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Abstract
Brain segmentation is key to evaluating brain structure for disease diagnosis and treatment. Much research has studied the
segmentation of brain images. However, prior research has paid little attention to separating actual brain pixels from those
related to the background of brain images. Failure to perform such a separation may (a) distort brain segmentation models and
(b) introduce overhead to the modeling performance. In this paper, we improve the performance of brain segmentation using
a 3D, fully convolutional neural network (CNN) model. We propose (i) a multi-instance loss method to separate actual brain
pixels from background and (ii) Gabor filter banks with K-means clustering to provide informative segmentation features.
We provide deeper analysis and discussion of evaluation results and the state-of-the-art models. Evaluated on infant and
adult datasets, our model achieves dice coefficients of 87.4–94.1%, an improvement of up to 11% to the results of five
state-of-the-art models. Unlike previous studies, we consult experts in medical imaging to evaluate our segmentation results.
Feedback from experts reveals that our results are fairly close to the manual reference. Moreover, we observe that our model
is 1.2x–2.6x faster than prior models. We conclude that our model is more accurate and efficient in practice for segmenting
both infant and adult brain images.

Keywords Brain segmentation · Multi-instance loss (MIL) · Gabor filter banks · Convolutional neural network (CNN)

1 Introduction

Brain tissues grow rapidly in the early stages of human life.
Over the past two decades, brain segmentation has relied
on manual segmentation, which is extremely expensive and
time-consuming [33]. For example, 15–20 images of infant’s
brain may require 9–11 h to segment. Achieving accurate tis-
sue segmentation of infant’s brain images into white matter
(WM), gray matter (GM), and cerebrospinal fluid (CSF) is
important to (a) measure abnormal early brain development,
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(b) monitor their progression, and (c) evaluate treatment out-
comes [2]. However, due to the low contrast and unclear
boundaries betweenWMandGM, itmight be hard to achieve
accurate segmentation.Moreover, different experts may gen-
erate different segmentation results.

Much research has studied the segmentation of brain
images using automated models, including atlas-based, sta-
tistical, and deep learning models.

Deep learning models, convolutional neural networks
(CNNs) in particular, have recently been used to perform
automated segmentation of infant brain [3]. Previous models
have achieved acceptable segmentation performance. How-
ever, prior studies have paid little attention to the separation
of actual brain pixels from the background of brain images.
Failure to perform such a separation may (a) distort brain
segmentation models and (b) introduce overhead to the mod-
eling performance. Therefore, developing robust models to
segment brain regions is important to improve pathology
detection and diseases diagnosis.

In this paper, we extend our work on improving the perfor-
mance of brain segmentation using a fully CNN model [22]
by expanding our (a) analysis and discussion of the achieved
results and (b) review of advanced studies on the application
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of deep learning models for brain segmentation. In partic-
ular, our proposed model employs (i) a multi-instance loss
method to separate actual brain pixels from background and
(ii) Gabor filter banks and K-means clustering to provide
informative segmentation details to support machine-learned
features. To overcome the lack of medical imaging applica-
tions [11], we use full images as input to our model and apply
max pooling andmean pooling to process the data. To evalu-
ate our model, we use infant and adult datasets and measure
the performance of our model using dice coefficients.

Unlike the state-of-the-art models, our results are evalu-
ated by the MICCAI iSEG organizers (experts in medical
imaging) [34]. Our model achieves dice coefficients ranging
between87.4%and94.1% (i.e., an improvement of up to 11%
to the results achieved by five state-of-the-art models).More-
over, our model is 1.2x–2.6x faster than the state-of-the-art
models. These results indicate that our model is practically
more accurate and efficient for the segmentation of both
infant and adult brain image.

The rest of this paper is organized as follows. Section 2
presents the work related to brain segmentation. Section 3
presents the methods used in this paper. Section 4 presents
our experimental results and evaluation. Section 5 discusses
threats to the validity of our results. Finally, Sect. 6 concludes
the paper and suggests future work.

2 RelatedWork

This section presents previous studies related to our work.
First, we describe in detail recent models used for brain seg-
mentation. Second, we describemagnetic resonance imaging
(MRI).

2.1 Machine learning for brain segmentation

The main objective of a brain segmentation model is to solve
the problem of having low contrast and unclear boundaries
between the white matter and gray matter in brain images.
Machine learning has been extensively used to solve the brain
segmentation problem. Although some previous models on
brain segmentation targeted infantile stages [29] (e.g., using
multiple modalities [14]), some other models targeted early
adults (< 12 months). Images used by previous models are
either T 1 or T 2 MRI images.

In general, most state-of-the-art methods emphasized on
three tissue types: white matter (WM), grey matter (GM),
and cerebrospinal fluid (CSF). These models required spe-
cific training datasets to address a specific tissue type. More
importantly, only a few organizations (e.g., iSEG organizers)
provide the training and testing dataset [35].

Dolz et al. [11] proposed 3Dand fullyCNN for subcortical
brain structure segmentation. Bao and Chung [2] improved

the model proposed by Dolz et al. by using a multi-scale
structured CNN with label consistency. Badrinarayanan et
al. [1] proposed CNNs models with the use of residual con-
nections to segment white matter hyperintensity from T 1
and flair images. Their models outperformed previous mod-
els with an overall dice coefficient of 0.75% on H95 and
27.26% on an average surface distance. Fechter et al. [12]
also used fully CNNs for brain segmentation. Using five
datasets, they achieved dice coefficient ranging between 0.82
and 0.91 for each dataset. Visser et al. [33] proposed CNN
models for brain segmentation using a multi modal method
and subcortical segmentation. de Brebisson andMontana [7]
proposed a random walker approach driven by a 3D fully
CNN to different tissue classes. Their model was capable for
segmenting the esophagus using CT images. Khaled et al.
proposed two brain tissues segmentation models, one using
FCN+MIL+G+K [22] and another using a multi-stage GAN
model [23]. They evaluated their models on two infants and
adults brain images and obtained good segmentation results,
expressed by dice coefficients of up to 94% for segmenting
GM and WM.

2.2 Deep Learning for Brain Segmentation

Dakai et al. [6] presented fully convolutional neural network
(FCN) with residual connections for brain segmentation.
A residual block consists of two convolutional layers at
the same resolution. A residual learning was implemented
through a shortcut connection that bypasses nonlinear lay-
ers with an identity mapping. This helps to recast nonlinear
layers to fit a residual function with respect to its input, thus
alleviating overfitting. To better capture finer scale details,
fine-to-coarse down sampling path and coarse-to-fine up
sampling path with shortcut connections were used. The
model was evaluated on T 1 and FLAIR images from the
MICCAI2017 dataset. Despite the good segmentation results
achieved, the model focused only on the white matter hyper
intensities (WMHs), which are commonly found in the brain
of healthy elders and patients diagnosed with small vessel
disease and other neurological disorders. Figure 1 shows the
work flow of the proposed WMH segmentation model.

Zhegyang et al. [26] proposed a global aggregation block
using 3D U-Net for brain segmentation. The global aggre-
gation block aggregates global information from feature
maps of any size without introducing more parameters.
This model also contains an up-sampling global aggregation
block, which helps alleviating information loss. Each posi-
tion of the output feature maps depends on all positions of
the input feature maps to achieve global information fusion
throughablock.Themodelwasused to segment three tissues:
gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF). The model surpassed previous models on infant
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Fig. 1 Illustration of the (FCN) brain segmentation model with residual connections (from [6])

Fig. 2 Illustration of the 3D U-Net brain segmentation model (from [26])

brain image segmentation. Figure 2 shows an illustration of
the proposed global aggregation block.

Khedher et al. [24] proposed a computer-aided diagno-
sis (CAD) system for brain segmentation. The proposed
model aims to distinguish between elderly normal controls

(NC), AD, and mild cognitive impairment (MCI) subjects.
In the proposedmodel, dimension reduction techniques were
used to reduce the information contained in brain images.
Also, a principal component analysis (PCA) was used to
reduce the original high-dimensional space of brain images
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Fig. 3 Illustration of the computer-aided diagnosis (CAD) system for
brain segmentation (from [24])

to a lower-dimensional subspace. Partial least squares (PLS)
were applied to maximize the covariance between different
sets of variables. The model was evaluated on an (ADNI)
dataset, the Alzheimer’s disease Neuroimaging Initiative ,
which contains 188 AD patients, 401 MCI patients, and 229
control subjects. Brain tissue segmentation was performed
for graymatter (GM) andwhitematter (WM). Figure 3 shows
detailed schema of the proposed model.

Muhammad et al. [31] proposed a convolutional neural
network (CNN) for segmenting brain lesions with consid-
erable mass effect. This model used a deep medic (from a
publicly available toolbox) to improve deep medic’s perfor-
mance by incorporating global spatial information (GSI) into
the network. In addition, 2D CNN was used as opposed to
the 3D CNN used in the original study due to the anisotropy
of MR images. The model also combines spatial information
at the convolution level of CNN. The model was evaluated
on segmenting the white matter (WMH) in comparison with
deep Boltzmann machine (DBM). Figure 4 shows a diagram
of CNN architectures used for this model.

Yongchao et al. [37] proposed a semi-automated brain
segmentation framework that is based on a mathematical
morphology and max-tree representations of brain images.
The model was designed to segment the white matter hyper
intensities (WM). To construct the maxtree, the model
employed an immersion algorithm based on the union-find
process, starting from the root to leaves. The model achieved
accurate results with excellent reproducibility andwithmini-
mal manual corrections. Besides 1.5T , which corresponds to
the usual clinical practice, the model also performed well on
images acquired at 3T , thus suggesting the generalizability of
the model. Figure 5 shows the pipeline used for segmenting
different neonatal brain tissues.

Dolz et al. [8] proposed a hyper-densely connected 3D
convolutional neural network for brain segmentation. Two
models were built by adding direct connections from any
layer to all subsequent layers in a feedforwardmanner, which
made training easier and more accurate. The direct connec-
tions between all layers help improve the flow of information
as well as gradients throughout the network. The model
was evaluated on the MICCAI iSEG dataset, containing 10

images for training and 13 images for testing, and was ver-
ified by the MICCAI i SEG organizers. Figure 6 shows a
section of the proposed HyperDenseNet.

Kamnitsas et al. [25] proposed a 11-layer deep, three-
dimensional convolutional neural network for brain lesion
segmentation. This model used post-processing using a con-
nected conditional randomfield, which helpsmitigating false
positives. Themodel was evaluated on three datasets and per-
formed the best on two benchmarks ISLES 2015 and BRATS
2015 benchmarks. Figure 7 shows the baseline CNN con-
sisting of four layers with 53 kernels for feature extraction,
leading to a receptive field of size 173.

Zhang et al. [38] proposed a model for the automatic
segmentation of white matter (WM) and gray matter (GM)
using fuzzy c-means and k-means clustering methods and
evaluated on 50 DICOM brain images. The model used
both intensity values and statistical-based values. The results
showed that statistical feature-based clustering achieved
higher results than intensity-based clustering. Figure 8 shows
the block diagram of the model.

2.3 Remarks on RelatedWork

Despite the research invested on brain segmentation, we
observe that previous models were trained using images
that contain actual brain pixels intermixed with the image
background, which could negatively affect segmentation
accuracy. Therefore, in this paper, we propose to separate
brain pixels from background to improve the overall perfor-
mance of brain segmentation. Then, we use fully CNNmodel
and supply it with additional machine-learned features. In
summary, our proposed method performs the following.

• accelerating model training;
• producing more accurate segmentation results;
• improving information and gradients flow throughout the
entire network; and

• reducing the risk of overfitting.

Furthermore, what makes our work distinct from previ-
ous studies is that our results are evaluated by the MICCAI
iSEG organizers.

3 Methodology

This section presents the methods we use to process brain
images, extract addition features, and build brain segmenta-
tion models. Figure 9 shows an overview of our proposed
model. Table 1 lists all the symbols we refer to in this paper.
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Fig. 4 Illustration of the (CNN) brain lesion segmentation model with considerable mass effect (from [31])

Fig. 5 Illustration of the brain segmentation model with max-tree and mathematical morphology (from [37])

3.1 The proposed CNNmodel

In our proposed model, we use two paths where each path
has six groups of layers, as follows:

– 1stgroup of layers consists of two layers, each of which
containing 90 filters. Each filter in a layer is applied to
the input images. The outcome of this process is known
as a feature map. Feature maps are fed into the second
group of layers.

– 2nd group of layers consists of two layers, each of which
contains 120 filters. Our kernel size is 3 × 3 × 3, which
allows the network to learn more complex features with a
reduced risk of overfitting. Feature maps from the second
convolutional layers were upsampled through a deconvo-
lution layer.

– 3rdgroup of layers consists of two convolutional layers,
each with 120 filters.

– 4th and 5th groups of layers consists of deconvolution
layers. Since we employ four classes (i.e., WM, GM,
CSF, and background), the last deconvolution layer has

123



2138 Arabian Journal for Science and Engineering (2023) 48:2133–2146

Fig. 6 Illustration of the hyper-densely connected 3D CNN brain segmentation model (from [8])

Fig. 7 Illustration of the 11-layer deep, three-dimensional CNN brain segmentation model (from [25])

four filters (i.e., one filer per class). Convolution layers
are used after each deconvolution operation.

– The last layer performs classification using softmax
units.

Overfitting is a major problem in deep neural networks.
Jonathan et al. [19] reported that deconvolution layers
perform upsampling by learning to deconvolve the input
feature map. Badrinarayanan et al. [1] reported that index-
upsampling uses max pooling indices to upsample feature
maps (without learning) and convolves with a bank of
trainable filters. We experiment both upsampling strategies
using our data and observe, as shown in Fig. 10a, that
the deconvolution layer performs better than index upsam-
pling. Therefore, we choose to use the deconvolution layer
to upsample the input feature map to higher spatial space.
After each convolution layer, we use PReLU [16] as an acti-
vation function, which (a) introduces a number of additional

parameters, equal to the number of channels, and (b) prevents
overfitting.

As is the case with deep models, the weights were
initialized to random weights. He et al. [15] included
restricted Boltzmann machines and showed that the equiv-
alence between RBM’s and infinite directed nets with tied
weights suggests an efficient learning algorithm for multi-
layer networks in which the weights are not tied. Besides, He
et al. [15] reported that deep models may have convergence
difficulties and therefore proposed a weight initialization
strategy to improve the accuracy of deep neural networks.
Figure 10b shows that the initialization strategy proposed by
He et al. performs better than the other two strategies. There-
fore, in ourmodel, we use the initialization strategy proposed
by He et al., which employs variant responses in each layer.

A careful selection of a learning rate value can lead to
better performance results. However, increasing the learning
rate makes model training slower due to local optimizations
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Fig. 8 Illustration of the brain segmentation model using fuzzy c-means and k-means clustering (from [38])

Fig. 9 Proposed fully CNN model on multi-instance loss and Gabor filter bank

used to update the parameters. To this end, we experiment
with different learning rates to investigate what suits our data
and topology.We start with a learning rate that is taken from a
group of comparablemodels. First, we performmultiple runs
by changing the learning rate value by alternating factors of
3 or 10 (i.e., 0.01, 0.003, 0.001, 0.0003, and so on). Once we
achieve an acceptable estimate of the sweet spot, we tweak
the final digit to reach an optimumvalue. Second,we increase

the initial learning rate by a factor of 10 until the model does
not converge to an optimum value. Similarly, we perform
experiments to identify the lowest number of epochs needed
to train our model. Finally, we initially set the learning rate
to 0.01 and then reduce it by a factor of 10 after every 10
epochs.

Dropout and normalization techniques are also used
to reduce overfitting in neural network models and other
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Table 1 List of symbols referred to in this paper

Symbol Definition

CNN Convolutional neural network

LOS1 Multi-instance loss1

LOS2 Multi-instance loss2

MIL Multi-Instance loss

x Real data

WM White matter

GM Gray matter

CSF Cerebrospinal fluid

Conv Convolutional

LeReLU Activation function

W Weights in the neural network

E Expected value

DC Dice Coefficient

MRI Magnetic resonance imaging

T 1 Subject-1-to-subject-10

T Subject-11-to-subject-23

CT Computed tomography

Ri,j Ground truth

Hm
i,j Represents max pooling from feature maps

Ha
i,j Represents average pooling from feature maps

Vauto Automated segmentation

Vr e f Reference segmentation

gradient-related problems [15]. During forward propagation
in neural network models, activations are passed from one
layer to another. Such activations may not fit a single dis-
tribution. In addition, in model training, each layer has to
learn a new distribution every time, which slows down the
training process (i.e., internal covariate shift). Hence, fix-
ing the distribution of layer inputs eliminates the internal
covariate shift and offers faster and better model training.
Therefore, in our model, we compute batch mean and batch
variance to normalize the inputs/outputs of each layer. In
batch normalization, layer outputs are normalized to a fit a
single distribution by maintaining a standard deviation of 1
and a mean of 0. Dropout randomly sets the activations of
a certain number of neurons (i.e., dropout rate) to 0. This
allows neurons to survive and participate in model learning
at the next layer. In our model, we applied batch normaliza-
tion according to the strategy proposed in [16]. Note that we
do not preprocess the T 1 and T 2 input images.

3.2 Loss Methods

In our proposed model, we use stochastic gradient descent
with two loss methods: (i) multi-instance loss at the interme-
diate stages and (ii) cross-entropy loss at the final stage.

Fig. 10 a Two upsampling strategies, b three initialization strategies

Fig. 11 Pink areamarks the receptive field of one pixel in Layer 2. Blue
area marks the receptive field of one pixel in Layer 3
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3.2.1 Multi-instance Loss

Multi-instance learning is used to describe learning exam-
ples in a diverse array. Each learning example contains a
bag of instances instead of a single feature vector. Each bag
is associated with a label. In the training examples, a sin-
gle example object has feature vectors (instance). Only one
of those feature vectors is responsible for the classification
of the object [13]. In traditional supervised learning, the aim
was to find amodel that predicts the value of a target variable,
y ∈ {0, 1}, for a given instance, x ∈ RD). In multi-instance
learning, there is a bagof instances insteadof a single instance
X = {x1, ..., xK } and there is a single labelY associatedwith
the bag, yk ∈ {0, 1}. Duringmodel training, there is no access
to the labels as they remain unknown.

Multi-instance loss was inspired by multi-instance learn-
ing assumptions. The assumption is that (a) if at least one
instance in the bag is positive, then the bag is positive, and (b)
if all instances in the bag are negative, then the bag is negative.
In our model, the third and fourth layers can be considered
as a multi-instance problem. We use two loss functions: one
for positive pixels (i.e., inside the MRI image) and another
for negative pixels (i.e., outside the MRI image). The I-loss
function (inside the MRI image) is given by the following
equation:

LOS1 =
∑

i,j,Ri,j=1

log(1 + exp (−Ri,j ∗ Hm
i,j )), (1)

where Ri,j is the ground truth provided by the dataset orga-
nizers. Ri,j = 1 if pixel (i,j) is inside the MRI image.
The novelty here is that pixel (i,j) is in Ri,j, and such pixel
has a receptive field. The receptive field refers to a certain
part of an image. If the receptive field has at least one posi-
tive pixel (inside MRI image), then (i,j) should be positive.
Otherwise, (i,j) is negative. Figure 11 depicts the receptive
field where pink area marks the receptive field of one pixel in
Layer 2, whereas blue area marks the receptive field of one
pixel in Layer 3. A bag-level predictive map Hm

i,j represents
max pooling from feature maps. Ou-loss functions (outside
the MRI image) is given by the following equation:

LOS2 =
∑

i,j,Ri,j=−1

log(1 + exp (−Ri,j ∗ Ha
i,j)), (2)

where Ri,j = −1 if pixel (i,j) is outside the MRI image.
A bag-level predictive map Ha

i,j represents average pooling
from feature maps. The total multi-instance loss function is
given by the following equation:

MI L = LOS1+ ‖ W ‖2 LOS2, (3)

where the MI L ensures a proper differentiation between
actual brain pixels and background. ‖ W ‖2 presents the
weights in the neural network, which is given by the follow-
ing equation:

‖ W ‖2=
√
W 2

1 + W 2
2 + · · · + W 2

n . (4)

3.2.2 Cross-Entropy Loss

Loss functions are crucial in machine learning pipelines.
However, knowing which loss function to use can be chal-
lenging. Cross-entropy loss is commonly used as a cost
function when training classifiers. Cross-entropy loss is also
used to measure the performance of a classification model.
In our model, we use the softmax function to convert the
output of the classification layer into normalized probability
values.

3.3 Gabor Filters

Due to the low contrast and lack of clear boundaries between
WM and GM, features are not sufficient for accurate seg-
mentation. Gabor filter is a strong tool for the description of
textures in images. Figure 12 shows the process of obtaining
Gabor filters. Gabor filter can be obtained by convolving the
image and applying it to our model as human-designed fea-
tures to improve segmentation results [17]. The equation is
given by:

G(x, y; λ, θ, ψ, σ, γ )

= exp(−((x ′2 + y2y′2)/2σ2)) exp(i(2πx ′/y + ψ)),

(5)

where σ is the standard deviation of the Gaussian envelope,
ψ is the phase shift, λ is the wavelength of the sinusoid,
θ is the spatial orientation of the filter, and γ is the spatial
aspect ratio. The terms x ′ and y′ are given by the following
equations:

x ′ = xcon(θ) + ysin(θ), (6)

y′ = ycos(θ) − xsin(θ), (7)

where filter sizes are from 0.3 to 1.5 and the wavelength of
sinusoid coefficients was 0.8, 1.0, 1.2 and 1.5.

3.4 K-means

K -means is a technique used to cluster a dataset into k groups.
In our model, we merge filter responses together and apply
the K -means clustering algorithm to cluster pixels with sim-
ilar features.

123



2142 Arabian Journal for Science and Engineering (2023) 48:2133–2146

Fig. 12 Gabor filter bank

4 Experiments

This section presents our experimental design and evaluation.

4.1 Datasets

In our work, we use two different datasets of brain images:
the MICCAI iSEG dataset and MRBrains dataset. We
describe each of these datasets in the following.

4.1.1 MICCAI iSEG Dataset

The aim of the evaluation framework1 introduced by the
MICCAI iSEGorganizers is to compare segmentationmod-
els of WM , GM and CSF on T 1 and T 2. The MICCAI
iSEG dataset contains 10 images, named subject-1 through
subject-10, subject T 1 : T 1-weighted image, subject T 2 :
T 2-weighted, and a ‘manual segmentation’ label used as a
training set. The dataset also contains 13 images, named
subject-11 through subject-23, used as a testing set.An exam-
ple of the MICCAI iSEG dataset (T 1, T 2, and manual
reference contour) is shown in Fig. 13. The dataset has two
different times (i.e., longitudinal relaxation time and trans-
verse relaxation time), which are used to generate T 1 and
T 2 (Table 2). The dataset has been interpolated, registered,
and skull-removed by the MICCAI iSEG organizers. We
present the evaluation equations in Sect. 4.2.

4.1.2 MRBrains Dataset

The MRBrains2 dataset contains 20 subjects for adults for
segmentation of (a) cortical gray matter, (b) basal ganglia,
(c) white matter, (d) white matter lesions, (e) peripheral cere-
brospinal fluid, (f) lateral ventricles, (g) cerebellum, and (h)
brainstem on T 1, T 2, and FLAIR. Five (i.e., 2 male and 3
female) subjects are provided to the training set, and 15 sub-
jects are provided for the testing set. On the evaluation of the

1 http://iseg2017.web.unc.edu.
2 https://mrbrains13.isi.uu.nl/results.php.

Fig. 13 Example of MICCAI iSEG dataset (T 1, T 2, and manual ref-
erence contour)

Table 2 Parameters used to generate T1 and T 2

Parameter T R/T E Flip angle Resolution

T 1 1900/4.38 ms 7 1×1×1

T 2 7380/119 ms 150 1.25×1.25×1.25

segmentation, these structures merged into gray matter (a-b),
white matter (c-d), and cerebrospinal fluid (e-f). The cerebel-
lum and brainstem were excluded from the evaluation.

4.2 Segmentation Evaluation

To better demonstrate the significance of our model, we sub-
mitted our results to be evaluated by the MICCAI iSEG
organizers [34]. The MICCAI iSEG organizers have used
Dice Coefficient (DC) metric to evaluate our model.

4.2.1 Dice Coefficient (DC)

We use Vref for the reference segmentation and Vauto for the
automated segmentation. The DC is given by the following
equation:

DC(Vref, Vauto) = 2|Vref ⋂ Vauto|
|Vref| + |Vauto| , (8)

where DC values are given in this range [0, 1]. 1 correspond-
ing to the perfect overlap and 0 indicating the total mismatch.

4.2.2 Comparing Our Results with the State-of-the-Art

To demonstrate the significance of our model, we compare
our achieved results with the results of five state-of-the-
art models. We choose these five models because (a) they
have been considered as a baseline to compare segmentation
models in the literature to compare brain segmentation mod-
els [34] [25] [5] [30] [27] and (b) all implementation details
of such models are publicly available.
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Table 3 Segmentation accuracy in dice coefficient (DC) achieved on
the MICCAI iSEG dataset

Model Dice coefficients (DC)

CSF (%) GM (%) WM (%)

Çiçek et al. [5] 83.9 88.9 89.4

Nie et al. [30] 83.5 85.4 88.9

Kamnitsas et al. [25] 82.8 84.8 88.5

Mahbod et al. [27] 83.7 84.8 88.3

3D, FCNN 85.2 87.6 80.6

3D, FCNN + MIL 91.5 88.6 87.6

3D, FCNN + MIL+G+K 94.1 90.2 89.7

The best performance for each tissue class is highlighted in bold

4.3 Experiment Environment

We implement our proposedmodel using PythonTensorFlow
on a computer with a NV I DI A GPU and Ubuntu 16.04
operating system. We train and test our model on each of the
two datasets independently.

5 Results and Discussion

This section discusses the evaluation results of our model
compared to the state-of-the-art models.

5.1 Analysis of the Results

Our model is trained and tested on two datasets of different
ages (i.e., infants and adults). Table 3 presents the results of
our model to segment CSF, GM, and WM on the MICCAI
iSEG dataset. Our model achieves a DC value of 94.1% in
CSF segmentation. The DC values achieved from segment-
ing CSF by state-of-the-art models range between 83.5%
and 91.5%. The results indicate that our proposed model
improvesCSF segmentationby2.6%–10.6%. In addition, our
model achievesDCvalues of 90.2%and89.7% in segmenting
GM and WM , respectively. The state-of-the-art models, on
the other hand, achieved DC values in the range of 85.2%–
88.6% for GM segmentation and 80.6%–88.7% for WM
segmentation. According to the results achieved, we observe
that our model achieves a significant improvement of 1.5%–
9.6% on segmenting GM and WM. Such results highlight
the remarkable efficiency gained by separating actual brain
pixels from background and the additional features used in
our model.

Table 4 compares the results achieved by our model on
the MRBrains dataset. We observe that our model achieves
a DC value of 87.4% for CSF segmentation, 90.6% for
GM segmentation, and 90.1% for WM segmentation. Such
results surpass those achieved by the state-of-the-art models.

Table 4 Segmentation accuracy in dice coefficient (DC) achieved on
the MRBrains datasets

Model Dice coefficients (DC)

CSF (%) GM (%) WM (%)

Çiçek et al. [5] 83.9 88.9 89.4

Nie et al. [30] 83.5 85.4 88.9

Kamnitsas et al. [25] 82.8 84.8 88.5

Mahbod et al. [27] 83.7 84.8 88.3

3D, FCNN 81.4 86.1 85.2

3D, FCNN + MIL 84.3 87.6 89.4

3D-FCNN + MIL+G+K 87.4 90.6 90.1

The best performance for each tissue class is highlighted in bold

Therefore, we argue that our model can perform better on
segmenting both infant or adult brain structures.

5.2 Role ofMIL

Our results on the two datasets show the performance of
our model with and without the multi-instance loss (MI L).
Looking at the segmentation results on the MICCAI iSEG
dataset shown in Table 3, we observe that MI L has con-
tributed to about 6% improvement to the segmentation of
CSF and 7% improvement to the segmentation of WM .
However, for segmenting GM , we observe only a 1%
improvement. The segmentation results on the MRBrains
dataset shows a similar performance, i.e., higher improve-
ment in segmenting CSF and WM, but lower in segmenting
GM. The less improvement in segmenting GM is likely due
to the mixed features between GM and WM regions caused
by the low contrast images.

5.3 Role of G+K

Our results on the two datasets show the performance of our
model with and without Gabor filter (G) and K-means (K ).
Looking atTable 4,weobserve thatG and K have contributed
to about 3% improvement to the segmentation of CSF and
3% to the segmentation of GM. In contrast with MI L , G+K
showed less improvement in segmenting WM rather than
GM, which is, once more, likely due to unclear boundaries
between these particular tissues of the brain. We aim in
the future to investigate this problem further to explore the
reasons behind the deviation in segmentation performance
across different brain tissues.

5.4 Visualized Segmentation Results

Figure 14 shows a sample of a visualized result of our model
on the subject used for validation set. We observe that our
model performs well for brain segmentation, especially for
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Fig. 14 Asample of ourmodel results on the subject used for validation.
a 10 epochs, b 20 epochs, c 30 epochs

Fig. 15 a T 1, b T2, cmanual reference contour, and d our model result
on the subject used for validation

brain tissues. In Fig. 15, we show an example of our segmen-
tation results and howour result compares to the ground truth.
We observe that segmentation results achieved by our model
fairly close to the manual reference contour provided by the
MICCAI iSEG organizers [34]. As expected, much of the
improvement in our model is gained at the brain boundary
(i.e., between GM and WM). Moreover, we observe that the
use of multi-instance loss and Gabor filter banks enabled our
model to better handle thin regions than using original brain
images.

5.5 Execution Time

Table 5 presents the execution time (in minutes) for our pro-
posed model compared to the state-of-the-art models. We
observe that the execution of our proposed model is faster
than that of the state-of-the-art models. Such results indicate
that our model is more efficient and practical to be used in
real-time systems. As we can see, the addition ofMIL+G+K
did not negatively affect the execution time of ourmodel, thus
suggesting its practicality.

5.6 Discussion

Accuracy on two different datasets Our model is evaluated
on two completely different datasets of brain images, one for
infants and one for adults. Each of these datasets contains a
limited number of images with low contrast. Yet, our model
shows high results for segmenting brain tissues, outperform-
ing the state-of-the-art models in this context. Future work

Table 5 Average execution time (in minutes) and standard deviation
(SD) in the MRBrains dataset

Model Time (SD)

Çiçek et al. [5] 15.40 (0.16)

Nie et al. [30] 19.23 (0.20)

Kamnitsas et al. [25] 17.6 (0.18)

Mahbod et al. [27] 18.4 (0.15)

3D, FCNN 7.2 (0.12)

3D, FCNN + MIL 5.9 (0.11)

3D, FCNN + MIL+G+K 5.9 (0.11)

should investigate the performance of these models on more
datasets with larger numbers of brain images.
Multi-instance loss + Gabor filter bank + K-means clus-
tering. Our model adopts a multi-instance loss, Gabor filter
bank, and K-means clustering mechanisms to support the
segmentation tasks. This addition to our model shows a pos-
itive effect to the effectiveness of ourmodel, as our evaluation
shows the improvement introduced by thesemechanisms.We
believe that adopting more sophisticated mechanisms can
further help improve brain segmentation, such as different
loss functions, different networks, etc.
Model complexity It can be argued that ourmodel has become
more complex with the additional layers and filtering used
to extract more informative features. However, our model
shows better efficiency, expressed by the faster execution
times compared to the state-of-the-art models. This shows
that our model maintains a balance between accuracy and
efficiency, making it more practical in real world scenarios.
Still, futurework is encouraged to optimize ourmodel further
to make it more accurate while preserving its complexity and
efficiency.
Imperfect segmentation performanceEven though ourmodel
performance surpassed the state-of-the-art models, results
are still not perfect. This is likely due to the limited number
of MRI images, which are normally of low contrast. This
can make the information of different brain tissues unclear
or mixed, thus producing misleading features for each tissue.
Futurework is recommended to exploremore advancedways
to identify the exact boundary of each brain region to achieve
higher segmentation performance.

6 Threats to Validity

This section discusses the validity threats of our results and
how we address them in our study.
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6.1 External Validity

Threats to external validity are related to the generalizabil-
ity of our results. One could argue that our datasets do not
have enough samples. We mitigate such threat by using two
datasets that (a) contain both infant and adult brain data
and (b) were previously used by prior studies. In addition,
we compare our model with five prior models on the same
datasets. Furthermore, we use the small-size kernels, decon-
volution layer (to upsample the input), PReLU, dropout,
and normalization methods to reduce the risk of overfitting.
Hence, any potential deficiency in the data should affect all
the implemented models. Nevertheless, our model achieves
higher performance than the state-of-the-art models.

6.2 Internal Validity

Threats to internal validity are related to experimental errors
and bias. Our model is constructed using data extracted from
medical images of low contracts. To mitigate such threat,
we use the multi-instance loss method to reduce any poten-
tial noise in the data by separating actual brain pixels from
background. Such method has improved the efficiency and
accuracy of our model as well as the accuracy. In addition,
our results have been evaluated by the same medical experts
(i.e., the organizers of the MICCAI iSEG dataset).

7 Conclusion

We proposed a fully convolutional neural network (CNN)
model for improving brain segmentation supported by (i)
separating brain pixels from background using the multi-
instance loss method and (ii) adding additional features
using Gabor filter bank and K-means clustering. This paper
expands the analysis and discussion of the performance of
our model and provides detailed review of related work on
the application of deep learning for brain segmentation.

Our results were evaluated by the MICCAI iSEG orga-
nizers, who found them to be fairly close to the manual
reference. In addition, we compare ourmodel to five baseline
state-of-the-art models. We observe that our model achieves
an improvement of up to 11%. In particular, we achieve
dice coefficients that range between 87.4% and 94.1%. Such
results indicate that the adoption of the multi-instance loss
method and Gabor filter banks has significantly improved
segmentation results. We argue that our model is more effi-
cient and accurate in practice for both infant and adult brain
segmentation.

Despite the promising segmentation results achieved by
our model, we believe that further improvements can be
achieved in the future. For example, conditional random
fields (i.e., statistical modeling methods) can be used to pre-

dict sequences in pattern recognition and machine learning.
We plan to supply a conditional random field to brain seg-
mentation models to investigate whether it is possible to gain
better segmentation performance. We also plan to perform
brain boundary detection to identify the exact regions of brain
regions in order to make feature extraction more precise.
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