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Abstract
Combined heat and power economic emission dispatch (CHPEED) can obtain good economic and environmental benefits, but
the dispatch problem presents non-convex, nonlinear, multi-constrained and multi-objective characteristics. Thus, a two-stage
cooperative multi-objective differential evolutionary algorithm (TCADEA) is proposed in this paper. The algorithm uses a
two-stage framework: the first stage uses a two-population strategy to divide the population into an elite population and an
ordinary population, where the elite population is used to obtain better target values and the ordinary population is used to
search the target space to ensure the diversity of the population and update the two populations by different adaptive differential
operators. In addition, the ε constraint processing technique is used to handle the constraints. The second stage combines two
populations into one and generates offspring through the constrained dominance principle (CDP) and adaptive differential
evolution to maintain well-distributed population. The actual case results show that the TCADEA algorithm reduces $0.034
× 106, $0.008 × 106, $0.07 × 106 and 113 × 105 lb, 102 × 105 lb, 155 × 105 lb in fuel cost and emissions compared to
MODE, NSGA-II, and TOP, respectively.

Keywords Economic emission dispatch · Cogeneration · Adaptive differential evolution · Dual-population framework ·
Multi-objective optimization

1 Introduction

Generating units using fossil fuels often have low efficiency
and high pollution during power generation [1], so both must
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be considered in engineering applications [2]. At present,
even in the state-of-the-art combined cycle power plants,
the energy conversion efficiency is only between 50 and
60% [3]. To improve the efficiency of the use of existing
power systems, combined heat and power unit (CHP) was
introduced [4]. CHP enables effective control of operating
cost and pollution emissions [5, 6]. However, some refer-
ences only consider the optimization of the economic aspects
of CHP, ignoring the environmental advantages of the unit
[7–9].With the increasingly serious environmental problems,
many countries around the world are actively working on
energy saving and emission reduction. The economic emis-
sion dispatch as an effective way to cope with the energy
crisis and environmental pollution. The purpose is to ensure
reliable power supply while balancing economic efficiency
and pollutant emissions, thus achieving safe and stable oper-
ation of the power systemwith the lowest operating costs and
minimal pollution emissions [10].

The solution methods for multi-objective economic emis-
sion dispatch problems are usually divided into two types:
traditional mathematical methods and heuristic algorithms.
In many literatures, traditional mathematical methods are
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widely used in CEED and CHPEED, such as λ itera-
tion [11], Newton–Raphson method [12], and Lagrangian
multiplier method [13]. Since economic emission dispatch
has high-dimensional, nonlinear, discontinuous, and non-
differentiable characteristics, traditional mathematical meth-
ods often fall into local optimum or converge prematurely,
making it difficult to obtain a set of optimal Pareto fronts
(PF). In contrast, heuristic algorithms are empirical-based
optimization methods, so they are widely used in high-
complexity optimization problems such as artificial intelli-
gence and production dispatching, such as dwarf meerkat
optimization algorithm (DMO) [14], crawl search algo-
rithm (RSA) [15], and arithmetic optimization algorithm
[16]. Heuristic algorithms are a simple and effective solu-
tion for economic emission dispatch problems with valve
point effects and feasible operating zones [17, 18]. To solve
the CEED problem, Koridak et al. used weight coefficients
to transform the bi-objective optimization problem into a
single-objective optimization problem, which can lead to
optimization results that depend on the setting of the weight
coefficients [19]. Abdelaziz et al. used a switching factor
p to determine the global and local search of the flower
pollination algorithm (FPA) with a p value that is biased
towards local search, which can lead the population to fall
into a local optimum [20]. In reference [21], the ant colony
optimization (ACO) combined with the ratio of maximum
fuel cost and emissions transforms the CEED problem into
an economic optimization problem, which reduces the opti-
mization difficulty. Because fuel cost and emissions are
nonlinear functions whose weight varies with the output
power of the generator set, it is not reasonable to use a fixed
ratio of fuel cost to emissions. A new symbiotic organisms
search algorithm (NSOS) is used to solve the CEED prob-
lem with an algorithm that generates complementary terms
for individuals that do not guarantee a priori an improve-
ment in algorithm performance [22]. Sharifi et al. proposed
a price penalty function to balance the relationship between
economy and emissions and solved the CEED problem by
spiral optimization algorithm (SOA). Thismethod can obtain
the optimal solution quickly, but the maximum capacity
of each generating unit differs, which can lead to large or
small emissions of other generating units when the price
penalty factor is multiplied with the emissions of other
generating units [23]. A gravity-based artificial bee colony
algorithm is used to solve the CEED problem. The math-
ematical model developed in this literature is not practical
because its objective function does not take into account the
valve point effect of the generating unit, which can cause
huge fluctuations in the output power of the generating unit
[24].

The above solution methods all convert the CEED prob-
lem into a single objective for optimization by the weighting

method. This method relies heavily on the reasonable assign-
ment of weight coefficients, and it is often difficult to
obtain a suitable weight without a priori knowledge. There-
fore, the use of multi-objective optimization algorithms to
solve such problems is a current research hotspot. In solv-
ing the CHPEED problem, NSGA-II is used to solve the
CHPEED problem. Although it converges quickly to the
PF, there are too few test systems and comparison algo-
rithms to fully validate the effectiveness of NSGA-II on
the CHPEED problem [25]. A particle swarm algorithm
with time-varying acceleration coefficients (TVAC-PSO) is
used to deal with this problem. It combines an originally
fixed acceleration factor with the number of iterations to
prevent the algorithm from falling into a local optimum
[26]. An Indicator & crowding Distance-based Evolution-
ary Algorithm (IDBEA) increases the diversity of solutions
in solving the CHPEED problem, but the performance of
the method is heavily dependent on the setting of reference
points [27]. A two-stage optimization approach is proposed
in the reference [28], which first uses a multi-objective opti-
mization algorithm based on θ domination for optimization
and then selects the best compromise solution by an inte-
grated decision-making approach. Since θ values do not use
adaptive techniques, this can lead to the need for multiple
solutions to determine the appropriate θ value when solving
the problem.

However, the above approach to solving the CHPEED
problem focuses only on how to minimize the economic
emission target and does not study much about the con-
straints in this problem. In order to solve the problem of
multi-objective andmulti-constraint, amulti-objectivemulti-
verse optimization algorithm based on a chaotic opposition
strategy is proposed. And the combination of constraint pro-
cessing technique ensures that the solution is in the feasible
zones [29]. In the reference [30], a multi-objective line-up
competition algorithm (MLCA) with diversity mechanism
and constraint processing technique is proposed to solve the
CHPEED problem considering valve point effect and trans-
mission loss. In general, constraint processing techniques can
be divided into repair strategy, penalty function, and rejection
strategy. The repair strategy obtains individuals that satisfy
the constraints by multiple cycles, and its optimization pro-
cess is complex. The penalty function adds the constraint
violation value to the objective function by the penalty factor,
and it is very dependent on the value of the penalty fac-
tor. The rejection strategy selects the superior individual by
comparing the constraint violation values of two individuals,
and this strategy is simple and effective. The constraint pro-
cessing techniques proposed in references [29, 30] are based
on the repair approach. Therefore, a two-stage cooperative
multi-objective evolutionary differential algorithm incorpo-
rating rejection strategy is proposed to solve the CHPEED
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problem in this study. The method is divided into two stages:
the first stage uses a dual-population strategy, in which two
populations use different adaptive differential operators and
obtain offspring according to the ε-constrained processing
technique and the Pareto principle to ensure that the popu-
lation gets more superior individuals; in the second stage, to
ensure a more uniform PF for the economic emission dis-
patch problem, the elite population and ordinary population
are combined into one population and evolve according to
the adaptive differential operator and CDP. The experimen-
tal results of CEED and CHPEED show that the TCADEA
algorithm is able to obtain solutions with better distributiv-
ity.

The main contributions of this article are as follows:

1. A two-stage cooperative multi-objective evolutionary
differential algorithm (TCADEA) is proposed. The
method uses a two-stage framework for optimization.
The first stage uses a dual-population mutation strat-
egy to generate offspring and then updates the solu-
tion through an ε-constraint processing technique. For
example, the dual-population strategy generates off-
spring through adaptive differential operators, and the
ε-constrained processing technique selects the next
generation of populations through ε-constrained non-
dominated sorting. The second stage obtains offspring by
single-population optimization and CDP. For example,
elite population and ordinary population are combined
into a single population to obtain offspring by differ-
ential operator, and then the next-generation population
is obtained by environmental selection according to
CDP.

2. The CEED and CHPEED problems with valve point
effect and transmission loss are solved.

3. The simulation experiments are performed for the CEED
problem and the CHPEED problem. TCADEA obtained
better results on four cases compared to MODE, NSGA-
II and TOP. For example, in Case 4, the TCADEA
algorithm reduces $0.034 × 106, $0.008 × 106, $0.07
× 106 and 113 × 105 lb, 102 × 105 lb, 155 × 105 lb in
fuel cost and emissions compared to MODE, NSGA-II,
and TOP, respectively.

The rest of this paper is organized as follows. Section 2
introduces two typicalmodels of economic emission dispatch
problems: the CEED problem and the CHPEED problem.
Section 3 describes the overall framework of the algo-
rithm and gives the implementation details of the algorithm.
Section 4 is a comparative experiment, comparing and ana-
lyzing the advantages and disadvantages of the proposed
algorithm and other algorithms. Section 5 summarizes the
main work of this article.

2 Economic Emission Dispatch Problem

Economic emission dispatch problems are roughly divided
into CEED problems and CHPEED problems. They are a
multi-objective dispatch problem that minimizes fuel cost
andpollution emissionswhile satisfyingmultiple constraints.
The general multi-objective problem model is as follows:

min F(x) � [F1(x), F2(x)]

s.t . g(x) � [g1(x), g2(x), . . . , gK (x)] ≤ 0

h(x) � [h1(x), h2(x), . . . , hM (x)] � 0

x � [x1, x2, . . . , xd , . . . , xD]

xmin
d ≤ xd ≤ xmax

d , (d � 1, 2, . . . , D) (1)

where F1(x) and F2(x), respectively, represent operating
cost and pollution emission, g(x) represents k-term inequal-
ity constraint, h(x) represents M-term equality constraint, X
represents output power of D generator unit, and xmin

d and
xmax
d represent upper and lower limits of output power of
each unit.

2.1 Formulation of CEED Problem

2.1.1 Objective Function

In the real power generation process, the plucking phe-
nomenon caused by the sudden opening of the turbine inlet
valve will cause the pulsation effect of the unit consump-
tion characteristics, i.e., the valve point effect [31]. In order
to ensure the accuracy of solving the CEED problem, the
valve point effect should be considered when establishing
the mathematical model of the problem.

The fuel cost of the generator unit is shown in Eq. (2).

F1(x) �
Mp∑

i�1

ai P
2
i + bi Pi + ci+

∣∣∣di sin
{
ei

(
Pmin
i − Pi

)}∣∣∣

(2)

where
∣∣di sin

{
ei

(
Pmin
i − Pi

)}∣∣ represents the valve point
effect, ei and di represent the cost coefficient of the ith power-
only unit, Pmin

i represents the minimum output power of the
ith power-only unit, Pi represents the actual output power of
the ith power-only unit, ai , bi , ci represent the cost coefficient
of the ith power-only unit, and Mp represents the number of
power-only units.

When fossil fuels are used for power generation, the power
generation system produces various harmful gases that pol-
lute the environment (here mainly NOx , SOx , CO2). The
emissions are shown as follows:
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F2(x) �
Mp∑

i�1

gi P
2
i + hi Pi + ki + ni e

li Pi (3)

where gi , hi , ki , li represent the emission coefficient of the
ith power-only unit.

2.1.2 Constraints

In the CEED problem, the energy balance constraint and the
power constraints of each unit are considered mainly, which
are summarized as follows.

The power generated by the unit is equal to the sum of the
power required on the load side plus the transmission losses
between the units.

Mp∑

i�1

Pi � Pd + Pl (4)

where Pd represents the electricity demand on the load side.
Transmission loss Pl is shown by Eq. (5).

Pl�
Mp∑

i�1

Mp∑

j�1

Pi Pj Bi j +

Mp∑

i�1

B0i Pi + B00 (5)

where Bi j represents the loss coefficient between the ith
power-only unit and the jth power-only unit, B0i represents
the loss coefficient of the ith power-only unit, and B00 rep-
resents the loss coefficient parameter.

Power constraints of each unit.

Pmin
i ≤ Pi ≤ Pmax

i , i � 1, 2, ..., Mp (6)

where Pmin
i and Pmax

i , respectively, represent the minimum
power and maximum power of the ith power-only units.

2.2 Formulation of CHPEED Problem

2.2.1 Objective Function

The CHPEED problem results in better operating cost and
emissions of the power generation system due to the incor-
poration of CHP [32]. The fuel cost function and emission
function of the CHPEED problem are added to the fuel cost
and emission of the CHP and the heat-only unit. The expres-
sions are shown in Eqs. (7) and (8).

F1(x) �
MP∑

i�1

Cp, i (pi ) +
Mc∑

j�1

Cc, j
(
Oj , Hj

)
+

Mh∑

n�1

Ch, n(Tn)

�
Mp∑

i�1

ai P
2
i + bi Pi + ci+

∣∣di sin
{
ei

(
Pmin
i − Pi

)}∣∣

+
Mc∑

j�1

[
α j O

2
j + β j O j + χi + ϕi H

2
j + γ j H j + η j O j Hj

]

+
Mh∑

n�1

[
ιnT

2
n + κnTn + λn

]
(7)

where Cp, i , Cc, j , Ch, n , respectively, represent the fuel cost
of the ith power-only unit, the jth CHP unit and the nth heat-
only unit. Pi represents the actual power generation of the
ith power-only unit, Oj represents the actual power gener-
ation of the jth CHP unit, Hj , Tn respectively represent the
actual heat production power of the jth CHP unit and the nth
heat-only unit, α j , β j , χ j , ϕ j , γ j , η j represent the cost coef-
ficients of the jth CHP unit, and ιn , κn , λn represent the cost
coefficients of the nth heat-only unit.

F2(x) �
Mp∑

i�1

Ep, i (Pi ) +
Mc∑

j�1

Ec, j
(
Oj , Hj

)
+

Mh∑

n�1

Eh, n(Tn)

�
Mp∑

i�1

gi P
2
i + hi Pi + ki + ni e

li Pi

+
Mc∑

j�1

μ j O j+
Mh∑

n�1

νnTn (8)

where Ep, i , Ec, j , Eh, n , respectively, represent the emissions
of the ith power-only unit, the jth CHP unit, and the nth
heat-only unit. μ j represents the emission coefficient of the
jth CHP unit, νn represents the emission coefficient of the
nth heat-only unit, and Mc, Mh , respectively, represent the
number of CHP unit and heat-only unit.

2.2.2 Constraints

Due to the incorporation of the CHP unit, it is important to
ensure that the power of the CHP unit is in the feasible oper-
ating zone, in addition to considering the basic constraints
of the power-only unit. As can be seen in Fig. 1, points A,
B, C, D, E, and F constitute the feasible operating zone for

Fig. 1 Feasible operation area of cogeneration unit
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the CHP unit. In this operating zone, there is a strong depen-
dence between the heat and power production capacity of
the CHP unit, i.e., as the heat production capacity changes,
so does its power production capacity, and vice versa. For
example, in the BC section, as the electrical output of the
CHP unit decreases, its thermal output gradually increases.
In the CD section, as the thermal output of the CHP unit rises,
its electrical output rises gradually.

The power balance constraint is defined as the actual
power generated by the power-only unit and CHP unit equal
to the load side power plus the transmission losses between
the units.

Mp∑

i�1

Pi +
Mc∑

j�1

Oj � Pd + Pl (9)

where Pd represents the electricity demand on the load side.
Transmission loss Pl is shown by Eq. (10).

Pl�
Mp∑

i�1

Mp∑

j�1

Pi Pj Bi j +

Mp∑

i�1

Mc∑

j�1

Pi O j Bi j

+
Mc∑

i�1

Mc∑

j�1

Oi O j Bi j +
Mc∑

j�1

B0 j O j +

Mp∑

i�1

B0i Pi + B00

(10)

where Bi j represents the transmission loss coefficient
between the two generating units, B0i represents the self-
loss coefficient of each generating unit, and B00 represents a
constant loss coefficient.

The thermal power balance required on the load side is
shown in Eq. (11).

Mh∑

n = 1

Tn +
Mc∑

j�1

Hj � Hd (11)

where Hd represents the total heat demand by the load in the
system.

All power-only units, CHP units, and heat-only units have
to meet the capacity constraints of the units [33].

Pmin
i ≤ Pi ≤ Pmax

i , i � 1, 2, . . . , Mp (12)

Tmin
n ≤ Tn ≤ Tmax

n , n � 1, 2, . . . , Mn (13)

Omin
j

(
Hj

) ≤ Oj ≤ Omax
j

(
Hj

)
, j � 1, 2, . . . , Mc (14)

Hmin
j

(
Oj

) ≤ Hj ≤ Hmax
j

(
Oj

)
, j � 1, 2, . . . , Mc (15)

where Tmin
n , Tmax

n represent the lower and upper limits of
the nth heat-only unit, Omin

j , Omax
j A and B represent the

lower and upper limits of the power production of the jth
CHP unit, Hmin

j , Hmax
j represent the lower and upper limits

of the heat production power of the jth CHP unit, Tn , Hj ,
Oj , respectively, represent the actual heat production power
of the nth heat-only unit and the actual heat production power
and actual power production of the jth CHP unit.

3 Two-Stage Collaborative Multi-objective
Differential Evolution Algorithm

3.1 Differential Evolution

Differential evolution (DE) was first proposed by Storn and
Price [34]. Because the algorithm has good search ability
and robustness, it is now widely used in various practical
problems. DE consists of three main processes: mutation,
crossover, and selection.

First, the differential operator uses a mutation strat-
egy to generate a set of target vectors XD

i ,G �(
X1
i ,G , X

2
i ,G , X

3
i ,G, , . . . , XD

i ,G

)
, where D represents the

dimension of the decision space, G is the number of iter-
ations, i � 1, 2, . . . , N , where N represents the population
size. The commonly used mutation strategies are as follows.

Vi ,G � Xr1,G + F · (
Xr2,G − Xr3,G

)
(16)

where, Xr1,G , Xr2,G , Xr3,G represent individuals randomly
selected from the population of the Gth iteration, and these
individuals are not equal to each other. F represents a muta-
tion rate.

Crossover, each individual Xi ,G of the G-generation pop-
ulation and the variant individual Vi ,G perform crossover
operations between individuals.

Ui j ,G �
{
Vi j ,G , if rand<CR or j � jrand
Xi j ,G , others

(17)

where CR represents the crossover rate and jrand represents
an integer randomly selected from the decision dimension D,
which guarantees that Xi ,G and Vi ,G are different in a certain
dimension. Ui j ,G represents crossover individuals.

Selection, follow the principle of greed to select the next
generation of individuals.

Xi ,G+1 �
{
Ui ,G , if f

(
Ui ,G

)
< f

(
Xi ,G

)

Xi ,G , others
(18)

where f (·) represents the fitness of the individual and Xi ,G+1

represents the next generation of individuals.
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Fig. 2 Framework of TCADEA

3.2 Two-Stage Cooperative Multi-objective
Evolutionary Differential Algorithm

DE is widely used for solving complex optimization prob-
lems. However, DE cannot obtain a set of optimal PF when
solving multi-constraint and multi-objective problems. For
this reason, a two-stage cooperative multi-objective differen-
tial algorithm (TCADEA) is proposed in this paper to obtain
the PF for multi-objective and multi-constrained CHPEED
problems. TCADEA uses a two-stage framework. The first
stage uses different mutation strategies to update elite pop-
ulation and ordinary population and uses ε-constrained
non-dominated sorting to ensure that populations obtain a
large number of feasible solutions. The second stage ensures
that the population findsmore good individuals in the feasible
domain bymeans of the differential operator and constrained
non-dominated sorting. In addition, adaptive techniques are
used to update the differential control parameters throughout
the evolutionary process. The overall framework is shown in
Fig. 2.

3.2.1 The First Stage

The first stage aims to find a large number of feasible
solution individuals in the target space. Therefore, the use
of a dual-population framework and ε-constrained non-
dominated sorting in this stage is to ensure that the population
can obtain high-quality solution quickly.

(a) Dual-population framework

Elite population contain high-quality individuals in the pop-
ulation, and elite individuals undergo evolution to provide

more high-quality solutions to the population. Therefore, the
elite population uses the following mutation strategy to gen-
erate offspring.

Xi ,G � Xi ,G + FG · (
Xr1,G − Xr2,G

)
(19)

where Xi ,G , Xr1,G , Xr2,G represents the different individu-
als in the elite population. FG represents the mutation rate.

The ordinary population contains secondary individuals
of the population that need to be guided by elite individuals
to obtain better offspring. Its mutation strategy is as follows.

Xi ,G � Xi ,G + FG · (
Xbest ,G − Xi ,G

)

+ Fmax · (
Xr1,G − Xr2,G

)
(20)

where Xi ,G , Xr1,G , Xr2,G represent the different individuals
in the ordinary population. Xbest,G represents elite individ-
ual. Fmax represents the maximum mutation rate.

Figure 3 shows the effects of the twomutation strategies on
the two populations. In Fig. 3a, elite individual xG1 combined
with other elite individuals xG2 . and xG3 generates more elite
individuals through Eq. (19). In Fig. 3b, ordinary individual
xG1 combined with other ordinary individuals xG2 and xG3
under the guidance of elite individual xGbest through Eq. (20)
to produce individuals with better target value, which can
provide more solutions to the elite population in the process
of selecting the next generation of individuals.

In order to dynamically adjust the mutation rate F and
crossover rate CR in the differential operator, an adaptive
parameter technique is proposed in this paper. It is shown as
follows:
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Fig. 3 Mutation strategy diagram

FG � Fmax · (1 − gen) (21)

CRG�
{
0.8 if G < ∂ · maxgen
0.2 others

(22)

where Fmax represents the maximum mutation rate and gen
represents the ratio of the number of iterations G to the max-
imum number of iterations maxgen.

(b) ε-Constrained non-dominated sorting

To solve the multi-objective and multi-constraint con-
ditions in the economic emission dispatch problem, an
ε-constrained non-dominated sorting is proposed in this
paper. The purpose of this method is to set a constraint
violation threshold ε to select individuals in the popula-
tion with small target and constraint violation values, and
to produce offspring with good target values by combining
these individuals with feasible individuals in the population
where ε-constrained non-dominated sorting and threshold ε

are shown in Fig. 4 and Eq. (21), respectively.
Figure 4 shows that the population selects individuals by

ε-constrained non-dominated sorting. Individuals B, C, and
D are infeasible individuals in the Figure, where individu-
als C and D possess good target values. Since the constraint
violation values of individuals C and D are less than ε and
the constraint violation value of individual B is greater than
ε, individuals C and D are selected into the second level and

individual B is placed in the last level. Through ε-constrained
non-dominance ranking, the population is able to obtain valid
information among infeasible individuals to enable the pop-
ulation to produce more high-quality solutions.

ε(G) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�G
max if G � 0

(1 − ψ) ∗ ε(G − 1) if P f G < ϒ , (1 − ψ) ∗ ε(G − 1) > �G
min

rand() ∗ (
�G

max − �G
min

)
+ �G

min if P f G < ϒ , (1 − ψ) ∗ ε(G − 1) < �G
min

0 if P f G ≥ ϒ

(23)

where �G
max, �G

min, respectively, represent the maximum
and minimum values of contemporary constraint violations,
P f G represents the ratio of feasible solutions in the contem-
porary population. ϒ represents the search preference for
controlling feasible and infeasible regions. ψ represents the
reduction in the value of P f G < ϒ when ε is controlled.
When (1 − ψ)∗ε(G − 1) < �G

min, it is necessary to quan-
tify the channel individuals to ensure that the population is
moving in the optimal direction, and then the value of ε is
reset to rand() · (

�G
max − �G

min

)
+ �G

min.

3.2.2 The Second Stage

When a large number of feasible solutions are found in the
first stage, we combined the elite population with the ordi-
nary population and ensured that the population could obtain
more feasible solutions by updating the population using the
adaptive difference operator and selecting the next genera-
tion according to the CDP. As shown in Fig. 5, when entering
the second stage, most of the solutions in the population lie
within the feasible region and the target values do not differ
much. Therefore, there is no need to divide the population
into two populations, and it is sufficient to generate offspring
by adaptive differential operators. The next generation is also
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Fig. 4 ε-constrained non-dominated sorting

Fig. 5 Stage 2

selected according to CDP, i.e., the feasibility of both indi-
viduals is checked first. If both individuals are feasible, the
individuals are selected based onPareto dominance. In Fig. 5,
A is an infeasible individual and B and C are feasible indi-
viduals. According to the CDP, A is compared with B and C
to eliminate individual A, and B is compared with C. Based
on Pareto dominance, individual B wins.

When the population enters the second stage, the follow-
ing criteria need to be met:

1. The overall constraint violation value Aoc in the first
stage varies less than Ve at n generations apart

Aoc � |sum(εG) − sum(εG−n)|
sum(εG)

< Ve (24)

2. The contemporary constraint violation average Ave is
less than Cva

Ave � sum(εG)

N
< Cva (25)

Here Ve and Cva are set to 10−3 and 10−4, respectively.
εG represents the constraint violation value for each indi-
vidual in the G-th generation. Condition 1 determines
whether the population reaches the neighborhood of the
feasible region. Condition 2 determines the proportion of
feasible solutions in the population.

3.2.3 Algorithm Steps

Through the above analysis of the algorithm proposed in this
article, we can get its specific steps:

Step1: The initial population P is generated according to the
power interval of each unit. Set the population size to N , the
maximum number of iterations to maxgen, and the number
of iterations counter to m � 0.
Step2:Determine whether m is greater than or equal to max-
gen. If it holds, output PF. Otherwise, execute the following
steps.
Step3: Determine whether Eqs. (24) and (25) are valid. If it
holds, skip to step 7. Otherwise, perform step 4.
Step4: The population is divided into elite population P1
and ordinary population P2 according to the non-dominated
level and crowding; the elite population P1 uses Eq. (19) to
generate offspring, and the ordinary population uses Eq. (20)
to generate offspring and calculate the target value for each
individual.
Step5: Obtaining next-generation populations by ε-
constrained non-dominated sorting.
Step6: Update Aoc and Ave with m � m + 1 and return to
step 2.
Step7:Determine whether m is greater than or equal to max-
gen. If it holds, output PF. If not, execute the following steps.
Step8:The elite populationP1 andordinary populationP2 are
combined into one population and the offspring are generated
according to Eq. (19).
Step9: Get the next generation according to CDP.
Step10: Update m � m + 1 and return to step 7.

4 Experimental Results and Analysis

In this section, firstly, the effectiveness of the algorithm pro-
posed in this paper is verified using a test function. Secondly,
to test the feasibility of the algorithm in real-world problems,
we use three standard cases as well as a real case to verify it.
Case 1 includes one power-only unit, one heat-only unit and
three CHP units. Case 2 includes ten pure electric units with
valve point effects and transmission loss. Case 3 includes
four power-only units, two CHP units, and one heat-only
unit, with valve point effects and transmission loss.NSGA-II,
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Table 1 Various index values of different algorithms in the test function

Problem MODE, NSGA-II, TOP, TCADEA

IGD HV

CF1 5.2000e−1
(2.02e−1)
−

6.1041e−2
(5.54e−3)
−

2.1178e−2
(4.46e−3)
−

9.1009e−3
(1.93e−3)

1.9105e−1
(1.06e−1)
−

4.9064e−1
(7.05e−3)
−

5.4082e−1
(5.22e−3)
−

5.5506e−1
(2.32e−3)

CF2 5.1439e−2
(8.90e−3)
−

7.3076e−2
(2.42e−2)
−

5.9493e−2
(8.20e−2)
−

2.8551e−2
(9.86e−3)

5.9340e−1
(2.00e−2)
−

5.8253e−1
(3.81e−2)
−

6.1282e−1
(3.62e−2)
−

6.4601e−1
(1.09e−2)

CF3 9.7570e−1
(2.01e−1)
−

2.9556e−1
(6.25e−2)
�

6.9695e−1
(9.87e−2)
−

3.0336e−1
(1.23e−1)

0.0000e + 0
(0.00e + 0)
−

1.3307e−1
(4.87e−2)
�

7.9249e−4
(2.28e−3)
−

1.1102e−1
(4.34e−2)

CF4 1.7262e−1
(3.66e−2)
−

1.3749e−1
(5.65e−2)
−

9.7940e−2
(2.98e−2)
−

9.1551e−2
(3.83e−2)

3.0673e−1
(3.31e−2)
−

3.7536e−1
(5.28e−2)
−

3.9903e−1
(3.22e−2)
−

4.2317e−1
(3.20e−2)

CF5 2.3632e + 0
(5.04e−1)
−

3.2527e−1
(1.50e−1)
�

7.1613e−1
(2.29e−1)
−

2.7623e−1
(8.21e−2)

0.0000e + 0
(0.00e + 0)
−

2.3801e−1
(6.06e−2)
�

2.9298e−2
(4.62e−2)
−

2.4056e−1
(7.82e−2)

CF6 7.5651e−2
(3.02e−2)
+

1.1344e−1
(4.78e−2)
�

8.6235e−2
(3.04e−2)
�

1.0817e−1
(4.73e−2)

6.3515e−1
(1.20e−2)
�

6.0762e−1
(2.53e−2)
−

6.1748e−1
(1.54e−2)
−

6.3143e−1
(2.26e−2)

CF7 4.8150e−1
(1.89e−1)
−

3.2767e−1
(1.64e−1)
−

7.1801e−1
(3.08e−1)
−

2.1428e−1
(7.58e−2)

1.7725e−1
(1.34e−1)
−

4.0101e−1
(1.15e−1)
�

8.5869e−2
(1.11e−1)
−

4.3447e−1
(8.49e−2)

± / � 1/6/0 0/4/3 0/6/1 0/6/1 0/4/3 0/7/0

TOP, and MODE are compared with the proposed algorithm
with a population size of 100 and a maximum number of
iterations of 200, where the maximum number of iterations
for the real case is 1000. The proposed algorithm was imple-
mented inMatlab 2018b and executed on a PC equippedwith
an Intel Core i5 processor with 4 GB of memory.

4.1 Algorithm Improvement Effectiveness Test

Considering that CEED and CHPEED are constrainedmulti-
objective minimization problems, we use the constrained
multi-objectivemodel of reference [35]. TCADEAwas com-
paredwithMODE,NSGA2, andTOP [36] on the constrained
multi-objective test set CF.

In order to analyze the performance of the TCADEA algo-
rithm more easily, the inverse generation distance (IGD) and
the hypervolume (HV)will be used for qualitative evaluation.
IGD and HV can simultaneously reflect the convergence and
diversity of the algorithm. + , − and ≈ A, B and C, respec-
tively, represent that other algorithms are better, TCADEA
is better, and there is no significant difference between them.

As seen in Table 1, the TCADEA algorithm obtains
significantly better results on the seven test problems and
the proposed algorithm has an IGD close to 0 and the
HV value is the largest, which shows that the proposed
algorithm maintains population convergence while ensuring

better population distributivity. This is because the constraint
processing technique adopted in this paper is able to handle
the constraints in the constraint problem very well. Mean-
while, the adopted dual-population framework can improve
the convergence of populations by adopting different muta-
tion strategies according to the characteristics of different
populations. The bolded black font in the tables all represent
excellent values in a given problem in this paper.

Due to the stochastic character of intelligent optimization
algorithms, the results of a single run do not prove that the
algorithm can solve a problem well. Therefore, to demon-
strate the robustness of TCADEA for economic emission
dispatch problems,wewill perform100 experiments for each
of the different cases and compare themwithMODE,NSGA-
II, and TOP. It can be seen from Fig. 6 that the distribution
of solutions obtained by the TCADEA algorithm is concen-
trated compared toMODE,NSGA-II, and TOP, which shows
the good robustness of the TCADEA algorithm in the eco-
nomic emission dispatch problem.

4.2 Case 1

This case has a total of five units, one power-only unit, three
CHPunits and one heat-only unit. The electrical load demand
is 300 MW, and the heat load demand is 150 MWth. The
model parameters can be found in [27]. To demonstrate more
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Fig. 6 Robustness distribution
diagram of different cases

(a) Economic Robustness of Case 1        (b) Emission robustness of Case 1 

(c) Economic Robustness of Case 2         (d) Emission robustness of Case 2 

(e) Economic Robustness of Case 3 (f) Emission robustness of Case 3

(g) Economic Robustness of Case 4 (h) Emission robustness of Case 4

intuitively the distributivity of the solutions solved by the
algorithm, we compare the optimal PFs obtained at the end
of the run for NSGA-II, MODE, TOP, and TCADEA, as
shown in Fig. 7.

It can be seen from Fig. 7 that TCADEA can obtain a uni-
form and convergent PF in the CHPEED problem. Compared
to NSGA-II, MODE, and TOP, TCADEA contains a more
extensive solution and offers a lot more options. Figure 7

demonstrates that TCADEA has a good ability to optimize
this problem. It is also evident that fuel costs and emissions
are two conflicting goals. As the fuel cost increases, it leads
to a decrease in emissions. Therefore, to facilitate the com-
parison between TCADEA and other algorithms, we take the
best compromise solution from the optimal solution set. The
best compromise solution is the one that is the most interme-
diate solution in the PF, i.e., by ranking the PFs according
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Fig. 7 PF of the four test algorithms in Case 1

to their economic objectives to obtain the ranking order, and
then selecting the individual with the middle ranking number
as the best compromise solution to the optimization problem.
The best compromise solution is indicated by an asterisk in
Fig. 7.

Table 2 shows the best compromise solutions for NSGA-
II, TOP, IDBEA, BCS1, MODE, and TCADEA. By analyz-
ing themodel parameters in [27],we can know that the impact
of power-only units on emissions is high and the impact of
electrical power of CHP units on fuel costs is high. In Table
2, the output of the power-only unit of TCADEA is 85.9MW,
which is the smallest among several tested algorithms, and
the total electrical power of the CHP unit is also the smallest.
As a result, the fuel cost of TCADEA is reduced by $84,
$55, $57, $151.3, and $35, and the emissions are reduced by
0.17 kg, 0.1 kg, 0.07 kg, 0.27 kg, and 0.37 kg, respectively.
Figure 8 shows the unit output power for the economic
optimal solution (ECOS) and the emission optimal solution
(EMOS) obtained by the TOP and TCADEA algorithms in
Case 1. From the analysis of Table 2, it is clear that the impact
of power-only units on emissions is high and the impact of
electrical power of CHP units on fuel costs is high. Among
the three CHP units, the power increase of unit 2 has the

greatest impact on fuel cost. In Fig. 8a, the electric power of
TCADEA’s CHP unit is 6 MW less than TOP, so TCADEA
can obtain lower fuel cost. In Fig. 8b, the output power of
TCADEA’s power-only unit is 6.7 MW less than TOP, so
TCADEA gets less emissions.

The convergence and diversity of the obtained solution
sets are verified using the metrics in reference [37]. Some
of the evaluation metrics in multi-objective optimization
algorithms require reference solution sets, but in practical
problems there are often no reference solution sets. There-
fore, to facilitate the comparison of the results in the paper,
three metrics are selected to compare the convergence and
diversity of the algorithms, namely hypervolume (HV), spac-
ing metric (SM), diversity metric (DM). The HV is used to
evaluate the convergence of the algorithm. The SM and the
DMevaluate the uniformity and extensiveness of the solution
set, respectively, and the combination of both can be used to
evaluate the diversity of the algorithm.

In Table 3, the HV of TCADEA is the largest, and SM
and DM are close to zero with regard to the other algorithms,
which shows that the TCADEA algorithm can obtain better
PF and has good convergence and diversity in Case 1.

4.3 Case 2

In order to verify the broadness of the proposed algorithm in
practical applications, the algorithm is applied to the CEED
problem. The case has a total of ten power-only units, with
valve point effects and transmission loss. The electrical load
demand is 2000MW, and the model parameters are available
in Reference [38].

The analysis of the model parameters for this Case shows
that unit 9 has the greatest impact on the fuel cost and emis-
sions ofCEED. InTable 4, the output power of unit 9 obtained
by TCADEA is the smallest compared to NSGA-II, TOP,
MODE, PDE, and GSA, with the result of 428.158 MW. As
a result, TCADEA’s fuel costs and emissions were reduced

Table 2 Results obtained in Case
1 for different testing algorithms Outputs NSGA-II TOP IDBEA [24] BCS1 [25] MODE TCADEA

P1 (MW) 87.3 86.8 87.1 88.2 89.6 85.9

O1 (MW) 78.7 65.6 95.5 94.1 66.5 79.9

H1 (MWth) 59.8 80.4 17.3 33.2 88.1 88.5

O2 42.3 49.8 100.2 85.1 39.8 30.4

H2 41.4 30.6 61.4 72.6 44.5 19.7

O3 91.7 98 41 29.5 104.1 103.5

H3 7.7 7.9 0.2 12.3 1.4 0

T1 41.2 31.1 49 35.7 16 41.8

Cost ($) 15,219 15,180 15,182 15,286.3 15,170 15,135

Emission (kg) 5.3 5.23 5.2 5.4 5.50 5.13
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Fig. 8 Unit power of ECOS and EMOS in Case 1 for TCADEA and TOP

Table 3 Various index values of
different test algorithms in Case 1 Criteria MODE NSGA-II TOP TCADEA

HV 0.6224 0.6290 0.6172 0.6293

SM 0.0183 0.0113 0.0115 0.0057

DM 0.5376 0.6374 0.5652 0.5338

Table 4 Results of different test algorithms in Case 2

Outputs (MW) NSGA-II TOP MODE PDE [38] GSA [39] TCADEA

P1 52.837 54.205 54.054 54.985 54.999 54.361

P2 79.547 74.223 73.092 79.380 79.958 78.855

P3 80.671 89.616 101.3958 83.984 79.434 91.585

P4 95.923 87.255 83.276 86.594 85.0 82.272

P5 142.085 149.86 147.126 144.438 142.106 145.211

P6 174.285 162.964 164.2481 165.775 166.567 165.276

P7 285.961 287 294.71 283.212 292.874 298.111

P8 298.586 294.986 300.908 312.770 313.238 298.88183

P9 432.412 443.001 420.004 440.130 441.177 428.251

P10 441.335 441.062 445.010 432.678 428.630 440.291

Ploss (MW) 83.6 84.2 83.8 83.9 83.98 83.1

Cost ($) 113,685.3 113,591.4 113,610.8 113,517.3 113,492.8 113,485.6

Emission (lb) 4112.2 4118.8 4127.3 4111.4 4111.4 4107.4

by $199.7, $105.8, $125.2, $31.7, $7.2 and 4.8 lb, 11.4 lb,
19.9 lb, 4 lb, 4 lb, respectively. It is worth noting that the
transmission loss of TCADEA is the smallest because the
transmission loss is related to the output power of the unit,
and the output power of each unit of the proposed algorithm
is the smallest sum. In summary, TCADEA is more effec-
tive in energy saving and emission reduction in the CEED
problem.

Figure 9 shows the PFs obtained by MODE, NSGA-II,
TOP, and TCADEA for the CEED problem. In Fig. 9, the

PF of TCADEA possesses good extensiveness and unifor-
mity. Compared with NSGA-II, MODE, and TOP, most of
the solutions of TCADEA are better than all three, which can
more intuitively show that TCADEA has good superiority in
the CEED problem.

From Table 5, it can be seen that TCADEA is $333, $136,
and $377 less than MODE, NSGA-II, and TOP, respectively,
in the fuel cost optimum case. In the emission optimal
case, TCADEA emits 22.6 lb, 12.6 lb, and 15.8 lb less than
MODE, NSGA-II, and TOP, respectively. This shows that
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Fig. 9 The PFs of the four test algorithms in Case 2

the TCADEA algorithm provides a more extensive solution
for decision makers.

Figure 10 shows the unit output power of ECOS and
EMOS obtained by TOP and TCADEA algorithms in Case 2.
The analysis of the model parameters shows that the squared
term coefficients in the fuel cost functions of units 7–10 are
the smallest among all units, so the amount of their changes
has the least effect on the fuel cost functions when the output
power of the units increases. The quadratic term coefficients
in the emission functions of units 1–4 are − 80 times the
primary term coefficients, while units 7–10 are − 110 times,
which indicates that the changes in emissions are mainly
caused by units 7–10. In Fig. 10a, the output of unit 7–10
in TCADEA is larger than that of TOP, so it has a smaller
change in fuel cost. In Fig. 10b, the emission of unit 7–10 in
TCADEA is 2086.7 lb, and the emission of unit 7–10 in TOP
is 2102.1 lb, so it is obvious that the emission of TCADEA
is less.

In Table 6, TCADEA has a larger HV and smaller SM and
DMcompared toNSGA-II,MODEandTOP. This shows that
the TCADEA algorithm is able to obtain better PF and the
diversity of the solutions obtained.

4.4 Case 3

To better demonstrate the practicality and validity of the
method in this paper, a more complex test system was intro-
duced. This test system contains four power-only units (units

1–4), two CHP units (units 5–6), and one heat-only unit (unit
7). The system includes valve point effect and transmission
loss. The electrical load demand is 600 MW, and the heat
load demand is 150 MWth. The model parameters can be
found in [27].

In Fig. 11, the solutions of TCADEA are more widely
distributed and have more solutions compared to NSGA-II,
MODE, andTOP. In addition, the optimal PF of the four algo-
rithms shows that the performance of the TCADEA solution
is better in most cases. This indicates that the constraint pro-
cessing technique of the proposed algorithm is able to solve
the constraints in the CHPEED problem to provide more
solutions for the population.

In Table 7, the HV of TCADEA is the largest, and SM and
DMare close to zero compared to the other algorithms,which
shows the good convergence and diversity of the TCADEA
algorithm in Case 3.

Table 8 shows the best compromise solution, ECOS and
EMOS for the four tested algorithms. Based on the model
parameters in [27], we can see that the impact of power-only
units on emissions is larger and the impact of CHP units on
fuel costs is larger. From Table 8, it is concluded that the
total output power of the power-only units is approximately
equal for each algorithm in the best compromise solution,
while the total output power of the CHP units is the small-
est for TCADEA. As a result, the fuel cost and emissions of
TCADEA are reduced by $108.7, $220.4, $55.6, and 1.2 kg,
0.4 kg, 1.2 kg compared to NSGA-II, MODE, and TOP,
respectively. The optimal fuel cost and optimal emissions of
TCADEA are also minimized under both ECOS and EMOS.

Figure 12 gives the transmission loss for the different test
algorithms under the three different solutions. It can be seen
from Eq. (10) that the transmission loss of the system is
related to the electrical power of each power producing unit.
In Table 7, the total electrical power obtained by TCADEA
is the smallest in the three cases. Therefore, the transmis-
sion loss of TCADEA under the best compromise solution
is reduced by 1.9 MW, 0.5 MW, and 0.9 MW compared
to NSGA-II, MODE, and TOP. The transmission loss of
TCADEA under ECOS is reduced by 0.4 MW, 1.1 MW,
and 9.1 MW compared to NSGA-II, MODE, and TOP. The
transmission loss of TCADEA under EMOS is reduced by

Table 5 Multiple solutions of the
test algorithm in Case 2 Methods Best fuel cost Best emission Best compromise

Cost ($) Emission (lb) Cost ($) Emission (lb) Cost ($) Emission (lb)

MODE 111,956 4475.3 116,224 3965.1 113,635 4138.7

NSGA-II 111,759 4484.9 116,386 3955.1 113,994 4128.4

TOP 112,000 4430.4 116,397 3958.3 113,567 4104.5

TCADEA 111,623 4476.5 116,394 3942.5 113,497 4101.4
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Fig. 10 Unit power of ECOS and EMOS in Case 2 for TCADEA and TOP

Table 6 Various index values of
different test algorithms in Case 2 Criteria MODE NSGA-II TOP TCADEA

HV 0.8200 0.6974 0.6959 0.7104

SM 0.0158 0.0167 0.0167 0.0077

DM 0.5108 0.5410 0.7897 0.5104

Fig. 11 The PFs of the four test algorithms in Case 3

Table 7 Various index values of different test algorithms in Case 3

Criteria MODE NSGA-II TOP TCADEA

HV 0.6506 0.6299 0.5934 0.6672

SM 0.0206 0.0153 0.0203 0.0079

DM 0.9171 0.8884 0.9203 0.5644

2.3 MW, 11 MW, and 0.6 MW compared to NSGA-II,
MODE, and TOP.

Figure 13 shows the unit output power of ECOS and
EMOS obtained by TOP and TCADEA algorithms in Case 3.
The analysis of the model parameters shows that the fuel cost

of the power-only unit is much lower than the other units and
the emissions of the CHP unit are much lower than the other
units for the same amount of electricity generated. There-
fore, the fuel cost and emissions are reduced by increasing
the power of the power-only unit and CHP unit. In Fig. 13a,
the total power of the power-only unit of the TCADEA algo-
rithm is greater than the total power of the power-only unit
of the TOP algorithm, and thus TCADEA can obtain a solu-
tion with lower fuel cost. In Fig. 13b, the total power of
the CHP units of the TCADEA algorithm is greater than the
total power of the CHP units of the TOP algorithm, and thus
TCADEA can obtain a solution with lower emissions.

4.5 Case 4

The dispatch cycle for this case is one day. The daily load data
graph is shown in Fig. 14. The system contains eight power-
only units, two CHP units and one heat-only unit, and valve
point effects and transmission loss are taken into account.

Figure 15 shows the PF obtained by MODE, NSGA-II,
TOP, andTCADEAon the daily dispatch problem. In Fig. 15,
the PF of TCADEA possesses good extensiveness and con-
vergence. Compared to MODE, NSGA-II and TOP, most
of TCADEA’s solutions are close to the coordinate origin,
which is a more intuitive indication that TCADEA is able to
obtain high-quality solutions with small economy and emis-
sions on daily dispatch.

The best compromise solutions for MODE, NSGA-II,
TOP, and TCADEA are given in Table 9. In Table 9,
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Table 8 Results of different test algorithms in Case 3

Outputs Best compromise solution Best cost solution Best emission solution

MODE NSGAII TOP TCADEA MODE NSGAII TOP TCADEA MODE NSGAII TOP TCADEA

P1
(MW)

54.8 53.3 66.1 51.1 37.5 52.5 66.1 72 29.9 35.5 17 42

P2 60.1 62.6 56.8 78.4 103.3 82.4 106.4 101.3 61.2 60.5 53.8 52.8

P3 110 103.9 98.6 87.4 76.1 139.2 114.7 140 65.4 67.7 93.8 43

P4 119.4 116.4 134.7 114.9 219 179.3 167.4 158.7 116 99.4 102.3 104

O1
(MW)

186.5 215.5 189.7 232 126.5 104.8 111 94 234.1 224.8 242.2 244.9

H1
(MWth)

23.3 45.2 28.2 2.2 78.8 52.2 2.8 32.1 12.1 104.7 11.5 3

O2 77.2 56 72.8 43.8 46.9 49.9 42 41 103.3 120.6 99.8 120.3

H2 47.3 63.2 89.8 69.1 23.4 47.8 72.8 66.7 75.3 27.1 53.5 67.1

T1 79.4 41.6 32 78.7 47.8 50 74.4 51.2 62.6 18.2 85 79.9

Cost
($)

13,885.3 13,997.7 13,832.5 13,776.6 11,618 11,198.3 10,684.3 10,457.2 16,320.1 17,836.8 16,444.3 17,369.5

Emission
(kg)

14.8 14 14.8 13.6 26.1 25.6 24.9 26.8 9.6 8.8 9.9 7.8

Fig. 12 Transmission loss of
different solutions of different
test algorithms in Case 3

TCADEA reduces $0.034 × 106, $0.008 × 106, $0.07 ×
106 and 113 × 105 lb, 102 × 105 lb, 155 × 105 lb in terms
of fuel cost and emissions compared to MODE, NSGA-II,
and TOP, respectively. This indicates that the TCADEAalgo-
rithm can provide decision makers with better solutions for
the target values.

Figure 16 shows the fuel costs and emissions for each
moment of the day for the best compromise solution of
TCADEA and TOP. In Fig. 16, the fuel cost and emissions
of TCADEA are smaller than those of TOP at almost every
moment. This indicates that TCADEA also performs better
than TOP in real Cases.

Themodel parameters for this case show that the impact in
terms of fuel cost is greatest for units 1–2, followed by units

3–4, and least for units 5–8. As a result, in Fig. 17a, units
5–8 are operating at full load power between 4:00–22:00.
Units 3–4 are also operating at full load power during the
peak electricity consumption period of 8:00–15:00. In terms
of emissions impact, CHP units emit much less than other
units when generating the same amount of electricity. There-
fore, the generation power of the CHP units is maintained
near the maximum power production during 00:00–24:00.
In Fig. 17b, the heating power of the heat-only unit has been
maintained at about 300 MW, which is much higher than
the heat energy provided by the CHP unit. This is because
the fuel cost function of the CHP unit takes into account not
only the heat production power but also the power generation
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Fig. 13 Unit power of ECOS and EMOS in Case 3 for TCADEA and TOP

Fig. 14 Daily load data

Fig. 15 The PFs of the four test algorithms in Case 4

power, while the heat-only unit takes into account only the
heat production power.

Table 9 Best compromise solutions for the four tested algorithms

MODE NSGA-II TOP TCADEA

Cost (× 106 $) 2.687 2.661 2.723 2.653

Emission (× 105

lb)
2.768 2.657 2.805 2.655

5 Conclusion

To ensure that lower fuel costs and emissions can be obtained
in the economic emission dispatch of power systems, a two-
stage cooperative adaptive differential evolutionary algo-
rithm is proposed in this paper. In the first stage, the
population is divided into elite populations and ordinary
population and combined with two variation strategies and
ε-constrained non-dominated sorting in order to obtain more
solutions. In the second stage, more feasible solutions are
generated through CDP and Pareto advantage, which gives
decision makers more options to choose.

The modeling of the economic emission dispatch prob-
lem for power systems takes into account valve point effects
and transmission losses. By testing the proposed algorithm
for CEED and CHPEED, the results effectively demonstrate
the good practicality and generality of TCADEA for this
class of problems. For the CEED problem, the transmission
loss of the best compromise solution of TCADEA in Case
2 is reduced by 0.5 MW, 1.1 MW, and 0.7 MW compared
to NSGA-II, MODE, and TOP. For the CHPEED problem,
TCADEA’s fuel cost and emissions in Case 3 are reduced by
$108.7, $220.4, $55.6, and 1.2 kg, 0.4 kg, 1.2 kg compared
to NSGA-II, MODE, and TOP, respectively. The actual case
results show that the TCADEA algorithm reduces $0.034 ×
106, $0.008 × 106, $0.07 × 106 and 113 × 105 lb, 102 ×
105 lb, 155 × 105 lb in fuel cost and emissions compared to

123



Arabian Journal for Science and Engineering (2023) 48:5889–5906 5905

(a) Fuel cost diagram (b) Emissions diagram

Fig. 16 Fuel cost and emission diagrams for the best compromise solution in Case 4

Fig. 17 Output power of each unit in the best compromise solution of Case 4

MODE, NSGA-II, and TOP, respectively. Due to the uncer-
tainty of electricity consumption at the customer side, the
load at different times will have errors with the predicted
load, which will lead to deviations from the actual situation
when using the predicted load data to solve the CEED and
CHPEED problems in this paper. In addition, for the optimal
set of Pareto solutions obtained, we will focus on automatic
selection techniques to select the best compromise solution
from the Pareto front.
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