), En-LAYER(2), En-
LAYER(3),..., En-LAYER(n) consisting of Ny, N», Njs,...,
Ny number of nodes in each respective layer. This stage
encodes the original input with q number of features in a
compact form with @’ number of features such that q’ <q.

The best possible compressed form of input features that
are used to train the DP model is given by the second
stage, i.e., bottleneck stage. In the last stage, the architecture
attempts to recreate the original input from the compressed
form generated from the bottleneck stage and aims to regu-
larize the loss of reconstruction by comparing original data
and reconstructed data. The decoding step can be thought of
as a mirror image of the encoding stage, with De_LAYER(1)
performing the mirror operations as done in En_LAYER(n)
with Nj, nodes. During back propagation in architecture, the
model’s training focuses to mitigate the reconstruction loss.
In this way, the proposed research aims to incorporate the
second phase of the model by investigating the same using
FE methodology based on deep learning.

The encoding and decoding equations for the AE model
with one hidden layer are described in Egs. (1) and (2),
respectively, where Fp is the encoding function that maps
higher-dimensional input A to compressed form B and Gg
is the decoding function that attempts to recreate input as A’
from compressed form B with minimal reconstruction loss.
Ay is the applied activation function and w and w’ are the
weighting parameter in encoding and decoding stage, respec-
tively. The bias values for both stages are denoted by b and
bp, respectively.

B = Fi(A) = Af(wA +by) (1

A" = Gu(B) = Ay(w'B +bp) )

The main aim of AE is to reduce reconstruction loss on
an original input A, which is well defined by the objective
function \ as follows:-

A = min Ls(A, A" A3)

where A" = G(F(A)) and Ly is the loss function depend-
ing upon the type of reconstruction (linear or nonlinear). It
produces the optimal set of weights for mapping the input
variables to the target or output variable with the least amount
of reconstruction loss. The loss function used for neural net-
work’s implementation is strongly intertwined to the selected
activation function. According to [28], the best result for a
neural network designed for a regression problem is given by
rectified linear activation function (ReLAF) with root mean
squared error (RMSE) loss function. Table 1 offers more
information on the loss function and activation function used
in executing the AE Model for the comprehensive research.

Since the built model’s training accuracy is primarily
based on the matched metric collection, the third stage of het-
erogeneous prediction modeling, i.e., metric matching, is the
most critical and complex stage. To illustrate the association
between metrics, modern methods such as the least square
method, dispersion diagram method and Spearman’s rank
correlation method can be used. After measuring the coeffi-
cient of correlation value (CCV) between different possible
feature pairs of two applications, the model selects those
feature pairs whose CCV is greater than the given cutoff
threshold.

After imposing a cutoff threshold filter, a set of feature
pairs known as strongly correlated features is selected. The
source dataset S cannot be used to model defects in a het-
erogeneous target dataset T if the highly correlated metric
collection for a pair of datasets (S, T) is null. As per the
literature study [15, 18], the authors picked instances (rows
in a dataset) at random and created only one training chunk
from the instances pool of a dataset with more number of
instances in contrast to another dataset, which might be a
source or target dataset. However, it is likely that arbitrarily
picking instances from either of the datasets.

at once would result in poor metric matching between
feature pairs, or that the count of strongly correlated feature
pairs obtained after applying the threshold filter would be
insufficient to train the DP model.

To address this shortcoming of traditional metric matching
approach, a novel metric matching method known as chunk-
based metric matching technique (CBMMT) is proposed in
this article to incorporate this most critical and hot part of
the heterogeneous prediction system. CBMMT being also
random in nature checks each chunk of instances for metric
matching and selects the chunk for DP model’s training that
shows the maximum number of strongly correlated feature
pairs with CCV greater than the threshold. In this manner, the
most important step of the HCPDP-AE is effectively imple-
mented with CBMMT.
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Table 1 Loss function and activation function

Type of function =~ Name of Description Mathematical formula
function
Activation ReLAF Convolutional neural networks and deep learning A¢(z) = max {0, z} 4)
function often use ReLAF for regression problem. It is where z is an input variable to activation
rectified from the bottom. This function has a function
range of zero to infinity
m 2
Loss function RMSE The prediction performance of a regression model L=+ Z’Z‘(+XI) 5)

is measured by RMSE. The root taken over the
sum of squared distances between our target

where x; and y; are true and predicted values,
respectively, and n is total number of inputs

variable and predicted values is defined as RMSE

Algorithm 2. Chunk-Based Metric Matching Technique
(CBMMT)

Input: Source Dataset Sy« & Target Dataset Tp+q such that both
datasets have equal number of software metrics (i.e., b=q
& assume, b=q=n) and count of training observations
should be equal or greater than the observations count of
validation dataset (i.e., a > p).

Output: (1) Correlation Matrix C¥y«,, where each CKj entry
denotes the association value between i feature
in k% chunk of source dataset & j" feature in
target dataset such that -1 < Ci% < 1.

(2) k™ chunk of source dataset as training dataset.
(3) Set of strongly correlated features between
source & target dataset with respective CCV.

1. Sa# < Source Dataset;

2. Tp+q« Target Dataset;

3. a <« count of observations in source dataset;

4. p « count of observations in target dataset;

5. Randomly shuffle all instances of source dataset;

6. m «— EJ be the number of candidate chunks of source
dataset that can be used for metric matching;

7. fork=1tom

8. Calculate Correlation Matrix C*+, using Spearman’s
Rank Correlation Technique (SRCT) for each chunk
of source dataset with target dataset;

9. end for

10. return k™ Correlation Matrix showing higher number of

association values Ci«> threshold;

11. Use CBA to handle CIP in k' source dataset’s chunk &

return n balanced chunks as training datasets to train the

DP model;
12. return correlated feature set with CCV;

The model is trained using an appropriate machine learn-
ing algorithm after identifying this strongly correlated metric
collection, and the performance results are reported in the
model’s final step. Different evaluation metrics are used to

S @ Springer

outline the output findings. The traditional DP approach,
known as WPDP, uses only one dataset, which is then split up
into two components, one for training and another for testing,
as per the partition strategy (7:3 or 6:4). Fig. 6 presents the
structured WPDP model in detail.

The function of all three phases is identical to that of the
HCPDP-AE model. In this study, the performance of both
categories of DP (WPDP & HCPDP-AE) is evaluated using
both single as well as ensemble learning approaches. When
opposed to a single model, the ensemble learning approach
allows for the improved predictive results.

4 Datasets Used and Performance Measures
4.1 Data Collection

The study uses 16 publicly available and widely used datasets
from four open source repositories, including AEEEM,
ReLink, SOFTLAB and NASA, for the experimental anal-
ysis. The dataset AEEEM was created by D’ Ambros et al.
[38]. There are 61 metrics in all, including 17 source code
metrics, 5 past-defect metrics, 5 entropy-of-change metrics,
17 entropy of-source-code metrics, and 17 churn-of-source-
code metrics [38]. AEEEM contains linearly decaying
entropy (LDHH) and weighted churn in particular (WCHU).

The Understand tool yielded 26 findings of coding con-
sequences, which were stored in the ReLink repository. Wu
et al. [15] gathered manually validated and rectified defect
data in ReLink. The number of instances in its three datasets
varied from 56 to 399, but the number of features is fixed at
26 [15].

The NASA data was obtained over a five-year period from
avariety of NASA contractors working in various geographic
locations across the USA [5]. Size, readability, complex-
ity, and other static code metrics for NASA datasets are all
strongly connected to software quality.
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Fig.6 Three-phase WPDP framework

The five datasets for SOFTLAB repositories were
obtained by a Turkish software industry (SOFTLAB). Each
dataset contains data about controller software for a vari-
ety of electrical appliances. It also has patented datasets that
consists of Halstead and McCabe cyclomatic metrics. The
used SOFTLAB and NASA datasets were obtained from the
PROMISE repository [39]. There are 28 metrics that these
two projects have in common.

All experimental studies of SDP are carried out on these
repositories based on a thorough literature review [14, 15].
Second, the datasets must contain a sufficient number of
features in order to execute effective deep learning-based
feature extraction and metric matching. Some datasets, such
as MORPH, have only 20 features, which are insufficient
for the proposed research study to be implemented. As a
result, these repositories were picked by the authors for their
research study. There is no other particular motive for choos-
ing these datasets.

Table 2 provides additional information about these
datasets. According to Table 2, the proportion of defective

instances in four project categories ranges from 7.43% to
50.51%. The class imbalance ratio (CIR) is the ratio of the
number of defective instances to the number of non-defective
instances, or vice versa. In a particular training sample, the
lower will be the CIR value; the greater will be the imbal-
ance problem (IP). CIR values range from 6.79 (highest IP)
to 102.08 (lowest IP) in datasets CM1 and Apache, respec-
tively. On the other hand, there are 61, 26, 29 and 37 software
metrics in four repositories, respectively. The source of all
datasets is given as:
https://github.com/Sanuj12/ROHIT_VASHISHT.git

4.2 Performance Parameters

In this section, the various metrics used to gauge the effi-
ciency of different machine learning classifiers are stated.
During the evaluation process, the other parameters in the
confusion matrix are used. Table 3 indicates the confusion
matrix that was used to estimate erroneous classifications.
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Table 2 Datasets illustration

Project group Datasets Count of instances Class imbalance ratio (CIR) Count of software metrics
Total Defective Non-defective

AEEEM [38] EQ 324 129 (39.81%) 195 (60.19%) 66.15 61
IDT 997 206 (20.66%) 791 (79.34%) 26.04
LC 691 64 (9.26%) 627 (90.74%) 10.20
ML 1862 245 (13.15%) 1617 (86.85%) 15.15
PDE 1492 209 (14.01%) 1283 (85.99%) 16.29

ReLink [15] Apache 194 98 (50.51%) 96 (49.49%) 102.08 26
Safe 56 22 39.28%) 34 (60.72%) 64.71
Zxing 399 118 (29.57%) 281 (70.43%) 41.99

SOFTLAB [39] arl 121 9 (7.43%) 112 (92.57%) 7.43 29
ar3 63 8 (12.69%) 55 (87.31%) 14.55
ar4 107 20 (18.69%) 87 (81.31%) 22.99
ard 36 8 (22.22%) 28 (77.78%) 28.57
ar6 101 15 (14.85%) 86 (85.15%) 17.44

NASA [5] CM1 327 42 (12.84%) 285 (87.16%) 6.79 37
MW1 253 27 (10.67%) 226 (89.33%) 8.37
PC1 705 61 (8.65%) 644 (91.35%) 10.56

Table 3 Confusion matrix

Table 4 Relation between AUC value and prediction performance

Actual outcome Predicted outcome

Defective Non-defective

Defective True positive (TP) False negative (FN)

Non-defective False positive (FP) True negative (TN)

e Accuracy:—The ratio of true outcomes (TP and TN) to the

AUC value Prediction performance

0 The model will predict positive case as
negative and vice versa. (Worst Case)

0.5 The model is having trouble in

distinguishing between positive and
negative scenarios

Between 0.5 and 1 Positive cases have a higher chance of

being classified correctly by the model

total number of instances examined is known as accuracy.
Its value varies from O to 1, with O representing the least
accurate result and 1 representing the most accurate result.

R TP + TN ©
ccurac =
Y T TP+TN+FP+FN

Recall (Rate of True Positives):—It is also known as sen-
sitivity and defined as the chance of getting a positive test
if an instance is defective or non-defective.

TP
Recall = ———— 7)
TP + FN

F-Score:-It is also known as the F-measure, because it is
a measurement of a test’s accuracy in a statistical study of
binary classification. In order to measure the score, it con-
siders both the test’s accuracy and precision. The harmonic
mean of precision (p) and recall (r) are used to determine

S @ Springer

than negative cases

The model will predict positive case as
positive and vice versa. (Perfect case)

it as per Eq. (8).

2*¥p*r

F-Score =

®

p+r

Area Under Operating Curve (AUC):- It is a plot of true
positive rate (TPR) and false positive rate (FPR) that is
used to determine the overall efficacy of a classification
algorithm. The classification model would be more accu-
rate if the AUC parameter is set to a higher value. For a
given classification algorithm, the maximal AUC value is
1. In Table 4, the prediction performance corresponding to
the AUC value is discussed in greater detail.
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Table 5 Prediction pairs for WPDP

Prediction pair Training dataset Testing dataset

WPDP-P1 arl arl
WPDP-P2 DT DT
WPDP-P3 Apache Apache
WPDP-P4 ML ML
WPDP-P5 ar3 ar3
WPDP-P6 EQ EQ
WPDP-P7 ar4 ard
WPDP-P8 PCl1 PCl1
WPDP-P9 MWI1 MW1
WPDP-P10 CM1 CM1

5 Experimentation Setup

The main goals of the proposed research study are divided
into four groups. The study’s first two goals compare the
performance of the respective HCPDP’s and WPDP’s frame-
works with and without the use of the FE technique. The
third objective is to see if and how well the prediction perfor-
mance of HCPDP-AE model is comparable to the prediction
efficiency of WPDP for a given set of machine learning
classifiers. Lastly, the study’s final aim is to compare the
performance of the proposed model to that of the exist-
ing benchmarked models, as well as to validate the former.
The research analysis performed two experiments in order to
address the stated four research questions.

5.1 Experiment 1

The aim of this experiment is to look into the conventional
category of DP, namely WPDP’s output with two categories
of FE techniques that are data-based FE and deep learning-
based FE. To begin, the dataset is preprocessed to remove
unnecessary software features and encode the categorical

Prediction pair Source dataset Target dataset

HCPDP-P1 DT arl
HCPDP-P2 ar5 IDT
HCPDP-P3 arl Apache
HCPDP-P4 Safe ML
HCPDP-P5 EQ ar3
HCPDP-P6 LC ar3
HCPDP-P7 CM1 EQ
HCPDP-P8 PC1 ar4
HCPDP-P9 LC PC1
HCPDP-P10 EQ MW1

data with the tag. The process assigns 0 or 1 to the defec-
tive and non-defective cases, respectively. As well as, it also
employs the novel CBA mentioned in Sect. 3 to deal with
CIP in imbalanced training datasets. According to the current
state of the art [23, 29], DP on heterogeneous projects has yet
to be examined using FE based on deep learning in conjunc-
tion with effective and resilient strategies for dealing with CIP
and for executing metric matching, which is the fundamental
phase of the HCPDP framework. Data-driven FE is a generic
methodology that does not require domain awareness. Such a
representation is found by mining pair-wise feature correla-
tions, evaluating the linear or nonlinear relationship between
each pair, applying regression, and choosing the most stable
relationships [30]. The aim of the experiment is to compare
the performance of a three-stage WPDP model using two
FE approaches: regression feature engineering (RFE) and
AE, respectively [27, 30]. RFE and AE techniques are used
as data-based and deep learning-based FE methods, respec-
tively, to implement the second phase of the model. After the
selection of the most discriminating features, the available
number of instances is segregated into training and valida-
tion instances set in a ratio of 7:3. Figure 7 depicts software
defect predictions within a project where I_Total, I_Train and
I_Test denote count of total, training and testing observations
in a dataset, respectively. Table 5 lists the training and testing
datasets that have been used to conduct the experiment.

5.2 Experiment 2

The aim of the experiment is to see how the FE step
affects the performance of the proposed four-phase HCPDP-
AE framework when using the stacking-based ensemble
classification method. To carry out this experiment, ten pre-
diction pairs mentioned in Table 6 are taken from four open
source projects: AEEEM, ReLink, NASA and SOFTLAB.
Prediction pairs are formed based on the number of maximal-
associated feature pairs found between them.
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Preprocessing of datasets involves the deletion of redun-  Table 7 Feature extraction using AE
dant data and the encoding of categorical data by labels in

the first phase. In this phase, class imbalance learning (CIL) Dataset Number of Neurons RMSE (*107%)
is also applied to deal with the significant difference in the Input layer Hidden layer
ratio of binary type instances count. To carry out CIL, the
model employs a novel hybrid approach known as CBA as  arl 29 20 188.2
mentioned in Sect. 3. Following that, feature ranking and 19 234.1
feature selection strategies are used to derive a list of K- best 18 2314
features that are more relevant in the prediction of desired 17 137.1
final outcome for a given dataset of features. The research 16 178.3
aims to examine the framework using AE as a deep learning- 15 280.9
based FE approach. The features are chosen to make the two  jpr 61 40 201.8
datasets dimensionally identical, allowing for easy metric 35 2163
matching. After the selection of useful features, the metric 30 188.8
matching method evaluates the relationship between each 95 1235
combination of feature pair of source and target dataset. 20 1207
CBMMT is used to execute the third phase, which provides )
a set of highly correlated features for a given heterogeneous 15 128.6
prediction pair. Apache 26 20 188.7
To train the HCPDP-AE model, i.e., to execute the final 19 140.9
modeling phase, the experiment incorporates ensemble clas- 18 133.6
sification approach. Finally, the efficiency of the model is 17 160.1
assessed using performance parameters specified in Sect. 4. 16 126.1
15 192.4
ML 61 40 178.3
6 Results and Discussion 35 1677
30 165.2
TensorFlow 2.0 with GPU support is used to conduct both 25 1302
experiments, which run on a Windows 10 operating system 20 124.6
with an Intel Core i5-1130G7 processor and 32GB RAM. = 112.9

The results of the experiments are discussed in this section.
Tables 7, 8, 9, 10, 11, 12, 13, 14 and 15 and Figs. 8§, 9, 10,
11, 12 and 13 display the experimental results. The analysis ~ Table8 Feature reduction for WPDP
uses precision, recall, F-score (FS), and AUC as performance
indicators. Randomness, class imbalance issue, and predic-
tion threshold, all have a significant impact on the model’s Before FE After FE
accuracy and recall. As aresult, tenfold cross-validation (CV)

Dataset Count of features Percentage reduction

is utilized to measure these factors in order to obtain results 2! 29 17 41.37
that are less skewed and have a low variance. Other parame- DT 61 20 6721
ters like AUC and F-score are also evaluated on basis of 30~ Apache 26 16 38.46
repeated trials to reduce effect of randomness on prediction =~ ML 61 15 75.41
performance. Second, these parameters (AUC and FS) have a3 29 17 41.37
no impact due to imbalanced distribution of instances and  EQ 61 24 60.66
prediction threshold. ar4 29 16 44.83
PCI 37 22 40.54
6.1 RQ1. Compare and contrast the use MW1 37 19 48.65
of data-driven and deep learning-based FE M1 37 20 45.95
§tra‘;’egli)e: with the conventional approach to DP, Average reduction (%) 5045

1.e. g

To compare the WPDP’s output using RFE and AE, as
data-driven and deep learning techniques, respectively. Ten
with-in prediction pairs WPDP-P1 to WPDP-P10 have been

%% @ Springer
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Table 9 Comparison of WPDP performance
Prediction Pair CIL Evaluation baseline
Without FE With RFE With AE
Acc Recall AUC FS Acc Recall AUC FS Acc Recall AUC FS
WPDP-P1 SMOTE  0.60  0.67 0429 053 064 0.70 0.421 0.61 0.70  0.83 0.598  0.68
RUS 0.59  0.60 0.396  0.51 0.71 0.75 0467 055 081 0.86 0.642  0.60
CBA 0.71 0.78 0.567 059 074 0.83 0.602 0.65 0.89 094 0.739  0.74
WPDP-P2 SMOTE 0.62 0.60 0.516 059 076 0.71 0.555 0.63 0.87 0.83 0.631 0.68
RUS 0.69  0.67 0592  0.62 079 0.75 0646 0.69 0.84 0.1 0.600  0.72
CBA 073  0.71 0.606  0.68 0.80 0.87 0.671 0.74 090 0.89 0.702  0.81
WPDP-P3 SMOTE 0.65 0.58 0.501 0.54 0.69 0.64 0.539 063 083 0.79 0.611 0.70
RUS 062 051 0.431 049  0.71 0.70 0.570  0.57 0.88 0.83 0.667  0.66
CBA 0.69  0.68 0.587  0.61 0.82  0.80 0618 073 094 0.89 0.758  0.86
WPDP-P4 SMOTE 059  0.68 0.512 059 0.69 0.71 0.544 062 0.79 0.85 0.683  0.68
RUS 0.63 0.73 0.624 060 0.70 0.76 0.640 0.69 0.75 0.80 0.622  0.76
CBA 0.69 0.78 0.659 0.68 0.80 0.88 0712 0.79 0.87 0.96 0.810  0.88
WPDP-P5 SMOTE  0.55  0.56 0.388  0.58  0.61 0.55 0400 070 0.72  0.68 0.567  0.78
RUS 0.41 0.51 0.316 044 050 0.60 0.376  0.59 0.68 0.71 0.601 0.76
CBA 0.70  0.68 0.566  0.69 0.79  0.65 0.701 078 0.85 0.88 0.834  0.89
WPDP-P6 SMOTE 043  0.55 0404 059 055 059 0.501 0.64 0.70  0.68 0.613  0.75
RUS 0.51 0.51 0399 054 060 0.57 0493 065 0.78 0.72 0.600  0.87
CBA 0.69  0.60 0.545 067 076 0.63 0.616 0.72 090 0.92 0.789  0.94
WPDP-P7 SMOTE 033 045 0.300 0.50 0.57 0.55 0378 059 0.65 0.61 0489  0.67
RUS 0.37  0.50 0.317 048 050 0.58 0399  0.60 0.62  0.69 0.606  0.68
CBA 0.55 059 0487 055  0.61 0.65 0525 070 0.78 0.74 0.778  0.84
WPDP-P8 SMOTE  0.37 049 0445 043 052 055 0569 0.59 0.62 0.70 0.615  0.71
RUS 035 055 0487  0.51 0.55 0.0 0.606 0.64 0.69 0.74 0.688  0.76
CBA 048  0.62 0.551 0.65 0.67 0.71 0.690  0.81 0.83 0.84 0.792  0.88
WPDP-P9 SMOTE 045 0.1 0443 055 055 059 0.501 0.62 0.64 0.77 0.611 0.73
RUS 040  0.55 0488 049 0.62 0.68 0529 074 072 0.77 0.589  0.85
CBA 0.51 0.58 0.526  0.61 0.73  0.80 0.633 0.82 0.88 0.85 0.712  0.88
WPDP-P10 SMOTE 040 0.38 0.311 045 055 052 0467 0.65 0.64 0.66 0.688  0.78
RUS 037 035 0.347 050 059  0.61 0544 072  0.62 0.66 0.701 0.77
CBA 0.51 0.59 0498 0.65 0.62 0.75 0659 083 0.89 0.82 0.870  0.90

used for the analysis. In the first step of WPDP model, i.e.,
preprocessing, binary encoding is used to label the target
variable and Z-score normalization (ZSN) is used to scale all
feature values so that one particular feature does not over-
shadow the others. The mean and standard deviation of each
feature were determined to produce normalized values. In
this manner, feature encoding and feature scaling were per-
formed as two subtasks under this step. The next and last
subtask in preprocessing step is to manage CIP in all four
prediction pairs’ training datasets. The range of CIR values
for all ten with-in prediction pairs is shown in Table 2. With a
CIR of 6.29%, CM1 is the most imbalanced dataset, whereas

Apache has the most balanced data distribution with a CIR
of 102.08%. Traditional data re-sampling methods used for
CIL have their own pitfalls, as discussed in Sect. 3.

In the analysis, the prediction accuracy of the WPDP
model is assessed using three CIL approaches: Synthetic
Minority Over-Sampling Technique (SMOTE) as a ROS
technique, RUS and a novel approach CBA [37]. The algo-
rithms SMOTE_CIL and RUS_CIL, respectively, explain the
detailed procedure for implementing SMOTE and RUS.
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Table 10 Statistics of feature reduction for HCPDP Algorithm 3. SMOTE_CIL
Dataset Count of features Feature reduction (%)
Input: - Imbalanced Dataset D
Before FE After FE Output: - Balanced Dataset D’ with equal number of
instances in both majority and minority class.

IDT 61 20 67.21
ar5 29 22 24.14 1. Identify the minority and majority class in D.
arl 29 17 41.37 2. Evaluate the OS percentage (OS %) by using
Safe 26 20 23.08 equatiqn (9) where. ICMaj and ICwin are the count of

the majority and minority class respectively.
EQ 61 2 63.93
LC 61 18 70.49 ICmaj—ICmi

0% = [ 4 100 )
Apache 26 16 38.46 ICmaj
ML 61 15 75.41 3 A . 10 . he C £ Reoli

. t timate t t

ar’ 29 20 31.03 spctrequalon( ), estimate the ount of Replica

Required (CRR) to be created for the minority class
ar4 29 16 44.83 for balancing CIR. (such that ICpyj = ICyin+ CRR)
MW1 37 19 48.65
CM1 37 20 45.95 CRR = [OS% * ICmaj] (10)
PCI 37 2 40.54 100
Average reduction (%) 4731 4. Select randomly any one minority class instance

and find its closest neighbour.

5. Estimate the disparity between the random instance
picked in step 4 and one of its closest neighbours.

6. Calculate additive disparity by multiplying
estimated disparity in step 5 by a random number
generated using a random number generator in the
range 0 to 1.

7. Create a new minority class instance’s replica by
adding the value of a randomly chosen random
instance in step 4 with additive disparity.

8. Repeat steps 4 to 7 until the required number of
minority class replicas are generated based on the
OS percent.
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Algorithm 4. RUS_CIL

Input: - Imbalanced Dataset D
Output: - Balanced Dataset D’ with equal number of
instances in both majority and minority class

—

Identify the minority & majority class in D.
2. Evaluate the US percentage (US %) by using
equation (11) where ICyyj & ICwmin are the count of
the majority and minority class respectively.

ICmaj—ICmin

US% = [ x 100] (11

ICmaj

3. Estimate the Count of Instances to be Eliminated
(CIE) from the majority class to balance CIR as per
the equation (11). (such that ICwmin = ICwmaj - CIE)

CIE = [US% *ICmajl

100 (12)

4. According to the count estimated in step 3, remove
a majority class instance one by one at random.

For example, in HCPDP_P3, the source dataset arl has
CIR as 7.43. On the basis of count of instances as seen in
Table 2, the minority and majority classes are identified as
defective and non-defective category, respectively. The OS%
can be computed as 92% using the values ICyp,j as 112 and
ICwmin as 9, according to Eq. (9). According to Eq. (10), the
CRRis 103, i.e., in order to attain CIR as 1:1, 103 additional
replicas should be created for defective class by following
steps 4 to 7 in SMOTE_CIL. To deal with CIP, RUS_CIL
attempts to delete any 243 random instances from the non-
defective class in dataset CM1.

The shallow AE model is used to extract features using a
three-layer convolutional FFNN. The count of original fea-
tures in a dataset is equal to the number of neurons in both
input and output layers. The hidden layer’s number of neu-
rons is determined by the rules-of-thumb that represents the
compact number of features [24]. The reconstruction loss for
respective output features that are reconstructed from collec-
tion of both extracted features and initial input feature set is
represented by RMSE. The output of neurons in the hidden
layer with the lowest RMSE would be considered as final set
of extracted features. The extraction of features is performed
in this way using a deep learning-based AE model. For exam-
ple, Table 7 displays the RMSE values for the considered
set of neurons in the hidden layer for first four with-in pre-
diction pairs. It shows that the reduced number of features
for datasets arl, JDT, Apache and ML are 17, 20, 16 and
15 respectively, with corresponding least RMSE of 0.1371,
0.1207, 0.1261 and 0.1129.

The statistics of the original and extracted features using
AE model is shown in Table 8. It indicates an overall decrease
of 50.45% in the total number of input features.

As shown in Fig. 7, 70% and 30% of the total observa-
tions are used as training and testing observations for each
prediction pair, respectively. For example, WPDP-P1 (arl)
uses 85 instances to train the WPDP model and 36 instances
to validate the proposed WPDP model. The WPDP model
is trained using support vector machine (SVM) with linear
radial basis function kernel (RBFK). For linear as well as
nonlinear classification, SVM-RBF is the most useful and
effective algorithm. It is beneficial when the number of fea-
tures in a dataset is substantially greater than the number of
instances. When looking at the cardinality of used datasets,
the number of observations in Apache, arl, ar3, ar4, ar5, ar6
and Safe is substantially lower. Due to the limited number of
features in the training dataset, SVM was chosen to have the
least or no impact on prediction performance. Table 9 shows
the values of performance parameters after validating the
model with 30% testing observations for all prediction pairs
under three baselines that are without FE, with FE using RFE
and AE.

The results of Table 9 can be viewed from two angles. The
first aspect is a comparison of DP’s output between standard
CIL approaches and the proposed hybrid CBA approach. In
contrast to SMOTE and RUS, the results reveal that CBA
outperforms for all prediction pairs.

As per the statistics of Table 9, CBA offers the best val-
ues of all performance parameters with accuracy as 0.94 for
WPDP-P3 and recall, AUC and FS as 0.96, 0.810 and 0.88,
respectively, for WPDP-P4, when AE model was employed
for feature extraction.

When CIP is handled using SMOTE with the original pool
of features, the prediction pair WPDP-P7 has the lowest accu-
racy and AUC of 0.33 and 0.300, respectively. For all three
baselines, SMOTE and RUS have given comparable results.
The first baseline, i.e., WPDP without FE, has the lowest
output among the three. Using the average values of all per-
formance measures for all ten prediction pairings under the
CBA strategy to combat CIP, Fig. 8 depicts the performance
comparison of WPDP under three baselines as:

WPDP without FE < WPDP withRFE
< WPDP with AE.

As a result, the proposed three-phase WPDP model
(WPDP-AE) outperforms when a hybrid solution is used to
tackle CIP and feature extraction is performed using a deep
learning-based model rather than a data-driven approach.

6.2 RQ2. Compare the Prediction Performance
of Proposed HCPDP-AE Framework
with and Without FE Phase.

Ten heterogeneous prediction pairs (HCPDP-P1 to HCPDP-
P10) from three open source projects are considered to test
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Table 11 Performance

comparison of HCPDP output Prediction HCPDP without FE (HCPDP) HCPDP with FE (HCPDP-AE)

combination

Accuracy  Recall FS AUC Accuracy  Recall FS AUC
HCPDP-P1 0.67 0.70 062 0518 0.87 0.85 0.78 0.717
HCPDP-P2 0.72 0.68 0.65 0.589  0.85 0.80 0.78 0.697
HCPDP-P3 0.61 0.56 052 0572 0.87 0.90 0.89 0.781
HCPDP-P4 0.69 0.65 059 0.584  0.81 0.94 0.83 0.791
HCPDP-P5 0.59 0.61 055 0598  0.79 0.73 0.77 0.788
HCPDP-P6 0.66 0.72 062 0.641 0.86 0.88 0.84 0.812
HCPDP-P7 0.52 0.61 065 0516 0.72 0.77 0.81 0.777
HCPDP-P8 0.55 0.65 0.65 0569 0.79 0.77 0.80 0.813
HCPDP-P9 0.59 0.71 0.69 0.605 0.80 0.85 0.90 0.890
HCPDP-P10  0.71 0.78 081 0.703 091 0.95 0.94 0.901
Average 0.63 0.67 0.64 0.587 0.83 0.84 0.83 0.796

Table 12 Execution time (in

seconds) for HCPDP and Prediction combination

HCPDP without FE (HCPDP)

HCPDP with FE (HCPDP-AE)

Training time

Classification time  Training time  Classification time

HCPDP_AE
HCPDP-P1 2.375
HCPDP-P2 1.054
HCPDP-P3 0.972
HCPDP-P4 0.883
HCPDP-P5 1.886
HCPDP-P6 1.719
HCPDP-P7 0.871
HCPDP-P8 0.662
HCPDP-P9 1.034
HCPDP-P10 0.781
Average 1.224

0.121 3.519 0.101
0.412 2.134 0.217
0.055 1.463 0.031
0.112 2.320 0.010
0.051 3.188 0.058
0.886 3.032 0.519
0.122 1.101 0.111
0.211 1.921 0.197
0.651 4.045 0.335
0.217 2.011 0.200
0.284 2.473 0.178

the prediction accuracy of the proposed HCPDP-AE model
with and without FE. Binary encoding and ZSN techniques
are used for feature encoding and feature scaling, respec-
tively, in the first step. The preprocessing step of the dataset
is carried out in the same way as done in the WPDP scenario.
The implementation of HCPDP-AE model is explained in
detail using the prediction combination HCPDP-P1, where
JDT and ar1 are the source and target dataset, respectively. In
both datasets, the target variable is initially encoded by label-
ing defective instances as 0 and non-defective instances as
1. Feature extraction is now performed using the three-layer
AE model in the same way as done in WPDP-AE model.
Table 10 shows the total number of extracted features and
feature reduction%age for all training datasets in ten predic-
tion combinations that were considered for the analysis.
The extracted feature set is chosen based on least recon-
struction loss in terms of RMSE value for a particular input
feature set. The number of neurons in the hidden layers that
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produce the least RMSE is referred as the compressed num-
ber of features for that particular dataset.

After executing second phase of FE, JDT and ar1 now have
dimensions of (997 x 20) and (121 x 17), respectively. In
heterogeneous prediction, the next phase, metric matching, is
the most important among all four phases. The HCPDP-AE
model used a novel technique called CBMMT to accomplish
this phase. The primary criterion of CBMMT is that the two
datasets have the same cardinality of software features. The
authors applied the Fisher Score (FS) method, a supervised
feature ranking and selection technique to choose the best 17
features (minimum between 20 and 17) that are more rele-
vant and useful in predicting the final outcome. There is no
strong reason to use FS technique for choosing the optimal
subset of features. FS evaluates each feature’s significance
independently and ranks them according to their utility in
predicting the expected outcome. It generates a list of fea-
tures sorted by their ranking values in descending order. After
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that, CBMMT is used to do metric matching once the number
of features has been equalized in each dataset. The execu-
tion of metric matching in HCPDP-P1 is shown in Fig. 9.
According to CBMMT, the variables a, p, n and m have val-
ues of 997, 121, 17 and 8, respectively. That means there
are total eight candidate chunks (JDT_C1, JDT_C2,....... ,
JDT_CB) of source dataset JDT for evaluating feature corre-
lation with ar1. As shown in Fig. 9, CBMMT calculates eight
correlation matrices (Cy, Ca,....., Cg) for each of the eight
possible combinations of each source chunk with the target
dataset arl that are (JDT_C1, arl), JDT_C2, arl), JDT_C3,
arl),........ , JDT_CS, arl). Each matrix is used to find the
number of highly correlated features between two datasets.
The threshold for this analysis is set at 0.05. According to
the state of the art, the threshold value is decided as 0.05
to cover the maximum number of possible pairs of source
and target projects for defect prediction [15]. The threshold
value of 0.05, based on the obtained CCVs in the correlation
matrix, yields the greatest number of highly associated fea-
ture pairs. As a result, the cutoff level is determined based
on the estimated CCVs, allowing the DP model to predict
defects in maximum number of datasets in the target project.
In HDP, this problem is referred to as target prediction cov-
erage (TPC), and the best HCPDP model should obtain the
highest TPC for a given prediction combination [36]. Selec-
tion of proper threshold to achieve maximum TPC is one of
the promising future directions in this domain. As per the
analysis, after 30 repeated trials of experiments, the candi-
date chunk C4 gives the highest number of highly correlated
pairs with arl. Between JDT and arl, CBMMT discovered 9
pairs of correlated features.

CIL is now applied to the candidate source chunk C4 using
the novel technique CBA. This algorithm is generating three
chunks as the output, each with a balanced number of defec-
tive and non-defective instances. Hence, CBMMT and CBA
are only used once over the life cycle of the HCPDP-AE
model to predict defects between two heterogeneous projects.
Thus, the third phase, i.e., metric matching, is carried out
to produce the appropriate chunks of training dataset JDT.
Finally, the model is trained using a stacking-based ensem-
ble learning (SBEL), with two base models which are trained
using K-nearest neighbor (KNN) and random forest (RF) and
a meta model that is trained using logistic regression (LR).
KNN with higher value of hyper-parameter k will have less
impact on DP’s performance due to randomness in picking
the instances for the training dataset. The findings revealed
that k as 18 can control the variance of the model’s perfor-
mance in the experiments. The value of k is finalized on
the basis of hit and trial method. Random forest is a clas-
sifier that combines a number of decision trees on different
subsets of a dataset and averages the results to increase the
dataset’s predicted accuracy. Instead than relying on a single
decision tree, the random forest collects the predictions from
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Table 13 Comparative analysis of WPDP-AE and HCPDP-AE
Target WPDP-AE HCPDP-AE
dataset

source AUC Source AUC

dataset dataset
arl arl 0.739 JDT 0.717
IDT IDT 0.702 arS 0.697
Apache Apache 0.758 arl 0.781
ML ML 0.810 Safe 0.791
ar3 ar3 0.834 EQ 0.788
EQ EQ 0.789 CM1 0.777
ar4 ar4 0.778 PC1 0.813
PCl PC1 0.792 LC 0.890
MW1 MW1 0.712 EQ 0.901
CMI1 CM1 0.870 EQ 0.803

each tree and predicts the final output based on the major-
ity votes of predictions. This increases the accuracy of the
prediction done by the model. LR is easy to interpret and
less inclined to over-fitting. Because CBA and CBMMT use
random shuffling of instances in their implementations, the
most important factor to consider when choosing classifica-
tion algorithms is that randomness has a minimal impact on
prediction performance. Second, the dataset distribution has
a significant role in the selection of classification technique.
The ensemble model makes better prediction performance
than a single prediction model. SBEL is the most suitable
classification algorithm among all ensemble learning strate-
gies when the training data is broken into n distinct fragments.
Finally, the performance of the heterogeneous prediction is
compared in terms of AUC, recall, accuracy and FS with and
without FE as shown in Table 11.

In all ten prediction variations, HCPDP-AE outperforms
HCPDP without FE, as shown in Table 11. The high-
est and lowest AUC values are 0.901 (HCPDP-P10) and
0.697 (HCPDP-P2), respectively, when the features have
been extracted using AE technique. The experimental results
under RQ1 and RQ2 show that using AE to obtain strongly
discriminated features has a substantial impact on the pre-
diction accuracy of DP, whether it is WPDP or HCPDP.
Figure 10 demonstrates a comparison of heterogeneous pre-
diction output with and without FE, taking the average values
of all performance parameters into account.

In Table 12, the authors have introduced training time
as an extra evaluation criterion to improve the performance
comparability. For all prediction combinations, Table 12
compares HCPDP’s performance with the original (HCPDP)
and reduced (HCPDP-AE) number of features. It can be
shown that.
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Table 14 HCPDP-AE vs.

benchmarked HDP models Source dataset Target dataset TCA + CCA + GMOTDP HCPDP-AE
EQ ar3 0.5504 0.5846 0.8382 0.8601
ar4 0.5569 0.6462 0.9145 0.9476
ard 0.5795 0.6923 0.9397 0.9667
IDT ar3 0.5625 0.5692 0.8326 0.8652
ard 0.5640 0.6462 0.9236 0.9428
ard 0.6429 0.5692 0.7515 0.7289
LC ar3 0.5982 0.5846 0.8065 0.8219
ard 0.5530 0.6077 0.9031 0.9388
ard 0.5661 0.6154 09115 0.9395
Mean AUC 0.5747 0.6093 0.8690 0.8901

HCPDP-AE takes longer time to train than the HCPDP
model because the former method comprises the training of a
neural network for feature extraction. The average classifica-
tion time for the HCPDP-AE model is 0.178, whichis 37.32%
faster than the average classification time for HCPDP.

However, because the HCPDP-AE framework only
includes one hidden layer in the encoding—decoding AE
model for feature extraction, there is no substantial differ-
ence in training and classification time for both approaches.
As aresult, the execution time cannot be used as an effective
assessment parameter to compare the performance of the two
models here.

For HCPDP and HCPDP-AE, the mean accuracy, recall,
F-Score and AUC are 0.63, 0.67, 0.64, 0.587 and 0.83, 0.84,
0.83 and 0.796, respectively. The target dataset in HCPDP-
P5 and HCPDP-P6 is ar3, but the source dataset is different.
The prediction accuracy using LC as source dataset is higher
than EQ, according to the experimental findings of Table 11.
CBMMT has produced 12 and 8 strongly feature pairs for
(LC, ar3) and (EQ, ar3), respectively, which explains LC’s
superior performance due to higher number of correlated fea-
tures of LC with target dataset ar3. The study shows that the
collection of a highly correlated feature pairs set improves
heterogeneous predictive performance in a significant fold.

6.3 RQ3. Whether and to What Extent DP Results
of HCPDP’s Model are Comparable
to the Outcomes of WPDP’s Model?

The experimental findings for with-in project combinations
WPDP-P1 to WPDP-P10 and heterogeneous combinations
HCPDP-P1 to HCPDP-P10 can be used to compare the
success of the standard method of DP, i.e., WPDP, with
heterogeneous prediction. The target projects in these combi-
nations are same. Under WPDP and HCPDP categories, the
same as well as different source projects are used to predict
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Table 15 Output of Wilcoxon signed rank test

Benchmarked
model/proposed model

Based metric used Null hypothesis
to calculate P-value  (Hp)

Recall AUC
TCA + /HCPDP-AE 0.00178  0.0006  Rejected
CCA + /HCPDP-AE 0.00031 0.0012  Rejected
GMOTDP/HCPDP-AE  0.03512  0.0431 Rejected

defects in these target projects. WPDP’s prediction perfor-
mance is comparable to HCPDP, as shown in Table 13.

It is self-evident that a DP model that is trained and tested
on the same project makes stronger predictions than a DP
model that is trained and tested on different projects. WPDP
and HCPDP have almost comparable mean AUCs of 0.778
and 0.796, respectively. Figure 11 presents a comparison of
WPDP and HCPDP based on the mean values of all out-
put parameters considered. On the basis of these findings,
one may conclude that HCPDP efficiency is comparable to
defect prediction within the project with statistical signif-
icance. But, when there isn’t enough past defect data for
the target application to train the DP model, the proposed
HCPDP-AE model proves useful.

6.4 RQ4. Compare and Validate the Performance
of the Proposed HCPDP-AE Framework
with Existing Benchmarked HCPDP Models.

To assess the performance of the proposed algorithm, i.e.,
HCPDP-AE, three existing benchmarked defect prediction
models such as TCA + [31], CCA + [14] and GMOTDP
[24] have been considered for the comparative analysis. In
heterogeneous defect prediction, TCA + and CCA + are
two benchmarked comparative approaches and GMOTDP
is very recent work in the SDP domain. One dataset is used
as the source project, and three heterogeneous datasets from
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= WPDP without FE

= WPDP with PCA

WPDP with AE

Fig.8 WPDP’s performance comparison with three baselines

another project are used as target projects for heterogeneous
prediction throughout the analysis. For evaluating the DP
output of all three prediction models, AUC is used as the
evaluation index. The AUC estimates the probability that
a classification model will distinguish a randomly selected
defective instance as being more likely than a randomly
selected defect-free example [32]. AUC is more notable in
comparison with other performance evaluation metrics (such
as accuracy and FS) since it is not influenced by class imbal-
ance issue and irrespective of the prediction threshold, it is
used to determine whether an instance should be labeled as a
negative instance [9, 33, 34]. According to the literature study
[14, 31], CIP is not taken into account in TCA + and CCA +
. So, these facts (CIP and prediction threshold) highlight the
importance of comparing models performance using AUC,
so that uniform pre-conditions (irrespective of CIP) can be
achieved for comparative analysis of all four models. Since
treating CIP with CBA and selecting the source dataset’s
chunk for metric matching using CBMMT in HCPDP-AE
entail randomness, the average result of 30 repeated trials are
counted for each case to mitigate the effect of randomness on
the experimental outcomes in training as well as testing of the
model. The authors examined these nine prediction pairs for
HCPDP_AE only and used experimental results from [24]
for the remaining three HDP models.

Table 14 reveals that HCPDP-AE gives remarkable pre-
diction performance than the two classic HDP models (TCA
+ & CCA +) by 54.88% and 46.09% AUC gain over the
mean AUC value of the two models, respectively. There
is no greater disparity in mean values of AUC between
GMOTDP and HCPDP-AE. Nonetheless, HCPDP-AE out-
performs GMOTDP with better DP efficiency, with a 2.43%
AUC gain over the latter methodology. The mean AUC for
HCPDP-AE is 0.8901, while the mean AUCs for the other
three benchmarked models are 0.5747, 0.6093 and 0.8690,
respectively, as shown in Table 14.

Figure 12 contrasts the performance of all four HCPDP
models on the basis of the mean AUC value, when consid-
ering the same nine prediction combinations for the study.
This analysis concludes that HCPDP-AE has a stronger pre-
diction effect than the other three models, as shown by the
line graph in Fig. 13. So, the performance ranking of the four
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Fig. 13 Plot of AUC values for nine prediction pairs

prediction models in increasing order is given as:-
TCA+ < CCA+ < GMOTDP < HCPDP — AE

The following are the reasons behind the usefulness and supe-
rior performance of proposed model HCPDP-AE:

1. First, it handles CIP better than SMOTE and RUS.
It tackles SMOTE’s overgeneralization and over-fitting
concerns through balancing minority class instances by
creating chunks as described in CBA, rather than intro-
ducing synthetic instances that duplicate minority class
instances. On the other hand, RUS discards majority class
occurrences regardless of their importance in prediction
of the final outcome. But, CBA does not include the
removal of any instance from the dataset. In this man-
ner, CBA addresses the limitations of data re-sampling
approaches used to manage CIP.

2. Byrandomly selecting instances from the original source
chunk, traditional HDP techniques [14, 31] create only
one training source chunk for the metric matching step.
Because there is only one source training chunk, the
scope of identifying a better correlation matrix with the
target application is limited. Furthermore, the random
selection of instances used to build this chunk pro-
duces poor results for a while. However, as indicated
in Sect. 3, CBMMT gives larger scope by providing
numerous source chunks that are used to compute the
correlation matrix with the target dataset. The candidates
source chunk with the highest number of best CCVs (>
0.05) in the corresponding correlation matrix will be used
as the training dataset.

3. Finally, the FE approach AE, which is based on deep
learning, aids in increasing the prediction performance
of the HCPDP-AE model.

A nonparametric Wilcoxon signed rank test is used to sta-
tistically validate the effect of deep learning-based feature
extraction on heterogeneous prediction. The test is performed
with a P-value of 0.05 (significance level of 5%) to see if
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there is a significant difference among the performance of
proposed model HCPDP-AE and the existing benchmarked
models as TCA +, CCA +and GMOTDP. For the analysis, the
authors have taken recall and AUC metrics for comparing all
the models using 14 heterogeneous prediction combinations
that are (EQ — ar3), (EQ — ar4), (EQ — ar5), JDT — ar3),
(JDT — ar4), JDT — ar5), (LC — ar3), (LC — ar4), (LC
— ar5), JDT — arl), (ar5 — JDT), (arl — Apache), (Safe
— ML) and (ML — ar4). AUC and recall are used as assess-
ment measures to execute the test because they have the least
or negligible effect on prediction due to the imbalance prob-
lem in training datasets [9, 33-35]. Although HCPDP-AE
used the robust approach CBA to deal with CIP, CCA + and
TCA + do not have this issue addressed in their frameworks
[14, 31]. As a result, the authors used these two parameters
as evaluation criteria for the test in order to obtain the consis-
tent and unbiased results. If the calculated P-value is less than
0.05, the null hypothesis is rejected. The null and alternate
hypotheses are framed as follows:- Hyp: The two heteroge-
neous models are giving same prediction performance. Hj:
The two heterogeneous models are giving different predic-
tion performance.

As shown in Table 15, the calculated P-values on the basis
of both metrics recall and AUC for all benchmarked mod-
els with HCPDP-AE are less than 0.05. That is means that
the proposed HCPDP-AE model is performing differently
as compared to existing heterogeneous prediction models.
Therefore, on the basis of this empirical study, it can be con-
cluded that HCPDP-AE outperforms among all models.

7 Threats to validity

In the proposed feature extraction technique, the number of
neurons in the hidden layer is determined by the minimum
reconstruction loss. In order to perform metric matching
effectively, the CBMMT technique needs at least 15 input
features from both projects so that at least 5 correlated fea-
ture pairs can be obtained after metric matching to train
the DP model effectively. This raises a question about the
model’s construct validity. The experimental findings can be
improved further if the employed classification algorithms
are tuned using other optimized options, as the authors used
the default options for machine learners in the experiments.
This may also be an issue in case of construct validity.

8 Conclusion

HCPDP is a promising area in the SDP domain that enables
potentially heterogeneous software project datasets to predict
defects on new projects or projects that lack historical defect
data to train a DP model. In the paper, the authors proposed
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a novel four-phased heterogeneous prediction model using
a deep learning-based FE technique called auto-encoder to
extract strongly discriminated features that are more rele-
vant to predict expected outcomes. Furthermore, two novel
techniques, CBA and CBMMT, are proposed to deal with
imbalance problem in training datasets and to evaluate cor-
relation between features of two heterogeneous projects,
respectively. For WPDP and HCPDP, the study is able to
reduce features by 50.45% and 47.31%, respectively. The
experimental findings show that the prediction performance
of heterogeneous prediction with and without feature extrac-
tion is statistically significant as compared to the respective
DP within a project.

The results indicate that using a deep learning method
to extract features has a major impact on model prediction
accuracy as opposed to using a data-driven FE approach,
since a larger number of features contribute to over-fitting and
longer processing time to train a model. In addition to this,
the authors compared the proposed model’s efficiency with
three traditional heterogeneous prediction models. HCPDP-
AE has been found to be outperformed among all models
with the highest mean AUC value of 0.8901.

The future scope of the research is to integrate instance-
based filtering and feature extraction in accordance with
double pre-processing of datasets. Second, the metric match-
ing process has a huge impact on the prediction performance
of any heterogeneous model. As a result, another interest-
ing future direction in this area is to develop a more robust
correlation estimation methodology. Future research should
also focus on developing an empirical relationship between
software defect prediction and predictive maintenance. The
authors used a shallow auto-encoder with only one hidden
layer in this study. After studying the applicability to a par-
ticular problem, one may investigate other variants of AE,
such as stacked AE, contractive AE, and de-noising AE as a
future work.
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