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Abstract
A novel analytical approach for predicting the buckling load with its mode shape of friction piles fully embedded in soil
is proposed, in which the lateral subgrade and axial friction resistances change linearly. The proposed approach considers
uniform rectangular piles that are either free or pinned or fixed at the pile and toe. The differential equation that governs the
mode shape of the buckling pile along with the boundary conditions was analytically derived and numerically solved using
the Runge–Kutta method and the Regula-Falsi method. The buckling loads of this study agreed well with those reported in
the literature. The buckling behavior of piles was discussed as factors affecting the end condition, aspect ratio, subgrade ratio,
friction ratio, subgrade parameter and friction parameter.

Keywords Embedded pile · Friction pile · Buckling load · Mode shape · Subgrade reaction · Friction resistance

1 Introduction

Piles embedded in soil are widely used in geotechnical engi-
neering to sustainably support axial compressive loads [1].
In addition, piles are often used in large-scale projects for
the purpose of reinforcing soft ground by permanently using
it as the ground for plant and marine engineering [2]. It is
well known that, due to the wide cross-sectional shape of
the width and perimeter, the compressive load capacity of
the embedded pile can be effectively increased by the lateral
subgrade reaction force and the axial friction resistance.

From this point of view, until recently, many studies inves-
tigating the static behavior of pile foundations have been
actively conducted. The typical works related to this study
are reviewed herein: Chen et al. [3] studied the laterally
loaded piles based on Cusp Catastrophe Theory for sudden
failure of structural mechanisms; Ng and Lei [4] developed
the database of compression load test for 15 piles in Hong
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Kong and analyzed the pile skin friction with respect to local
displacement, N-value in the standard penetration test, and
effective stress principle; Ho and Tang [5] studied axial com-
pressive load tests on piles embedded in polymer slurries,
where maximum vertical skin friction was proposed; Ng
et al. [6] tested the lateral earth pressures affected by pore
water pressure for the well-instrumented piles and observed
that a sudden substantial reduction in both pressures resulted
upon the initiation of slip at soil-pile interface; Rabaiotti and
Malecki [7] conducted full-scale pullout tests of piles in lay-
ered rock and quantified the contact strength between rock
and concrete; Poulos et al. [8] evaluated the feasibility of sim-
ple method for analyzing a rectangular pile by converting it
into an equivalent circular pile in finite element modeling;
and Znamenskii et al. [9] assessed the load-bearing capacity
of embedded piles for a 56-story apartment building.

In addition, the static behavior of pile foundation dis-
cussed above, understanding the buckling behavior of piles,
is an important part of the pile design, in order to support
the axially compressive load arising from the concentrated
load, surcharge load and self-weight. In particular, the buck-
ling analysis is essential to avoid lateral bending, which can
eventually cause collapse. Many studies were devoted to
developing the analytical approach for the buckling of axially
loaded piles based on elastic foundation approach [10–26]:
Berezantzev et al. [10] developed the load bearing capac-
ity which has been frequently used by many engineers in
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the foundation engineering; Liang et al. [11] analyzed the
buckling stability of the bridge piers after the scoured soil
layerwas removed, ignoring possible increments/decrements
in the stress–strain history of the soil; Seo and Prezzi [12]
investigated an explicit solution of the load–deflection rela-
tionship for a single pile embedded in the multilayered
ground under a vertical load based on the energy principle
to derive governing differential equations; Lee [13] con-
ducted an experimental loading test on the 1/4 to 1/2 inch
diameter piles partially embedded in dry soil, in which all
piles failed by buckling; Prakash [14] determined the first
buckling load of a fully embedded pile that produced lateral
resistance due to lateral deflection depending on the linearly
variable stiffness of the soil; West et al. [15] investigated
the clustering pattern of the buckling mode of end-bearing
piles supported by elastic Winkler foundations with hori-
zontal subgrade reaction forces that vary linearly with pile
depth;Gabr et al. [16] developed the subgrade reaction coeffi-
cient using the general power distribution function to predict
the critical buckling load of slender piles with vertical lat-
eral friction effect; Bhattacharya et al. [17] studied buckling
instability caused destructive forms of pile failure, which dis-
cussed the different cases where local buckling and collapse
mechanisms of offshore piles should be considered in pile
design; Shields [18] developed a general design method for
small diameter grout piles (micro-piles), assuming that the
lateral stiffness is sufficient to protect against buckling of
piles fully embedded in soil; Vogt et al. [19] presented a
new analytical concept that can compute the first buckling
load of a pile based on buckling experiments on micro-pile
embedded with a length of 4 m in soft clay with nonlinear
material properties; Catal [20] used the small displacement
theory to calculate the buckling load of Timoshenko piles
with linear-elastic rotating springs at the pile head partially
embedded in elastic soil following the Winkler hypothesis;
Jesmani et al. [21] studied the three-dimensional finite ele-
ment buckling of embedded concrete piles partially and fully
in sandy soil subjected to an external compressive load; Ma
et al. [22] used Hamilton’s principle to calculate the exact
solution of the buckling load with the buckling mode shape
of a single pile embedded in elastic soils and obtained a non-
linear buckling equation; Lee [23] presented an integrated
model that can calculate both the natural frequency and the
buckling load of partially embedded end-bearing piles with
an axial compressive load; Muravyeva and Vatin [24] stud-
ied longitudinal buckling of offshore gas pipelines from the
perspective of pipeline construction that experiences severe
temperature changes that cause equilibrium disturbances of
longitudinal buckling; Ghadban et al. [25] investigated the
buckling behavior of nonuniform compressive beams with
arbitrary end restraints on elastic soils with variable elastic

stiffnesses; and Gatto andMontrasio [26] analyzed the infer-
ence of slenderness ratio on the ultimate behavior of piles
with a very small diameter employed in soil reinforcement.

The literature reviewed above has covered a number of
interesting effects on buckling behavior used in pile design,
construction and maintenance. These studies are related to
end-bearing piles that do not contain lateral friction or rel-
atively low lateral friction. However, in order to construct a
pile with a relatively large perimeter to withstand the verti-
cal load caused by axial friction resistance, it is necessary to
consider the transmission of frictional resistance along the
axis of the pile.

In this study, a novel analytical and numerical approach to
predict the bucking load and its mode shape of friction piles
fully embedded in elastic soil is suggested, which captures
the effect of linear variation in lateral subgrade reaction and
axial friction resistance along its depth. The differential equa-
tion that governs the buckling mode shape and the boundary
conditions in the interactive soil-pile system were analyti-
cally derived and numerically solved using the Runge–Kutta
method in conjunction with the Regula-Falsi method. The
results of the current solution were compared to the exist-
ing solution in the literature. Numerical experiments were
provided to demonstrate the versatility of the assay.

2 Mathematical Modeling

A fully embedded pile of length l loaded with an external
compressive force P is shown in Fig. 1a. At the head and
toe, the end of the pile is free or pinned or fixed. Thus, a
total of nine combinations of end supports are possible such
as ‘free-free,’ ‘free-pinned,’ ‘free-fixed’ and so on. When
expressing the end condition of a pile, the former refers to
the head of the pile, and the latter refers to the toe of the
pile. If the compressive load P is less than the buckling load
PB , that is, P < PB , the pile remains straight. However,
when the load P gradually increases and reaches PB , the
pile eventually buckles, and the pile axis forms a buckling
elastic curve called the mode shape described in Cartesian
coordinates (x , y) with the origin O at the pile head. As
shown in Fig. 1a, the stress resultants obviously consist of
the axial force N , the shear force V and the bending moment
M caused by the lateral deflection y at the material point
(x , y) of the buckling pile. In addition, the external lateral
reaction Rk and axial friction resistance Ff are loaded to the
buckling pile by y.

The pile material is linear elastic with a uniform rectangu-
lar cross section of width d and height h, as shown in Fig. 1a,
where the bending axis is z-axis (see Fig. 1c).
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(a) (b) (c)

Fig. 1 Problem statement: a Geometry of pile parameters, b Linear
function of soil parameters and c Pile element subjected to forces

The aspect ratio λ of the cross section is a ratio of h to d,
defined as

λ � h

d
(1)

Then, the cross-sectional area A and width d are
expressed, respectively, as

A � dh � λd2 (2.1)

d �
√

A

λ
(2.2)

Using Eqs. (1) and (2), the cross-sectional perimeter u and
the secondmoment of inertia I are obtained in terms of λ and
A:

u � 2(d + h) � 2(λ + 1)

√
A

λ
(3)

I � dh3

12
� λA2

12
(4)

The pile is laterally supported by elastic soil with the
lateral subgrade reaction coefficient k expressed in the
dimension of [FL−3]. Shown in Fig. 1b is the distribution
of coefficient k changed linearly, starting kh at x � 0 of the
pile head and ending kt at x � l of the pile toe. The subgrade
ratio κ is defined as

κ � kt
kh

(5)

Using Eq. (5) yields the linear function of k at any coor-
dinate x , or

k � kh
[
(κ − 1)

x

l
+ 1

]
(6)

When a compressive load P(� PB) is applied externally
to the pile head, the pile is axially resisted by the friction
force between pile surface and soil with the friction resis-
tance coefficient f expressed in the dimension of [FL−2].
The distribution of coefficient f changes linearly from fh of
the pile head to ft of the pile toe as shown in Fig. 1b. The
friction ratio ψ is defined as

ψ � ft
fh

(7)

Using Eq. (7) gives the linear function of f at any coor-
dinate x , or

f � fh
[
(ψ − 1)

x

l
+ 1

]
(8)

Figure 1c shows the internal forces (N , V , M) and exter-
nal forces (Rk , Ff ) subjected to the buckling element. In
relation to the free body diagram in Fig. 1c, where z-axis is
the bending axis, the equilibrium equations of the pile ele-
ment are obtained by setting

∑
Fx � 0,

∑
Fy � 0 and∑

M � 0:

dN

dx
+ Ff � 0 (9)

dV

dx
+ Rk � 0 (10)

dM

dx
+ V − N

dy

dx
� 0 (11)

The intensity of the lateral subgrade reaction Rk related
to the lateral deflection y is given by

Rk � dky � kh

√
A

λ

[
(κ − 1)

x

l
+ 1

]
y (12)

The intensity of the frictional resistance Ff on the pile
shaft is taken in the form

Ff � u f � 2(λ + 1) fh

√
A

λ

[
(ψ − 1)

x

l
+ 1

]
(13)

The axial force N of the buckling pile is determined by
Eq. (9) with the integration coefficient PB as follows [25].

N � PB −
∫ x

0
F f dx � PB − (λ + 1) fh

√
A

λ

[
(ψ − 1)

x2

l
+ 2x

]

(14)
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If V in Eq. (11) is removed using Eqs. (10) and this result
is combined with Eq. (9), it gives

d2M

dx2
− N

d2y

dx2
+ Ff

dy

dx
− Rk � 0 (15)

By using the load–deflection relationship, the bending
moment M is given by Eq. (16.1) [27] and its second deriva-
tive can be obtained as Eq. (16.2):

M � −E I
d2y

dx2
(16.1)

d2M

dx2
� −E I

d4y

dx4
(16.2)

where E is the Young’s modulus of the pile material.
When substituting Eqs. (12)–(14) into Eq. (15), a sin-

gle ordinary fourth-order differential equation governing the
mode shape of the buckling pile is yielded:

λE A2

12

d4y

dx4
−

{
4(λ + 1) fm

ψ + 1

√
A

λ

[
(ψ − 1)

x2

2l
+ x

]
− PB

}
d2y

dx2

− 4(λ + 1) fm
ψ + 1

√
A

λ

[
(ψ − 1)

x

l
+ 1

] dy
dx

+
2km
κ + 1

√
A

λ

[
(κ − 1)

x

l
+ 1

]
y � 0

(17)

where km and fm are k and f at the mid-span at x � l/2,
defined as

km � 1

2
(kh + kt ) � kh

2
(κ + 1) (18)

fm � 1

2
( fh + ft ) � fh

2
(ψ + 1) (19)

For dimensionless analysis of buckling behavior, the
dimensionless parameters are introduced as follows.

ξ � x

l
; η � y

l
; α � kml4

E A1.5
; β � fml3

E A1.5
; pB, i � PB, i l2

E A2

(20)

where (ξ , η) are the normalized Cartesian coordinates (x , y),
α is the subgrade parameter, β is the friction parameter and
pB, i is the buckling load parameter with the integer mode
number i � 1, 2, 3, · · ·.

Combination with Eqs. (17) and (20) provides a nondi-
mensional differential equation that governs the mode shape
for the interactive soil-pile system considered in this study:

d4η

dξ4
�

{
24(λ + 1)β

λ1.5(ψ + 1)

[
(ψ − 1)ξ2 + 2ξ

]
− 12

λ
pB, i

}
d2η

dξ2

+
48(λ + 1)β

λ1.5(ψ + 1)
[(ψ − 1)ξ + 1]

dη

dξ
− 24α

λ1.5(κ + 1)
[(κ − 1)ξ + 1]η

(21)

It is noted that pB, i is the eigenvalue of Eq. (21)
which will be determined using the boundary conditions
described below. If the pile is degenerated into a column,
i.e., not embedded pile, Eq. (21) is reduced to d4η/dξ4 �
−(12pB, i/λ)d2η/dξ2 identical to the result of Timoshenko
and Gere [28].

Now, the boundary conditions for Eq. (21) are considered.
For free ends of the pile head (x � 0) and toe (x � l),
M and V become zero and the boundary conditions of the
dimensionless form are

d2η

dξ2
� 0;

d3η

dξ3
+
12pB, i

λ

dη

dξ
� 0 for ξ � 0 (22.1)

d2η

dξ2
� 0;

d3η

dξ3
+

{
12pB, i

λ
− 24(λ + 1)β

λ1.5

}
dη

dξ
� 0 for ξ � 1

(22.2)

For pinned ends of the pile head (x � 0) and toe (x � l), y
and M become zero and the corresponding nondimensional
boundary conditions are expressed as

η � 0;
d2η

dξ2
� 0. (23)

For fixed ends of the pile, head (x � 0) and toe (x � l),
y and dy/dx become zero and the corresponding boundary
conditions are given by

η � 0;
dη

dξ
� 0 (24)

3 Numerical SolutionMethods
and Validation

A computer program applying FORTRAN language was
self-coded to calculate the buckling load parameters pB, i
with their buckling mode shapes (ξ , η)i based on the math-
ematical modeling developed in this study. The input pile
parameters are the end condition, the aspect ratio λ, the sub-
grade ratio κ , the friction ratio ψ , the subgrade parameter
α and the friction parameter β. An iterative trial and error
method was developed to solve the differential equation,
Eq. (21), subjected to Eqs. (22)–(24) of the boundary condi-
tions as initial and boundary problems. First, to calculate the
buckling mode shape of the pile, the direct numerical inte-
gration method such as fourth order Runge–Kutta method
[29] was used. Second, in order to find pB, i in the eigen-
value problem, the numerical method for solving nonlinear
equations such as the Regula-Falsi method [29] was used.
Shown in Fig. 2 is the block diagram of program algorithm
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Fig. 2 Block diagram of program algorithm

of this study. A detailed numerical method can be referred to
in the works [23, 30].

Convergence experiment was performed by changing the
step size 	ξ dividing the entire pile length to obtain suffi-
cient accuracy of the solution during numerical integration,
and the results are given in Fig. 3. In all end conditions
of the pile, numerical solutions of pB, 1 give good conver-
gence for 1/	ξ � 30, i.e., 30 divisions. See, for example,
the pinned–pinned pile indicated by the circle mark ●,
where pB, 1 � 1.3625 with 1/	ξ � 30 converges to
pB, 1 � 1.3654 with 1/	ξ � 100, respectively, with 3-
digit accuracy. Considering the results of Fig. 3, in this study,
1/	ξ � 50 was used for further numerical calculation, and
in this case, pB, 1 � 1.3643 was obtained which was more
advanced to pB, 1 � 1.3654 with 1/	ξ � 100. Additionally,
all solutions with 1/	ξ � 50 were calculated on a graphics-
capable PC within 0.1 s of computation time per problem.

For verification, the first buckling load PB, 1 calculated
in this study was compared with that reported in open lit-
erature [28] and the finite element analysis (FEA). First,
the degenerated pile to the column, not embedded in soil,

Fig. 3 Convergence experiment

Table 1 Comparisona of first buckling load PB, 1 in this study and ref-
erence

End condition First buckling load PB, 1(MN)

This study Reference [28]

Free-fixed 54.83 54.83

Pinned–pinned 219.32 219.32

Pinned-fixed 448.73 448.73

Fixed–fixed 877.29 877.29

aSee text for column parameters

was considered. For solving the reduced differential equa-
tion of d4η/dξ4 � −(12pB, i/λ)d2η/dξ2 in the absence of
soil properties, column parameters are l � 15 m, d � 2 m,
h � 1 m and E � 30 GPa. The PB, 1 in MN of this study
and reference for the four end conditions are given in Table
1. Note that, PB, 1 in reference are the closed-form solutions.
Even though PB, 1 of this study is an approximate numerical
solution, but the two results of PB, 1 were identical within 5-
digit of accuracy. Second, PB, 1 of the pile fully embedded in
soil of this study and the FEA using ABAQUS software were
considered. In FEA calculations, the subgrade reaction was
modeled as a spring element and the friction resistance was
modeled as a linearly distributed upward axial load. These
two terms are then subjected to the FEA software to calcu-
late the buckling load. The pile parameters are l � 15 m,
d � 2 m, h � 1 m, E � 30 GPa for concrete pile, kh � 10
MN/m3, kt � 12 MN/m3, fh � 150 kPa and ft � 225 kPa,
and its nondimensional pile parameters were converted as
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Table 2 Comparisona of first buckling load PB, 1 in this study and FEA

End condition First buckling load PB, 1(MN)

This study FEA Error (%)

Free-free 317.23 331.35 4.45

Free-pinned 321.49 336.12 4.55

Free-fixed 354.72 374.65 5.62

Fixed–fixed 1252.9 1318.2 5.21

aSee text for pile parameters

λ � 0.5, κ � 1.2, ψ � 1.5, α � 6.56 and β � 0.0075. The
comparison results for PB, 1 with the six end conditions are
shown in Table 2 as being in good agreement with an aver-
age error of 4.96%. These two comparisons in Tables 1 and
2 validate the mathematical modeling and solution methods
of this study. If the distributions of k and f are uniform with
κ � 1 andψ � 1, PB, i of piles with opposite end conditions,
e.g., free-pinned and pinned-free and so on, are the same. The
computer program in this study performed these characteris-
tics accurately, suggesting that mathematical modeling and
numerical methods were accurate.

4 Numerical Experiments and Discussion

In numerical experiments of the buckling load parameters
pB, i of piles with the shape (ξ , η)i , the effects of aspect
ratio λ, subgrade ratio κ and friction ratio ψ are examined
including nine end conditions. The domains of nondimen-
sional parameters used in the analysis are λ � 0 − 1.5,
κ � 0 − 2, ψ � 0 − 2, α � 0 − 15 and β � 0 − 0.1. These
values are designed to simulate realisticmaterial and geomet-
rical properties of soil-pile systems [31, 32]. The numerical
results obtained in this study for the parametric study are
shown in Table 3 and Figs. 4, 5, 6, 7, 8, 9, 10, where the low-
est three pB, i are shown with the specified pile parameters.

Table 3 presents the buckling load parameters pB, i with
the different set of the nine end conditions. The pile param-
eters are λ � 0.5, κ � 1.2, ψ � 1.5, α � 6.56 and
β � 0.0075. Regardless of the mode number, the lowest and
highest values of pB, i are achieved in free-free and fixed—
fixed piles, respectively. The higher the degree of end fixity
of piles, the higher pB, i occurs, and if degrees of end fixity,
e.g., free-pinned and pinned-free, are different, the end con-
ditions supported by the larger k and f at the smaller degree
of end fixity, the higher pB, i occurs. From this fact, it can be
seen that the end condition of the pile is one of the most dom-
inant influences in determining pB, i . This table can be used
in benchmark tests for calculations of interesting readers.

Table 3 Effect of end condition on buckling load parameter pB, i

End condition Buckling load parameter pB, i a

i � 1 i � 2 i � 3

Free-free 0.5948 0.7005 1.9855

Free-pinned 0.6028 1.8821 3.6563

Pinned-free 0.6473 1.8602 3.7430

Free-fixed 0.6651 2.5324 3.6622

Fixed-free 0.7220 2.5906 3.7723

Pinned–pinned 1.3654 1.8957 3.8204

Pinned-fixed 1.5688 2.7875 5.1069

Fixed-pinned 1.6089 2.7774 5.1037

Fixed–fixed 2.3491 3.5708 6.7820

aSee text for dimensionless pile parameters

Figure 4 shows the relationship between the buckling load
parameter pB, i�1, 2, 3 and the aspect ratio λ for the three end
conditions of the pile: free-free, pinned–pinned, and fixed—
fixed. Here, the rest of the pile parameters are shown in the
legend. In general, pB, i increases with increasing λ, but in
certain domains of λ, pB, i decreases. It is noted that the
increasing slope of pB, i is greater in the higher mode. It is
interesting that the relationship between pB, i and λ is almost
linear over the larger domain of λ, but not exactly linear. For
example, for the fixed–fixed pile, λ < 0.25 or so. In Fig. 4b,
i.e., for the pinned–pinned pile, the buckling load curves
of pB, 2 and pB, 3 intersect each other at (0.202, 1.6792),
denoted by�, implying that at λ � 0.202, the double root of
pB, 2 � pB, 3 exist with different mode shapes of (ξ , η)i�2
and (ξ , η)i�3, respectively.Also, for the free-free andfixed—
fixed piles, adjacent double root of pB, i � pB, i+1 exists,
which are not shown in Fig. 4a and c. The phenomenon of
the occurrence of the double root of eigenvalues has already
been reported in previous studies [33, 34] related to the nat-
ural frequencies of the free vibration problem, and also, as
in this study, a double root of the eigenvalue of the buckling
load parameter pB, i can occur in relation to the buckling
problem.

Hereafter, subsequent numerical experiments consider
only the first buckling load parameter pB, 1 of piles, where the
pile has collapsed and is no longer able to withstand external
loads, so a higher pB, i with i > 2 in practical engineering is
less important than pB, 1 [35]. Figure 5 shows the first pB, 1
versus aspect ratio λ curves for piles with free, pinned, and
fixed pile heads (ξ � 0) and free, pinned, and fixed pile
toes (ξ � 1). Regardless of end condition, in general, pB, 1
increases with increase in λ, similar to Fig. 4. This can be
stated that the greater λ creates the greater I (� λA2/12) of
the cross section in the same area A and consequently the
greater flexural rigidity E I causes the higher pB, 1. It can be
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Fig. 4 pB, i versus λ curve: a free-free, b pinned–pinned and c fixed–fixed pile

seen that when λ is smaller than a certain value, the effect of
end condition is very insignificant. For example, in the case
of the head-free end of Fig. 5a, when λ < 0.25, the pB, 1
value of the three end conditions is almost the same.

The effect of the subgrade ratio κ on pB, 1 is shown in
Fig. 6. Here, the value κ varies from 0 to 2, representing
κ � 0 as cohesive soil and linearly increasing κ � 2 in
cohesionless soil along the pile axis [14]. The pB, 1 value
exhibits the decreasing or the increasing tendency as κ value
increases for the head-free and head-pinned piles, whereas

pB, 1 value consistently exhibits the increasing tendency as
κ value increases for the head-fixed piles. Interestingly, pB, 1
of the free-free and free-pinned piles in Fig. 6a is the same
when about κ > 0.75. For free-free pile, an optimal value of
κ exists, which means that pB, 1 � 0.602 is the largest for
κ � 0.881 as indicated by ▲.

The effect of the friction ratio ψ on pB, 1 is shown in
Fig. 7, where ψ < 1 denotes the linearly decreasing unit
side friction and ψ > 1 denotes the linearly increasing unit
side friction, as described byKyfor et al. [36]. The pB, 1 value
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(a) (b)

(c)

Fig. 5 pB, 1 versus λ curve: a head-free, b head-pinned and c head-fixed pile

decreases as ψ value increases. In Fig. 7a and b, pB, 1 does
not show a significant difference between free-free and free-
pinned and between pinned–pinned and pinned-fixed pile,
respectively. The decreasing slops of pB, 1 are very small,
so that the effect of ψ on pB, 1 may be negligible. For this
reason, it is reasonable to choose ψ � 1, i.e., a uniform
frictional resistance f , for easy and economical earthwork
when installing piles.

Figure 8 shows the effect of subgrade parameterα on pB, 1.
The greater value of pB, 1 is displayed asα value increases, as

expected. It is attributed to the fact that a high soil stiffness,
i.e., a high subgrade reaction, produces less pile deflection
and hence piles can carry the higher pB, 1. Similar observa-
tion was reported by Gabr et al. [16] and Lee [23] for the
end bearing piles, i.e., piles where axial frictional resistance
is not considered.

The effect of friction parameter β on pB, 1 is shown in
Fig. 9, where β � 0 corresponds to end bearing pile and β >

0 corresponds to floating piles. The result reveals that pB, 1
value for end bearing piles is lower than that for floating piles,
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(b)(a)

(c)

Fig. 6 pB, 1 versus κ curve: a head-free, b head-pinned and c head-fixed pile

regardless of end condition, and pB, 1 value increases with
increasing β value, as expected. This is because the vertical
side friction reduces axial compressive force throughout the
pile shaft, contributing to high buckling load. The variation
according to changing is almost linear, but not exactly linear,
as shown in Fig. 9. The changing fashion of pB, 1 with a
change in β is almost linear, but not exactly linear as shown
in Fig. 8.

The value of pB, 1 is dominantly dependent on α and β,
as shown in Figs. 8 and 9 above. Once the surface map of

pB, 1 is expressed as a graph by changing α and β, it is easy
to understand the change of pB, 1 at a glance in the actual
engineering field. For illustrative purposes, in Fig. 10, the
surfacemapof pB, 1 is reported as in the regionof 0 < α ≤ 15
and 0 < β ≤ 0.1 with λ � 0.5, κ � 1.2 and ψ � 1.5 for the
free-free, pinned–pinned and fixed–fixed piles. These surface
maps show that pB, 1 increases with increasing α and β. As
expected from this result, the largest value of pB, 1 occurs at
the largest values of α � 15 and β � 0.1. For the free-free
and pinned–pinned piles, the surface map is clearly a curved
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(a) (b)

(c)

Fig. 7 pB, 1 versus ϕ curve: a head-free, b head-pinned and c head-fixed pile

plane, whereas for the fixed–fixed pile, the surface is a linear
plane.

Figure 11 shows the typical firstmode shape (ξ , η)i�1 with
the corresponding pB, 1 of buckling piles affected by the end
conditions expressed in Eqs. (22)–(24). This kind of mode
shape provides the relative deflection and the locations of
maximumdeflection and the nodal point, i.e., zero deflection,
for the buckling pile geometry as useful information in pile
construction and maintenance.

5 Summary and Conclusions

A novel numerical approach was presented for calculating
buckling loads of the friction pile fully embedded in soil, tak-
ing into account the lateral subgrade reaction and the axial
frictional resistance. The differential equation for buckling
piles of rectangular cross section embedded in soil with lin-
early varying soil parameters was derived, associated with
boundary conditions related to the pile end condition, and
numerical methods solving the buckling load with the buck-
led mode shape were developed. Numerical experiments
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(a) (b)

(c)

Fig. 8 pB, 1 versus α curve: a head-free, b head-pinned and c head-fixed pile

were provided to illustrate the variability of geotechnical
engineering applications with the various pile parameters.
Summarizing the results obtained through numerical exper-
iments, the conclusions of this study are as follows.

(1) Thirty divisions of the entire pile length in the
Runge–Kutta method were sufficient to achieve 4-digit
accuracy of the buckling load parameter pB, i .

(2) Solutions of pB, i were efficiently computed on PC,
meaning that the computation time per problem is less
than 0.1 s.

(3) Solutions of pB, i matched very well with the closed-
form solution in the literature and solutions using the
finite element analysis.

(4) There can be double roots of pB, i with different mode
shapes in a single aspect ratio λ.
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(a) (b)

(c)

Fig. 9 pB, 1 versus β curve: a head-free, b head-pinned and c head-fixed pile

(5) Increasing the aspect ratio λ increases pB, i . This is
because the greater λ, the greater the moment of inertia
of the pile cross section.

(6) A trend of increasing pB, i was observedwith increasing
the subgrade parameter α. This is because it reduces the
lateral deflection, leading to a greater pB, i of the pile.

(7) A trend of increasing pB, i was observedwith increasing
the friction parameter β. This is because it transmits less
load along the pile axis, leading to a greater pB, i of the
pile.

For further study, other intrinsic properties of piles in
geotechnical engineering including variable cross section,
partially embedded piles and free vibration issues should also
be investigated.
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Fig. 10 Surface map of
(
pB, 1, α, β

)
: a free-free, b pinned–pinned and c fixed–fixed pile
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(a) (b)

(c)

Fig. 11 Example of mode shape: a free-free end, b pinned–pinned and c fixed–fixed pile
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