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Abstract
In today’s engineering problems, an adaptive computer-aided system is recruited to relieve the computational cost of design
evaluations. The capability of machine learning techniques can be regarded in learning the complex interrelations between
the design variables and the response specifically in the concrete mix design. High-Strength (HS) concrete is a complex
material, which makes modeling its behavior very challenging. In the present study, possible applicability of Multivariate
Adaptive Regression Splines (MARS) to predict the compressive strength of HS concrete is proposed using a limited number
of input variables. In order to overcome the conventional drawback of the machine learning approach (e.g., local minima), a
novel meta-heuristic technique, namely Water Cycle Algorithm (WCA), is employed to modify MARS model. In addition,
a trial and error process is recruited to optimize the complexity of the proposed models. It was also deduced that the WCA
outperforms two benchmark optimizers of Crow Search Algorithm (CSA) and Cat Swarm Optimization (CSO) in terms of
modeling accuracy in the prediction of the compressive strength of HS concrete. Experimental results using several statistical
metrics show that MARS-WCA model (R � 0.994, NSE � 0.981, RMSE � 0.991 MPa and LMI � 0.906 (training phase)
and R � 0.991, NSE � 0.981, RMSE � 1.336 MPa and LMI � 0.880 (testing phase)) outperformed MARS-CSA, MARS-
CSO and standalone MARS to formulation of compressive strength of HS concrete, respectively. In addition, Monte Carlo
uncertainty, external validation and sensitivity of variables importance analysis were carried out to verify the results.

Keywords High-strength concrete · Evolutionary machine learning models · Compressive strength · Monte Carlo uncertainty

1 Introduction

Nowadays, concrete has an undeniably special position in the
building industry and is one of the most widely used building
materials in the world with its ever-increasing widespread
application. The reason for such a special position is the
fulfilment of the technical, economic and environmental
requirements of human societies [1]. The implementation of
concrete structures as the cheapest and most durable struc-
tures has driven the researchers to use concrete with higher
strength, which has brought great successes in this area [2].
The most important factor that determines the strength of
High-Strength (HS) concrete is the porosity in three concrete
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phases (aggregates, cement paste and interfacial transition
zone (ITZ)) [3, 4]. To produce HS concrete, the contrast-
ing effect of water and cement content on the consistency
and strength of concrete cannot be counteracted without the
use of water-reducing additives. For this reason, in the past
decade, the use of super-plasticizers has played an important
role in the production ofHS concrete. Basically, the ITZ is the
weakest part of the concrete with an ordinary weight made of
resistant aggregateswith themaximumsize of 12–20mmand
the water to cement ratio of 0.4–0.7. The concrete strength
can be greatly increased by reducing the maximum size of
coarse aggregates for a given water-to-cement ratio, as this
will improve the ITZ strength [5–8]. Therefore, in the mix
design of HS concrete, the maximum aggregate size is usu-
ally considered 19 mm or less. The advantage of using HS
concrete is the relatively low hydration heat per unit strength,
which reduces the possibility of thermal cracking and min-
imizes the column dimensions and thus, ensures the beauty
of the structure [9–11]. HS concrete columns can hold more
weight and therefore, be made slimmer than OPC columns,
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which allows for more usable space, especially in the lower
floors of buildings [10]. The use of pozzolans in the pro-
duction of composite cement has reduced the total cost of
concrete, but the unavailability of various types of pozzolans
for the construction of structures and their contribution to
the mix design of HS concrete has made it challenging to use
the pozzolans [11, 12]. Therefore, in this study, a mix design
containing fourmain components of concrete (water, cement,
coarse and fine aggregates) and super-plasticizer was used to
present computational models and estimate the compressive
strength of concrete.

Up to date, various applied machine learning models
have been recruited to simulate the mechanical properties of
concretes including Gene Expression Programming (GEP)
[13], Random Forest (RF) [14], Model Tree (MT) [15],
Artificial Neural Network (ANN) [16], Adaptive Neuro-
Fuzzy Inference Systems (ANFIS) [17], Support Vector
Machines (SVM) [13, 18] andMultivariate Adaptive Regres-
sion Splines (MARS) [19, 20]. It is worth noting that ML
techniques have also been used to model several other prop-
erties of concrete [21–25]. For example, Ashrafian et al.
presented an integrative predictive formula-based model to
indicate relationship of mixture and hardened strength of
foamed concrete [26]. Compressive strength prediction of
plastic concrete using four computational intelligence and
statistical approaches was studied by Amlashi et al. [27]. Sun
et al. developed an enhancedSVMmethod to evaluateCS and
permeability coefficient [28]. Shahmansouri et al. performed
GEP technique to estimate properties of eco-environmentally
concrete containing zeolite [29]. Feng et al. applied machine
learning method named an adaptive boosting to predict the
hardened strength [30]. Iqbal et al. implemented collected
data records to propose goodness of fit model for formula-
tion of the mechanical properties of eco-friendly concrete
inspired by GEP method [31]. Asteris et al. utilized artificial
computing systems to predictCSof self-compacting concrete
as an alternative predictivemodels in terms ofMARS predic-
tive strategy [32]. Behnood et al. used decision tree approach
for mechanical properties of ordinary concretes [33]. In case
of hybrid evolutionary MARS application in civil engineer-
ing, Al Sudani et al. [33] developed MARS Integrated with
differential evolution algorithm to forecast streamflow pat-
tern in semi-arid region. Rezaie-Balf et al. [34] predicting
daily solar radiation using MARS model trained by crow
search algorithm. Tien Bui et al. [35] presented new intelli-
gent model based on GIS-based MARS and particle swarm
optimization to estimate flash flood susceptible areas.

Applied regression-based soft computing methods do not
consider any clear knowledge about the relationship between
the inputs and corresponding target variables. It is aweakness
of allmachine learningmodels that the independent instances
of the estimative database should fall within the range of pre-
dictors of calibration dataset. It seems that machine learning

techniques could be optimistically applied but due to their
dependence on the initial control parameters their use is lim-
ited [35]. Aiming at improving the performance capacity of
soft computing models in terms of accuracy and error, the
optimization algorithms can be employed. To this end, soft
computing models should be hybridized with evolutionary
algorithms to create intelligent solutions called integrated
evolutionary models. Based on this concept, the MARS
user-defined parameters are optimized using Water Cycle
Algorithm (WCA), Crow Search Algorithm (CSA) and Cat
Swarm Optimization (CSO). The main parameters for tun-
ing of MARS are maximum interaction between variables
(Imax), the maximum number of basis functions (Mmax) and
smooth parameters (c). The main characteristics of MARS
model as they are the controlling elements of the complexity
and generalization in the modeling process as these parame-
ters reported by Andalib and Atry [36]. Thus, predictability
of MARS model highly depends on the selected parame-
ters quality. Friedman has selected these parameters among
widespread ranges which their actual values are dependent
upon the database [37]. Selection of optimum values of the
parameters is a challenge in SC methods, and it is similar to
an optimization effort.

In this paper, the application of WCA, CSA and CSO
search engines for optimization of MARS parameters was
investigated. In terms of WCA, to prove the concept of evo-
lutionary optimization, the proposed algorithm selected to
integration process based on high convergency and stability
of the final solutions. The performance capability of WCA
to fully explore the search space more accurately was imple-
mented using the process of water cycle in nature. This
may be utilized to search the local solution space, while the
computational procedure of flowing can be utilized for the
global search for enhancement of the convergence speed.
Besides, population-based optimization algorithm including
CSA and CSOwhich was applied to control the diversity due
to application of limited and simple adjustable parameters.
Also, aforementioned evolutionary algorithms have devel-
oped optimal performances for designing reliable solution
for the mathematical test functions and operations of the
systems [38–40]. Many researchers have proven superior-
ity of WCA, CSA and CSO algorithms over other available
algorithms [36–39]. It is an advantage for proposed meta-
heuristic algorithms that they can be combined with MARS
to detect hyper-parameters such as Mmax, Imax and c.

Asmentioned previously, classicalmachine learningmod-
els are trustworthy means for prediction the concrete prop-
erties but they could not generate a relationship between the
main concrete properties and the mixture design codes. The
main goal of this research is to develop a new evolution-
ary formula-based models for predicting the Compressive
Strength (CS) of HS concrete through adoption of a self-
adaptive approachwhich is based onMARS integratedWCA
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(MARS-WCA), MARS integrated CSA (MARS-CSA) and
MARS integrated CSO (MARS-CSO). Besides, another
motivation of this research is to investigate the effect of uncer-
tainties of proposed SCmodels forHS concretemixtures. For
this aim, by considering the influential input parameters as
random variables, the effects of uncertain parameters on the
reliability analysis results are investigated for different val-
ues of target CS using the Monte Carlo Simulation (MCS)
method and external validations to satisfy model’s verifica-
tion.

This research is presented in four sections. Section one
introduces the topic of this research. Section two deals with
the applied MARS and evolutionary algorithms, theoreti-
cal framework and HS concrete database details. Section 3
describes the standalone MARS and the proposed evolution-
ary models together with the evaluation process. Section 4
summarizes this the key-findings of this study.

2 Materials andMethods

2.1 Theoretical Framework and Data Description

In Construction of buildings sector, to optimize the size of
columns in the lower floors HS concrete can be utilized spe-
cially in in high-rise buildings. One of the most advantages
of HS concrete is for deflection reduction due to a higher
elastic modulus [41]. In addition, it provides a higher tensile
strength, greater durability, reduced creep than traditional
concrete. By using HS concrete, it can be concluded that the
cost of construction of buildings can be decreased with the
currently prevailing prices of concrete and steel andmake the
members slender for more flexible structure [4, 11, 41]. This
type of concrete can also be used to reduce slab depths and,
therefore, a building’s overall height. This can result in sig-
nificant cost savings while slimmer high-strength concrete
columns can increase the overall net area.

In this study, 324 experimental mix design aiming to
determine the compressive strength of HS concrete based
on the influencing factors was gathered from the Al-Shamiri
et al. [42] for constructing accurate models. In the mentioned
research, the extreme learning machine (ELM) and ANN
approacheswas developed to estimate theCS ofHS concrete.
The developed ELM model requires more hidden neurons
than ANN model, but its training speed is extremely fast as
no iteration is required during the learning phase. The results
shown that the developed model was reliable for predicting
the CS of HS concrete, but they do not have capabilities to
extract equation from their predicted values for future stud-
ies. Recently, Hameed et al. [43] used high-order response
surface model as the prediction model to accurately predict
the compressive strength of HS concrete based on dataset

presented by Al-Shamiri et al. [44]. They also used dimen-
sional variables to develop proposed model for predicting of
compressive strength of HS concrete.

The descriptive measures including mean, minimum,
maximum, standard deviation, Skewness and Kurtosis are
summarize in Table 1 to introduce the characteristics of
explained dataset. This data set can represent the whole pop-
ulation or a sample of it. Statisticalmeasures can be classified
as measures of central tendency and measures of spread.
Skewness assesses the extent to which a variable’s distri-
bution is symmetrical. If the distribution of responses for a
variable stretches toward the right or left tail of the distribu-
tion, then the distribution is referred to as skewed. Kurtosis is
a measure of whether the distribution is too peaked. Based on
the statistical analysis presented in Table 1, it can be deduced
that CS and cement content ranges [37.5 − 73.6MPa] and
[284 − 600kg/m3], respectively.

Principally, some of admixture materials which is con-
sidered as the input parameters for the development of AI
models could have a high positive and negative dependency
to each other,which can result in poor efficiency and accuracy
of the modeling. In addition, extracting the most influen-
tial independent variables on the compressive strength could
be difficult to explain for modeling. In this regard, the cor-
relation matrix which depicts the correlation between all
the possible independent variables is proposed in this study
(Table 2). According to Table 2, no significant correlations
are observed between the independent input variables for the
prediction of CS of HS concrete.

For developing of experimental records, three scenarios
including 70–30, 75–25, and 80–20 percentages of the train-
ing and testing groups, respectively, were considered. To
do so, linear regression method was performed to evaluate
proposed scenarios. Table 3 presented results of proposed
scenarios that investigated in this study.According toTable 3,
optimal scenario for development of AI methods was 75–25
splitting percentage in terms of statistical metrics.

One of the important steps in machine learning models
is randomization in which dataset should randomly mixed
to prevent overfitting, and then, processed data are catego-
rized into two groups, training (to build up the predictive
model) and testing (to evaluate the constructed model). In
this study, about 75%of the experimental data (243 data sam-
ples) is for development (training phase) and the remainder
(81 data samples) should be kept unseen for evolutionary
MARS models. For experimental details on material spec-
imens, mixture proportion and curing conditions of these
specimens, the readers are referred to [44]. The descriptive
measures and marginal plot of the input parameters for mod-
eling of the CS of HS concrete are presented in Table 2 and
Fig. 1. The marginal plot allows studying the relationship
between 2 numeric variables and the distribution of x and y
axes variables using a histogram. This helps to visualize the
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Table 1 Statistical analysis of input and output variables

Variables Mean Standard deviation Median Kurtosis Skewness Minimum Maximum

W (Kg/m3) 170 8.18 170 – 1.5 0 160 180

C (Kg/m3) 417.81 77.22 411 – 0.53 0.4 284 600

FA (Kg/m3) 767.71 85.45 769.5 – 0.44 – 0.19 552 951

CA (Kg/m3) 898.51 42.93 898 – 1.5 – 0.01 845 989

SP (%) 0.95 0.5495 1 – 0.72 0.02 0 2

CS (MPa) 51.93 9.446 48.9 – 1.02 0.44 37.5 73.6

Table 2 Correlation matrix of the
input variables against target
variable

Parameter CS W C FA CA SP

CS 1

W 0.28 1

C 0.76 0.18 1

FA 0.46 0.16 0.32 1

CA 0.19 0 0.01 0.22 1

SP 0.58 0.019 0.34 0.105 0.013 1

Table 3 Data splitting evaluation
Model Data splitting percentage

70–30% 75–25% 80–20%

R RMSE R RMSE R RMSE

Training phase 0.887 1.239 0.911 0.891 0.862 1.785

Testing phase 0.856 1.386 0.905 0.886 0.829 2.214

distribution intensity at different values of variables along
both axes.

2.2 Multivariate Adaptive Regression Splines
(MARS)

MARS is a nonparametric paradigm consisting splines for
nonlinear modeling between the independent and target vari-
ables of a knowledge system. For this purpose, it utilizes
a regression-based intelligence algorithm [37]. The Basis
Function (BF) based on slope of regression line which
extracted in final model (one spline to more) has changed.
MARS being a flexible method in assessing nonlinear pro-
cedure in predictor and target variables, in comparison with
other commonmethod applied in regression-based data intel-
ligent approaches [43, 45]. MARS could search probable
situation between in all degrees and finding solution for vari-
able’s interactions due to extract complicated data structures
from multi-dimensional datasets [37]. The general equation
for MARS function is as follows:

f (x) � β0 +
M∑

m�1

βmλm(x) (1)

Here, f (x) denotes the predicted response corresponding to
the predictor variable x. β0 and βm are the predicted con-
stant coefficients in order to attain the best data fit and λm

is a spline function. M is the number of basis functions. In
MARS, the knots locations are selected through an adaptive
regression algorithm and BFs are created using a stepwise
search [46]. Two steps are adopted inMARS for optimization
namely the forward stage and backward stage. To reduced
data over-fitting, a large number of BFs are utilized in the for-
ward stage. MARS adopted the generalized cross-validation
(GCV) algorithm to remove pruned BFs, which as presented
in Eq. 4, helps with preventing over-fitting in the backward
stage [47]. The generalized cross-validation formula is as
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Fig. 1 Marginal plot of each input variable vs. compressive strength along with distribution of each variables (unite of compressive strength,
super-plasticizer, and other variables are MPa, percentage of cement, and Kg/m3, respectively)

follows:

GCV �
1
N

∑N
i�1

[
yi − f(xi)

]2
[
1 − C(B)

N

]2 (2)

In the above equation, N is the number of training data
records, C (B) indicated the effective number of parameters
in BFs, C denotes the penalty factor corresponding to each
basis function and B is the number of BF. C (B) could be
presented as:

C(B) � (B + 1) + dB (3)

where B is the number of spline function and d is the penal-
izing parameter. After obtaining the MARS model, overall
relationship is acquired using combination of all BFs includ-
ing intercept BF and pairwise BF with interaction.

2.3 Water Cycle Algorithm (WCA)

WCA has been a nature-inspired optimizing solution pro-
posedbasedon the observations fromnature phenomena such
as river, sea, mountain cloud and rain. Within the hydrologic
cycle or water cycle, the clouds are formed by evaporation,
also they are generated through photosynthesis by plants and
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trees and transfer to atmosphere. A precipitation when hap-
pen that the atmosphere gets colder and clouds get condense
[38]. Thus, underground water is filled with melted snow or
rainfalls. Then, the water moves under the ground as the sur-
face water which flows over the ground. Therefore, the cycle
continues by evaporation from the rivers and streams [39].

Similar to other meta-heuristic algorithms, each raindrop
is taken as an initial population in this method. Initially, we
assume we have rain or precipitation. So, the best individual
or rainfalls are chosen as a sea and some other good rainfalls
are assumed as a river. Thus, in a Nvar dimensional optimiza-
tion procedure a raindrop would be an array of 1 × Nvar

which is calculated by the follow [48]:

Raindrop � [x1, x2, x3, . . . .xN ] (4)

To compute the evolutionary process, alternative proce-
dure which is raindrop’s matrix for the size of Npop × Nvar

is created which is the raindrop’s population:

Population of raindrops �

⎡

⎢⎢⎢⎢⎢⎢⎣

Raindrops1
Raindrops2
Raindrops3

...
RaindropsNpop

⎤

⎥⎥⎥⎥⎥⎥⎦
(5)

The remained raindrops are considered as streams which
flow into the rivers and sea. Here, we assume a parameter
namedN sr, which is the sumof rivers plus a single sea (Eq. 6).
The remained population is computed using Eq. 7:

Nsr � Number of Rivers + 1(sea) (6)

NRaindrops � Npop − Nsr (7)

Now, each river adsorbs the stream water in proportion
with the flow intensity. Therefore, the amount of water enter-
ing the river from each stream is different from the other
streams. Eq. 8 is used to designate/assign raindrops to rivers
and sea, on the basis of flow intensity:

NSn � round

{∣∣∣∣∣
costn

∑Nsr
i�1 costi

∣∣∣∣∣× NRaindrops

}
,

n � 1, 2, . . . , Nsr (8)

In the above equation, NSndenotes the number of streams
flowing to a certain sea or rivers. The flowchart of the water
cycle optimization algorithm is shown in Fig. 2.

Fig. 2 Flowchart of water cycle optimization algorithm

2.4 Crow Search Algorithm (CSA)

Crows have several characteristics: one of them is the memo-
rization of faces, the second is communication via advanced
ways and third is their capability in hiding and recovering the
food when needed. These features of crows help them in dis-
coveringwhat others have hidden and steal them after leaving
of the owner. Askar Zadeh [39], considering the abovemen-
tioned characteristics of crows, proposed an evolutionary
algorithm which himself called it CSA for solving of the
complicated engineering challenge.

As other meta-heuristic algorithms, in CSA we assume
a dimensional environment with a number of crows. The
population size which is the crow number here is denoted by
N. The crow position i at time (iteration) within the search
environment is defined by a vector xi , iter � [xi , iter1 , xi , iter2 ,

. . . , xi , iterd ] where i � (1, 2, . . . , N ) and i ter � (1, 2, . . . ,
itermax). Here, itermax represents the maximum number of
iterations.

Theparameter of awareness probability (AP) inCSAhelps
with balancing between the intensification anddiversification
[33]. By decrease in the AP value, CSA tends to apply the
local region searching, so a small AP value increases inten-
sification. Also, by increase in the AP value, the searching
probability of the neighborhood of current ideal solutions
reduces, leading to increase in diversification. The steps for
implementing CSA are as follows [49]:

• Step 1: Definition of the optimization problem, decision
variables and constrains andvaluation ofCSAuser-defined
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parameters including the flock size, maximum number of
iterations (itermax), Flight Length (FL) and AP.

• Step2: Initializing thememoryof crows in a d-dimensional
search space using Eqs. 9 and 10.

Position �

⎡

⎢⎢⎢⎢⎣

x11 x12 . . .

x21 x22 . . .
...

...
...

x1d
x2d
...

xN1 xN2 . . . xNd

⎤

⎥⎥⎥⎥⎦
(9)

Memory �

⎡

⎢⎢⎢⎢⎣

m1
1 m1

2 . . .

m2
1 m2

2 . . .
...

...
...

m1
d

m2
d
...

mN
1 mN

2 . . . mN
d

⎤

⎥⎥⎥⎥⎦
(10)

• Step 3: Evaluation of the fitness function so that per each
crow, the quality of its position is determined based on
decision variable and objective function values.

• Step 4: Generating new positions in this way that if crow i
wants to generate a new position, it should select random-
ized of the flock crows (for example j) and attempt to find
the position of foods that are hidden by this crow (mj)

• Step 5: Checking capability of the new location for each
crow.

• Step 6: Assessing the objective function of new position
per each crow

• Step 7: crows’ memory will be updated using Eq. 11.

mi , Iter+1 �
{
xi , iter+1 f (xi , iter+1) is better than f (mi , iter)
mi , iter otherwise

(11)

In the above equation, f(.) represents the value of objective
function.Mi, iter denote the memory of crow i in iteration iter
and xi, iter is the position of crow i in iteration (iter). In the
final step, the termination criterion is checked by repeating
steps 4–7 to reach itermax. Figure 3 presents flowchart of the
CSA optimization method.

2.5 Cat swarmOptimization (CSO)

Although resting behavior of cats is generalized, they are
highly alert about their environment and any moving object.
This inherent behavior helps catswithfinding their preys. The
cats spend very little time for chasing prey with respect to
their resting time. Chu and Tsai proposed their CSO method
which was inspired by hunting pattern of the cats in two
modes namely the "seeking mode" (for the resting time of
cats) and "tracing mode" (for the time of chasing preys) [41].

In CSO, the number of populations comprised of cats is
implemented and prepared randomized distribution in the N-
dimensional solution space. This population is divided into

Fig. 3 Flowchart of crow search algorithm

two sub-groups of "seeking mode" where cats are resting
and are looking around their surroundings. And the "trac-
ing mode" where they begin to move around and chase their
preys. The mixture of these two modes helps with global
solution in the N-dimensional space. As the cats spend too
little time in the tracing mode, their number in this subset is
small. For this purpose, the Mixture Ratio (MR) is utilized
which has a low value. After grouping the cats into these two
modes, new positions and objective functions could be calcu-
lated, and the cat with the optimistic searching criteria is keep
in thememory. The above stages are repeated till the stopping
criteria are met [50]. Flowchart of cat swarm optimization
algorithm is depicted in Fig. 4. For more information about
the computational procedures of CSO [41] study have con-
sidered.

2.6 Description of Proposed Evolutionary-Based
MARS Trained by Optimization Algorithm

In present study, an evolutionary-based predictive methods
were implemented and proposed. One of the main motiva-
tions of this study was to achieve the optimum values for
three hyper-parameters of MARS model in the prediction
of CS of HS concrete using evolutionary-based solutions.
Three hyper-parameters ofMARS that can affect themodel’s
predictivity in terms of accuracy are Mmax, c, Imax. Among
various evolutionary optimization techniques such as random
search,Nelder–Mead search, genetic algorithms, grid search,
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Fig. 4 Flowchart of cat swarm optimization algorithm

pattern search, heuristic search, this study recruited two bio-
inspired algorithms based on the strategic behavior of cats
and crows, namely CSO and CSA, and a natural-inspired
optimization algorithm (e.g., WCA)-based water cycle pro-
duction to calculate the optimum hyper-parameters. The four
main steps of the proposed adaptive machine learning tech-
niques are described as following:

• Step 1: The accuracy or performance of the hybrid
MARS models was compared with evolutionary algo-
rithm’s greedy selector to assess the fitness function. In
the present research, the MSE metric (objective function)
was used as the stopping criteria. Hence, Eq. 12 was pro-
posed as follows to calculate the summation of the training
and testing RMSE for controlling model fitness function.

F=ECalibrate + EValidate (12)

Where in the above equation, Ecalibrate and Evalidate denote
the calibration and validation procedure’s error, respectively.
In Eq. 12, mean square error is incorporated as the index for
prediction error. In Eq. 12, the fitness function represents the
balance achieved between the model complexity and gener-
alization.

• Step 2: The initial values of three hyper-parameters (i.e.,
Mmax, c, Imax) of MARS model for prediction of CS of
HS concrete were randomly generated based on a uni-
form distribution, as given in Eq. 13. The initial values
of the abovementioned hyper-parameters are expressed in
the following formula.

X � (Ub − Lb) × rand + Lb (13)

• Step 3: The evolutionary algorithm’s population during
the optimization process included a large number of the
variables which were the MARS’s hyper-parameters. At
each generation, MSE as the candidate objective function
of each set of hyper-parameters was calculated. The three
algorithmic approaches, CSO, CSA, and WCA, discarded
inferior set of hyper-parameters and gradually guided the
population toward regions featuring good set of hyper-
parameters. According to this mechanism, better solutions
of bfs and c can be employed for modeling CS of HS
concrete in the training phase of MARS model.

• Step 4: The optimization processwould stopwhen the con-
sidered rmse as the stopping criteria was achieved. Finally,
the optimal prediction of CS with fittest parameter val-
ues was determined when the stop criterion was reached.
The pseudocode of hybrid mars-based three evolutionary
algorithms in predicting CS of HS concrete is proposed in
Fig. 5.

2.7 Statistical Measures

In this study, the effectiveness of the WCA, CSO, and CSA
algorithms to optimize MARS model is evaluated several
performance metrics (Eqs. 14–19) as follows,

(1) Pearson correlation coefficient (R):

R �
∑M

i�1

(
CSObs − CSObs

)
.
(
CSPre − CSPre

)
√∑M

i�1(CSObs − CSObs)
2∑M

i�1

(
CSPre − CSPre

)2 ,

Range � (0, 1); Ideal value � 1 (14)

(2) Nash–Sutcliffe Efficiency (NSE):

NSE � 1 −
∑M

i�1(CSPre − CSObs)2
∑M

i�1

(
CSObs − CSObs

)2 ,

Range � (−∞, 1); Ideal value � 1 (15)
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Fig. 5 Pseudo code of proposed
evolutionary algorithms for
MARS model optimization

Hybridized MARS model using WCA, CSO, and CSA algorithms

Set the input parameters.

Define the considered MSE error function

Initialize population size randomly for selected algorithms individually.

While (MSEtr+MSEte)>defined MSE do

Create the population size (particles)

Calculate the fitness function 

{

For each particle in the population do

Update raindrop, cat, and crow according to "updating position" for WCA, 

CSO, and CSA algorithms, respectively.

End for

}

End while

Return best raindrop, cat, and crow position.

Train the optimized MARS parameters based WCA, CSO, and CSA algorithms

Calculate MSEtr+MSEte for evolutionary-based MARS model

Optimized MARS model is obtained to simulate CS of HSC.

(3) Mean Absolute Error (MAE):

MAE �
∑M

i�1|CSPre − CSObs|
N

,

Range � (−∞, +∞); Ideal value � 0 (16)

(4) Wilmot’s Index of agreement (WI):

WI � 1 −
∑M

i�1(CSObs − CSPre)2
∑M

i�1

(∣∣CSPre − CSObs
∣∣ +
∣∣CSObs − CSObs

∣∣)2
,

Range � (0, 1); Ideal value � 1 (17)

(5) Root Mean Square Error (RMSE):

RMSE �
√

1

N

∑M

i�1
(CSPre − CSObs)2,

Range � (−∞, +∞); Ideal value � 0 (18)

(6) Legates–McCabe’s Index (LMI):

LMI � 1 −
[ ∑M

I�1

∣∣CSPre − CSPre
∣∣

∑M
I�1

∣∣CSObs − CSObs
∣∣

]
,

Range � (−∞, 1); Ideal value � 1 (19)

In the above equations, CSObs and CSPre denote the exper-
imental and prediction of CS values, respectively. CSObs and
CSPre are the average values of experimental and prediction,
respectively. Also, M represent the total number of the sam-
ples.
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Table 4 Basis functions of developed MARS method

BF Equation

BF1 max (0,533 -C)

BF2 max (0, W -170)

BF3 max (0,170 -W)

BF4 max (0, FA -786)

BF5 max (0,786 -FA)

BF6 max (0, CA -898)

BF7 max (0,898 -CA)

Table 5 Analysis of variance for input variables of MARS

Function GCV STD No. of BFs Variable(s)

1 42.570 7.367 2 W

2 12.603 4.144 1 C

3 19.275 7.494 2 FA

4 15.299 4.641 2 CA

3 Application Results and Discussion

3.1 MARS Formulation for CS Prediction

In this study, Jekabsons open source code which presented
[47] was employed for development of piecewise-linear
MARS. The best performance of MARS model for CS of
HSNCpossessed 8basis functions,while themaximum inter-
action levelwas set in second-order interaction. In the present
research, smooth parameters investigated in default value
(1–8) recommended by Jekabsons and best valuewas defined
cbest � 1 based on minimum mean square error. Total num-
ber of effective parameters was 18.5, and GCV was 4.102.
The details of BFs are reported in Table 4. Moreover, in this
study, cross-validation method was utilized for prevention of
model capability assessing bias. Table 5 presented Analysis
ofVariance (ANOVA) that is known for assessing the interac-
tions of predictors and recognizing the most influential ones
usingGCV evaluationmetric. The interpretable nonparamet-
ric formula-based model was defined as following:

CSMARS � 57.768 − 0.058 × BF1 − 0.852 × BF2

+ 0.967 × BF3 − 0.107 × BF4 + 0.073

× BF5 − 0.102 × BF6 + 0.111 × BF7 (20)

3.2 Evolutionary-MARS Formulation for CS
Prediction

In computer sciences, accurate selection of parameters corre-
sponding to the soft computingmethods is the very important
procedure in achieving high performance. For example, in
ANN model weights, neurons, layers and biases are among
the crucial control parameters that should be determined.
Even if in addressing a problem, the model provides good
results but an incorrect selection of parameters could result
into undesirable outcome. One technique to find the appro-
priate parameters is combination of the previous experiences
with a restricted heuristic search of optimistic solutions. But
this may take a lot of time and not yield a result.

MARS model is dependent on the parameters included in
it such as the smooth parameter c, maximum basis function
Mmax, and maximum interaction Imax. On the other hand,
finding optimal parameters simultaneously is very difficult
due to the many available choices, but finding appropriate
parameters can significantly improve MARS capability in
predicting the procedure although suitable values may fall
outside the suggested ranges. Therefore, in this study, evo-
lutionary MARS model is incorporated to help users to face
this challenge.

At the first stage, MARS is incorporated to handle the
underlying function. Then, a new MARS method is built per
each set of parameters that are provided by meta-heuristic
algorithm (e. g., WCA, CSA and CSO). The greedy selec-
tor in aforementioned algorithms will compare the capability
of proposed formula-based model with respect to the objec-
tive function assessment. After the end of train step, MARS
model is incorporated toverify thedata rows. It is obvious that
due to good training of data we may face over-fitting. There-
fore, combination of calibration error and validation error
can result into an optimally balanced model with minimum
errors.At the second stage,meta-heuristic algorithms applied
to search for the best parameter setting value such as Mmax,
Imax, and c. When the stopping condition is met, the opti-
mization would be terminated. In this study, the generation
number is depicted to present the convergence rate of each
optimization algorithm up to 100 generations. Ultimately,
when the stopping criterion is satisfied, the optimal predic-
tive model with the fittest parameter setting is obtained. So,
evolutionary MARS has accomplished the calibrating pro-
cess and is now prepared to simulate new input patterns. The
related equations of BFs of evolutionaryMARS are indicated
in Table 6 for formulation of CS. The interpretable evolution-
aryMARS predictive formulas were developed as following:

CSMARS−WCA � 52.721 − 0.070 × BF1 − 1.549

× BF2 − 0.056 × BF3 − 0.087

× BF4 + 0.015 × BF5 − 0.005
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Table 6 Basis functions of developed evolutionary MARS methods

BF Equation

MARS-WCA MARS- CSA MARS- CSO

BF1 max (0,533 -C) max (0,533 -C) max (0,533 -C)

BF2 max (0, W -170) max (0, W -170) max (0, W -170)

BF3 max (0, FA -786) max (0,170 -W) max (0,170 -W)

BF4 max (0, CA -898) max (0, FA -786) max (0, FA -786)

BF5 BF2 × max (0, C -450) max (0,786 -FA) max (0,786 -FA)

BF6 BF3 × max (0,170 -W) max (0, CA -898) max (0, CA -898)

BF7 max (0,170 -W) × max (0, CA -898) BF2 × max (0, C -450) max (0,898 -CA)

BF8 max (0,170 -W) × max (0,898 -CA) BF2 × max (0,450 -C) BF2 × max (0, C -450)

BF9 BF1 × max (0,790 -FA) BF4 × max (0,170 -W) BF2 × max (0,450 -C)

BF10 BF2 × max (0, FA -628) BF3 × max (0, CA -898) BF4 × max (0, W -170)

BF11 BF2 × max (0,628 -FA) BF3 × max (0,898 -CA) BF4 × max (0,170 -W)

BF12 max (0,898 -CA) × max (0, C -480) BF1 × max (0,790 -FA) BF3 × max (0, CA -898)

BF13 max (0,898 -CA) × max (0,480 -C) BF2 × max (0, FA -628) BF3 × max (0,898 -CA)

BF14 BF1 × max (0,1.5 -SP) BF2 × max (0,628 -FA) BF1 × max (0, FA -790)

BF15 BF1 × max (0,1.5 -SP) max (0,898 -CA) × max (0, C -480) BF1 × max (0,790 -FA)

BF16 BF3 × max (0, C -425) max (0,898 -CA) × max (0,480 -C)

BF17 BF3 × max (0,425 -C) BF1 × max (0,1.5 -SP)

BF18 max (0,898 -CA) × max (0, C -378) max (0,898 -CA) × max (0,769 -FA)

BF19 max (0,898 -CA) × max (0,378 -C) BF4 × max (0, C -425)

BF20 max (0,170 -W) × max (0, C -411) BF4 × max (0,425 -C)

BF21 max (0,170 -W) × max (0,411 -C) max (0,898 -CA) × max (0, C -378)

BF22 BF2 × max (0,898 -CA) max (0,898 -CA) × max (0,378 -C)

BF23 BF2 × max (0, C -480) BF3 × max (0, C -411)

BF24 BF2 × max (0,480 -C) BF3 × max (0,411 -C)

BF25 max (0,170 -W) × max (0, C -400) BF2 × max (0,898 -CA)

BF26 max (0,170 -W) × max (0, C -427)

BF27 max (0,170 -W) × max (0,427 -C)

BF28 max (0,899 -FA)

× BF6 − 0.003 × BF7 + 0.004

× BF8 + 0.0002 × BF9 + 0.003

× BF10 + 0.005 × BF11 − 0.001

× BF12 + 0.001 × BF13 − 0.003

× BF14 + 0.0007 × BF15 + 0.001

× BF16 + 0.0006 × BF17 + 0.0007

× BF18 − 0.002BF19 + 0.033

× ×BF20 − 0.071BF21 − 0.004

× BF22 − 0.012 × BF23 + 0.003

× BF24 + 0.022 × BF25 − 0.057

× BF26 + 0.070 × BF27 + 0.055

× BF28 (21)

CSMARS−CSA � 59.491 − 0.073 × BF1 − 1.339

× BF2 + 1.173 × BF3 − 0.114

× BF4 + 0.053 × BF5 − 0.088

× BF6 + 0.004 × BF7 + 0.003

× BF8 − 0.005 × BF9 − 0.002

× BF10 + 0.006 × BF11 + 0.0002

× BF12 + 0.003 × BF13 + 0.006

× BF14 − 0.001 × BF15 + 0.001

× BF16 − 0.004 × BF17 + 0.0008

× BF18 + 0.001 × BF19 + 0.0007

× BF20 + 0.0007 × BF21 − 0.002

× BF22 − 0.001 × BF23 − 0.002
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× BF24 − 0.003 × BF25 (22)

CSMARS−CSO � 58.646 − 0.067 × BF1 − 1.029

× BF2 + 1.091 × BF3 − 0.111

× BF4 + 0.066 × BF5 − 0.095

× BF6 + 0.084 × BF7 + 0.002

× BF8 + 0.003 × BF9 + 0.003

× BF10 − 0.004 × BF11 − 0.003

× BF12 + 0.005 × BF13 + 0.0002

× BF14 + 0.0001 × BF15 (23)

Overall, the proposed approach of this paper is presented
new insight into the investigating of the compressive strength
of the HS concrete using the experimental mixture variables.
To do this, two-step procedure is implemented; (1) compute
the BFs of the problem as per Table 6. The interpretable
MARSmethod generates many of BFs for experimental vari-
ables. Amodel is then learned from the output of each of BFs
with the target variable. This means that the output of each
BFs is weighted by a coefficient. A prediction is made by
summing the weighted output of all of the BFs in the model.
(2) Compute the CS applying Eqs. 20–23 depending on the
MARS,MARS-WCA,MARS-CSA andMARS-CSO devel-
oped methods.

3.3 Results Comparison of Evolutionary
and BenchmarkMethods

The predictability and suitability of evolutionary nonpara-
metric multivariate paradigm named MARS-WCA, MARS-
CSA, MARS-CSO and standalone MARS was evaluated for
compressive strength of HS concrete formulation. The six-
performance metrics (R, NSE, MAE, WI, RMSE, and LMI)
of the developedmachine learningmodels on the formulation
of CS is represented in Table 6. Before evaluating the results
extracted by standalone and hybrid models, the overfitting
issue for every model should be checked and controlled. One
of the simple approaches that can assess this issue is the dif-
ference of models’ performance in calibration and validation
stages. When overfitting occurs, the performance metrics of
the predictivemodels are satisfactory in the calibration stage;
however, the significant weakness can be seen in the valida-
tion stage. For instance, when the difference in the indices
R, NSE, and WI is less than 5%, the probability of over-
fitting occurrence is quite low. Therefore, overfitting of the
proposed models based on the values represented in Table 7
has been avoided.

Based on the results, MARS-WCA model (R � 0.994
and WI � 0.997, NSE � 0.988) and (R � 0.991 and WI �
0.995, NSE � 0.981), outperformed other machine learning

methods in both calibration and validation stages, respec-
tively. MARS-WCA has the lowest RMSE (0.991 MPa) and
the highest LMI (0.906); it enhanced the precision of the
validation stage to formulate CS in terms of LMI of the
MARS-CSA, MARS-CSO and standalone MARS by 1.1%,
4.9% and 7.1%, respectively. Moreover, for further evalua-
tion of the capacity of proposed evolutionary and standalone
MARS, objective function (OBJ) index was computed. The
optimistic predictive formula-basedmodels are chosen based
onOBJ through the bestmodel’s predictability.AnOBJ (with
range of (0, + ∞) and optimum value of zero) is measured
as follows:

OBJ �
(
No.training − No.testing

NO.all

)
MAEtraining

R2
training

+
2No.testing
NO.all

× MAEtesting

R2
testing

(24)

The comparison between the simulated and observation
CS values has indicated that the developed MARS-WCA
model (with OBJ � 0.932) presented more efficiency beside
another models (OBJMARS � 1.734, OBJMARS-CSA � 1.038
and OBJMARS-CSO � 1.379).

Figures 6 and 7 illustrated the comparison of the predicted
CS values that are modeled with standalone MARS model
and three hybrid MARS models coupling with WCA, CSA
and CSO algorithms. According to these figures, theMARS-
WCAmodel has better visual agreement between actual and
predicted values and the highest accuracy in the formulation
of CS during the train and test steps based on y � x (black
and dotted) lines. Figure 8 shows that hybrid MARS model
coupled with WCA could predict the local maximum and
minimum slightly higher than other standalone and hybrid
MARS models. It can trustworthy express that the compres-
sive strength that predicted by evolutionary models were in
robustness coherence with the actual data points.

The estimation errors of CS models of HSNC in Fig. 9
presented significantly improvement of error production in
model-based WCA integrated with MARS compared with
other proposedmodels. Distribution plot of the relative errors
of the standalone and evolutionary MARS models of the
CS of HSNC to propagate the magnitude is presented in
Fig. 10. The histogram values relative error ofMARS-WCA,
MARS-CSA, MARS-CSO and standalone MARSmodels in
the interval of [-3%, 3%] account for 87.9%, 84.50%, 83.00%
and 58.30% of the total samples. The number of relative error
values estimated by the proposedmodels in the range of [-6%,
6%] further reduce. Through error interval analytical process,
it is found that the estimation errors of MARS-WCA (mean
� -0.004 and Standard Deviation (StDev) � 2.224) lower
than other evolutionary and standalone models.
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Table 7 Performance capability
of proposed soft computing
models

Subset Models Statistical metrics

R NSE RMSE MAE WI LMI

Calibration MARS 0.979 0.958 1.871 1.615 0.989 0.803

MARS-WCA 0.994 0.988 0.991 0.763 0.997 0.906

MARS-CSA 0.993 0.986 1.085 0.871 0.996 0.893

MARS-CSO 0.988 0.976 1.415 1.174 0.994 0.856

Validation MARS 0.978 0.957 2.043 1.705 0.988 0.809

MARS-WCA 0.991 0.981 1.336 1.073 0.995 0.880

MARS-CSA 0.989 0.978 1.457 1.170 0.994 0.869

MARS-CSO 0.983 0.966 1.819 1.504 0.991 0.831

Italic text refers to the best performance

Fig. 6 Scatter plots of
experimental and formulated CS
for training performance
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Figure 11 revealed the mean square error values as an
objective function against the iteration cycles for the MARS
integrated with meta-heuristic algorithms. Through Fig. 11,
as the algorithm searching and optimizing theMARS param-
eters, the obtained results satisfied the constraints, while the
value of constraint violation decreased. In this part, the CS
of HS concrete estimated by theMARS-WCA,MARS, CSA
and MARS-CSO models. As those evolutionary application
for the hybridmodels, theWCA,CSA andCSOwere utilized
to optimize the Mmax , Imax and c. The parameters of WCA
(e.g., Number of rivers + sea (Nsr) and Evaporation condition

constant (dmax)), CSA (e. g., Flight Length (FL) and Aware-
ness Probability (AP)) and CSO (e. g., SeekingMemory Pool
(SMP) and Seeking Range of the selected Dimension (SRD))
are also needed to be tune up before optimization procedure
of MARS method.

Based on Fig. 11, the speed of convergence of WCA after
100 generations is very high in probability of searching the
optimum solution (decision variables) compared to CSA and
CSO algorithms in same populations [46]. It is obvious that
the integration of MARS with WCA also provides efficient
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Fig. 7 Scatter plots of
experimental and formulated CS
for testing performance
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Fig. 8 Curve fitting plots of experimental and formulated CS of HS Concrete
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Fig. 9 Graphical comparisons of
error in model’s development; a:
Residual, b: Relative error for
validation stage
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Fig. 10 Relative error histograms of proposed models
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Fig. 11 Meta-heuristic algorithms performance to optimize MARS
parameters

and reliable prediction for CS of HS concrete, and the well-
known optimizer in terms of computational effort (Nsr �
4 and dmax � 1e-16) that are challenging for regularizing
the ability of the WCA algorithm [51]. As can be seen from
Fig. 8, the selected hyper-tuning parameters is reported FL
� 3 and AP � 0.2 (for CSA), and SMP � 5 and SRD �
1 (for CSO). Finally, for further evaluation of influence of
input variables on the CS of HS concrete proposed model,
3D surface diagrams for MARS-WCA (optimistic model)
are presented in Fig. 12.

To compare the results of the proposed MARS-WCA
model with other AI models for CS prediction of HS con-
crete, the best performancemodel ofAl-Shamiri’s study [44],
Back-Propagation Network (BPN) was selected. Due to the
proximity of the modeling results in terms of R, RMSE,
NSE and MAE, a composite metric (i.e., Performance Index
(PI)) that involves two R and RMSE criteria was considered
to combine and generate a single result for better compari-
son. The PI statistical metric changes from zero to one, with
smaller values, presented a better prediction and is calculated
as following:

PI � 1∣∣CSobs
∣∣
RMSE

(R + 1)
(25)

Comparing the results of integrated MARS-WCA with
BPN, it was found that the performance of both models is
similar in terms of PI where the values for MARS-WCA
and BPN are 0.109 and 0.104, respectively, for the predic-
tion of CS of HS concrete. Moreover, the evaluation metrics
indicate that applying optimization algorithms like WCA
would improve the models’ performances remarkably. The
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Fig. 12 3D surface diagrams of
MARS-WCA model for
evaluation of inputs
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most important point in comparison ofMARS-WCA andAl-
Shamiri’s method was the applicability of the BPN model
which cannot be used by researchers in the specific field
of study. In other words, in this study, an explicit formula-
tion was presented by integrated MARS-WCA which can
be apply in order to predict and determine the compressive
strength of high-strength concrete.

3.4 Validation of Formula-BasedModels

3.4.1 External Analysis of the Predictive Models

Validation is a crucial aspect of any quantitative struc-
ture–activity relationshipmodeling anda special emphasis on
statistical significance and predictive ability of those models
as their most crucial characteristics. Checking the robustness
of the predictive models just with coefficient determination
(R2 > 0.5) could not provide the ultimate proof of themodel’s
ability or capability for prediction of phenomena, and it needs
an approach to stablish the model robustness by randomiza-
tion of response (i.e., compressive strength) [52]. External
analysis as a reliable analytical method is used for com-
parison between the results of estimated and observation
event data. Golbraikh and Tropsha [53] have adopted the
new external validation criteria for evaluation of the estima-
tion capacity of themodels corresponding to the performance
of testing subset based on coefficient of determination. Exter-
nal validation means assessing the model performance with
independent samples [52]. In this method, minimum one of
the coefficient of determination regression line gradients that
passes through the source for estimated values against exper-
imental CS or vice versa should be close to unity.

K �
n∑

i�1

CSobs × CSpre
CS2pre

(26)

K
′ � CSobs × CSpre

CS2obs
(27)

CSobs and CSpre represent the experimental and formu-
lated CS values, respectively. The determination coefficients
passing through the source between the predicted and exper-
imental values (R2

0) and conversely (R
′2
0 ) are derived using

the following equations:

R2
0 � 1 −

n∑

i�1

CS2pre(1 − k)2

∑n
i�1 CSpre − CSpre)

2 (28)

R′2
0 � 1 −

n∑

i = 1

CS2obs(1 − k′)2/
n∑

i = 1

(CSobs−CSobs)
2 (29)

m �
(
R2 − R2

0

)
/R2 (30)

n � (R2 − R′2
0 )/R

2 (31)

As the result of verification metric through the analysis
based on slope of the regression (Rm) should be greater than
0.5.

Rm � R2 ×
(
1 −

√∣∣R2 − R2
0

∣∣
)

> 0.5 (32)

The validation measures and the related performance of
CS formulation obtained by various models are reported in
Table 8. Based on the results, the MARS-WCA models for
compressive strength which yielded Rm � 0.852 satisfied the
conditionswith best validationwith respect to other used evo-
lutionary and standalone SC methods such as MARS-CSA,
MARS-CSO and standalone MARS models. Therefore, it is
found that MARS-WCA has the highest validity for predict-
ing CS of HS concrete and the computed correlations had not
been accidentally.

3.4.2 Monte Carlo Uncertainty Analysis

In this sub-section, the randomness of model’s uncertainty
is performed by Monte Carlo Simulation (MCS). This pro-
cedure was first applied in military projects for simulation
of the probabilistic events [51]. In this content, the target
variable of the presented study (i.e., compressive strength)
comprises several uncertainties like parameters uncertainty
of the models, uncertainty of input variables, etc. Therefore,
quantitative uncertainty of the MARS-WCA, MARS-CSA,
MARS-CSO and standalone MARS models that associated
with estimated CS is investigated. Based on this technique,
the individual error of the predictions is calculated for all
datasets (Eq. 31). The mean (e) and standard deviation (Se)
of the formulation error is calculated by Eqs. 32 and 33,
respectively [48]:

ei � log10(CS
pre

i ) − log10(CS
obs

i ) (33)

e �
n∑

i�1

ei (34)

Se �
√√√√

n∑

i�1

(
(ei − e)2

n − 1

)
(35)

Also, ±1.96Se yields 95% confidence level around pre-
dicted Pi as follows:

{
Pi × 10−e−1.96Se , Pi × 10−e+1.96Se

}
(36)

The uncertainty percentage andMean Absolute Deviation
(MAD) as the two main factors in assessing the uncertainty
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Table 8 External analysis
measures of predictive models Model K K’ m N Rm

MARS 1.001 0.997 – 0.044 – 0.044 0.759

MARS-WCA 1.002 0.996 – 0.017 – 0.017 0.852

MARS-CSA 1.001 0.997 – 0.022 – 0.021 0.834

MARS-CSO 0.998 1.000 – 0.034 – 0.034 0.790

Table 9 Monte Carlo result for
uncertainty of models Model e Se Median MAD Uncertainty (%)

MARS – 0.043 1.089 49.569 8.049 16.238

MARS-WCA – 0.020 1.918 51.230 7.819 15.264

MARS-CSA 0.009 1.528 50.268 7.880 15.676

MARS-CSO – 0.024 1.191 49.790 8.009 16.085

of the proposed models are reported in Table 9. Based on
the result, the positive mean prediction error indicates that
the predicted CS calculated by all these methods is higher
than the observations. In addition,MARS-WCA andMARS-
CSA models for CS yielded the minimum (15.26% and
15.67%) bandwidth uncertainties, respectively. Moreover, in
other developed models, MARS-WCA satisfied bandwidth
criteria and had lowest uncertainty.

3.5 Variable importance

In this study, to determine the difference of predictor’s value
that will affected on target, analysis of variables importance
(AVI) technique is recruited. TheAVI% is calculated for each
independent variable as follows [54]:

Li � CSmax(xi ) − CSmin(xi ) (37)

AVIi � Li∑M
j�1 Li

× 100 (38)

where CSmax and CSmin � maximum and minimum of the
predicted compressive strength over the ith input domain,
where other independent variable values are equal to their
average values. Figure 13 indicated the variable importance
results for the simulation of CS of HS concrete usingMARS-
WCAmodel that was selected as the best model among other
hybrid and standalonemodels. The bar plot presented that the
most effective variable in CS of HS concrete is the cement
content (30.7%) and water content (20.5%).

4 Conclusion

Achieving a high-accurate model to predict compressive
strength is very important especially, in the field of concrete

W C FA CA SP
AVI (%) 20.50% 30.70% 15.10% 16.10% 17.60%

0%

5%

10%

15%

20%

25%

30%

35%
Analysis of variables importance  using MARS-WCA 

Fig. 13 Results of analysis of variables importance for corresponding
compressive strength

technology. This paper evaluates the ability of the evolu-
tionary algorithms, WCA, CSA and CSO, for optimizing
hyperparameter ofMARSmodel in order to extract newaccu-
rate formulas for the compressive strength of HS concrete.
Through the results of this research, the following conclusion
can be presented:

• New closed-from evolutionary nonparametricmultivariate
regression-based formula is proposed for the compressive
strength of HS concrete. The overall nonlinear formu-
lations given by non–parametric paradigm are presented
with 29, 26, 16 and 8 BFs (Eqs. 20–22 and 18) for MARS-
WCA, MARS-CSA, MARS-CSO and standalone MARS,
respectively.

• Proposed CS developed models manifested that the
MARS-WCA model presented more accurate prediction
in comprising with the other three evolutionary and stan-
dalone techniques, with respect to R, NSE, RMSE, MAE,
WI, and LMI indicators for calibrating and validating sub-
sets. As the results of the evolutionary and original models
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were similar, OBJ as the composite metric is recruited
to illustrate the superiority of the model. The integrated
MARS-WCA model with OBJ � 0.932 presented more
efficiency compared to other models (OBJ of MARS �
1.734, OBJ of MARS-CSA � 1.038 and OBJ of MARS-
CSO � 1.379).

• The proposed evolutionarymodels as novelmachine learn-
ing tools confirmed all of the required criterion of the
statistical regression line gradients for external validation.
Results indicated that MARS-WCA which yielded K and
k’ near 1 and Rm equal to 0.852 satisfied the conditions
with best validation with respect to MARS-CSA, MARS-
CSO and standalone MARS models.

• The Monte Carlo uncertainty procedure for implemented
evolutionary models was employed. MARS-WCA with
15.26% and MARS-CSA with 15.67% bandwidth uncer-
tainties yielded theminimumuncertainty for predictingCS
of HS concrete. The robustness of the proposed evolution-
ary machine learning techniques was verified in this study.
Moreover, sensitivity analysis of variable importance con-
sidered the highest importance variables influenced on the
compressive strength of HS concrete to be the cement con-
tent and water content with 30.7 and 20.5%.
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