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Abstract
Coverage holes are the anomalies that can disrupt the coverage and connectivity of a wireless sensor network. It is imperative
to equip the sensor nodes with energy-efficient hole detection and restoration mechanism. Existing research works either
introduce a new node in the network or use the existing active nodes to recover the coverage loss. The addition of new nodes
in the network, after the occurrence of a coverage hole, is not feasible if the area of interest is at a hostile location. The
relocation or sensing range customization of active nodes not only results in a constantly changing network topology but
also risks the generation of new coverage holes as well as increases the coverage overlapping. Current work presents three
algorithms viz., minimal overlapping and zero holes coverage (MO_ZHC), predictable and non-predictable holes recovery
scheme (PNP_HRS), and a game theory-based reinforcement learning (GT_RL) algorithm. During the random deployment,
the nodes use MO_ZHC to achieve minimal coverage overlapping in the network. After the scheduling round, PNP_HRS
utilizes the sleeping nodes to restore the coverage lost, due to the holes. The active nodes are not displaced from their location,
but they learn using GT_RL, to select and wake up a sleeping node which can recover the coverage loss in the most energy-
efficient manner. The proposed algorithms ensure that the mobility of the nodes is kept minimal for judicious utilization of
limited energy resources. The simulation results prove the efficacy of the present approach over the previous research works.

Keywords Coverage holes · Coverage overlapping · Wireless sensor networks · Reinforcement learning · Sensor nodes

1 Introduction

Lightweight, wireless, intelligent sensing devices that can
communicate in a distributed manner have made continuous
monitoring possible over the past decade. These nodes can be
mobile or static and are deployed either deterministically or
randomly in the area of interest (AOI) [1]. The prime objec-
tive of the deployed sensor nodes is to cover the AOI with
the required degree of coverage. The coverage provided by
a wireless sensor network (WSN) contributes to its perfor-
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mance and serves as a metric to judge the quality of service
delivered by it. Many WSN applications, such as battle-
field monitoring, real-world habitat monitoring, intelligent
warning systems, disaster management, and so on, necessi-
tate constant tracking of the AOI [1]. Manual intervention
may not be possible for an AOI situated at an unreachable
and harsh location after the node deployment. Therefore, the
nodesmust be equipped and trained to counter any anomalies
affecting the reliability and efficiency of a WSN. Amongst
these, coverage holes in the network can result in coverage
and connectivity loss which shall be intolerable for applica-
tions requiring continuous real-time coverage.

For a randomly deployed AOI, a considerable number
of nodes are needed to avoid the occurrence of coverage
holes [2]. Holes resulting from random deployment are the
first category of coverage holes, usually eliminated during
the network initialization to ensure coverage in the AOI.
The other two categories are predictable and non-predictable
holes. The former involves holes due to complete energy
drainage of one or more nodes—the latter involves situa-
tions such as damage to nodes, which could be manual or
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natural. Hardware and software failure of a node can also
lead to the untimely end of a node. It is vital to avoid
the predictable holes and quickly recover from the non-
predictable holes to prevent any coverage and connectivity
loss. Therefore, maintenance of a WSN after its deploy-
ment is as vital as its deployment and initialization. The
solution to coverage holes can be either centralized or dis-
tributed.A centralized-based approach requires the sink node
to detect and restore coverage loss due to the coverage holes.
This process can cause a delay in coverage restoration and
induce unnecessary communication overhead in the net-
work [3]. The increased data transmissions also increase the
probability of collisions in the network. On the other hand,
distributed-based solutions to coverage holes are compara-
tively faster, scalable, and reliable [4]. Therefore, the present
study utilizes a distributed approach to resolve the coverage
holes.

In the present study, the AOI is randomly deployed with a
large number of nodes to prevent the first category of cover-
age holes. However, this leads to coverage overlap amongst
the sensor nodes. Minimal overlap with zero holes coverage
algorithm is proposed to minimize the coverage overlapping
with the help of sensing range customization and sleep/wake
scheduling. MO_ZHC schedules maximal nodes to a sleep
state without generating any coverage holes. Predictable and
non-predictable holes recovery scheme is proposed to deal
with predictable and non-predictable holes. PNP_HRS uses
the mobility and sensing range customization to recover cov-
erage loss generated by the coverage holes. Both MO_ZHC
and PNP_HRS achieve Nash equilibrium with the help of
Game theory-based reinforcement learning (GT_RL). The
active set of nodes periodically check for coverage holes,
and the sleeping nodes near the coverage hole are used to
recover the holes efficiently. The nodes use GT_RL to decide
the optimal action of (i) moving a node, (ii) sensing range
customization, (iii) combined action of moving and sensing
range customization, (iv) neither moving nor customization
to restore a coverage hole. The number of sleeping nodes
benefits coverage restoration. By waking up only the sleep-
ing nodes, the holes are quickly recovered without disrupting
the coverage maintained by the active nodes. It also ensures
that no newholes are created during the recovery process, and
the minimized percentage of coverage overlap remains the
same. The contributions of the present paper are summarized
below:

(i) Recovery of coverage holes without displacing the
active nodes from their location to avoid the occurrence
of new coverage holes while repairing an existing one.
The sleeping nodes are utilized efficiently to recover the
coverage in the holes in a distributed manner with the
help of minimal mobility and sensing range customiza-
tion.

(ii) Early convergence of GT_RL algorithm due to simul-
taneous learning of nodes located in different cell
partitions.

(iii) The nodes take decisions based on their local view of the
networkwhichminimizes the communication overhead.

(iv) Minimal coverage overlapping is achieved in AOI with
the help of proposed MO_ZHC algorithm. Both pre-
dictable and non-predictable holes are recovered using
the proposed PNP_HRS.

The following section contains a brief overview of the lit-
erature on coverage hole repair techniques and a preview
of the research gaps. The network model and key termi-
nologies are found in Sect. 3. The proposed methods and
their pseudocodes are illustrated in Sect. 4. The findings and
discussions are presented in Sect. 5. Finally, in Sect. 6, con-
clusions are drawn.

2 Literature Review

To recover the coverage loss, coverage hole recovery solu-
tions either use sensor nodemobility or configure the sensing
range of the nodes. The former category is also called a
relocation-based scheme, while the latter is often termed as a
power-transmission-based scheme. In both situations, energy
consumption and computation overhead should be minimal
as the sensor nodes cannot afford to spend too much energy
and computational power on maintenance.

In theHoleRepairAlgorithm (HORA), the one-hopneigh-
bours of the dead node are aware of the coverage hole
generated by it [3]. Mobile nodes recover the hole based on
their location and the degree of coverage overlapping. The
holes are recovered in a distributed manner using a game
theory-based approach [4]. Both node relocation and sens-
ing range customization techniques are utilized to cover the
holes with minimum coverage overlap. This technique does
not restrain the distance of relocation for a node, resulting
in energy drainage of mobile nodes. Also, each node chosen
to cover the hole takes a combined action of relocation and
range customization, which can be avoided in some instances
where both actions are not required together.

The need to minimize coverage overlapping while restor-
ing the coverage loss created in the holes is given prime
consideration [5]. An algorithm called the Healing Algo-
rithm of Coverage Hole (HACH) is implemented to achieve
full coverage without coverage holes and minimal overlap.
HACH relocatesminimal nodes to the best positions to repair
the hole. The intersection points of overlapped sensing ranges
of the nodes are used to detect the coverage holes and their
respective locations.Relocationof nodes does not provevalu-
able when the hole is small and redundant nodes are not
available.
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Each node detects the presence of holes by exchang-
ing information with its neighbours in the Coverage Hole
Detection and Restoration algorithm (CHD-CR) [6]. Dur-
ing the hole restoration phase the node with higher residual
energy and least distance from the hole restores coverage by
increasing its sensing range to maximum limit. Increasing
the sensing range to maximum limit saves time for estimat-
ing the required sensing range to cover the hole but increases
the chances of coverage overlap.

Cascaded neighbour intervention algorithm chooses the
nodes based on the residual energy, coverage redundancy,
and relocation distance to repair the coverage holes [7]. This
process might lead to the creation of new holes in addition
to the existing ones. These new holes are simultaneously
resolved using cascaded neighbour intervention repeatedly.
A significant drawback is the creation of new holes while
recovering an old one. The possibility of abrupt failure of a
sensor node is not considered.

A greedy approach-based hole detection and restoration
algorithm are provided in [8]. The presence of holes is
detected using the intersection points-based method. After
a node detects the hole, it sends the information to the sink
node. New nodes are introduced in the network to recover the
holes. Sending the information to the sink generates unneces-
sary overhead. It also means that the approach is not entirely
decentralized.

Two distributed algorithms, viz., the Hole boundary dis-
covery procedure andHole recovery algorithm, are employed
to detect and restore the coverage holes automatically [9].
The hole detection algorithm uses the concept of perimeter
coverage and intersection points. Sensing range customiza-
tion is not utilized for heterogeneous sensor nodes, resulting
in the overhead of choosing a redundant node with the
required radius.

The nodes learn by choosing the action of changing the
sensing radius and relocating themselves with the help of
reinforcement learning [10]. Relocation is limited to one hop.
A standard intersection method is applied to detect the holes
[11]. The node which detects a hole relocates itself to restore
the coverage only if it does not generate any new holes; oth-
erwise, it chooses a new source node randomly. Moving a
random node to the hole location could increase the energy
expenditure and the possibility of coverage overlapping.

A similar procedure is followed in [12],where the intersec-
tion method detects the holes. But during the hole recovery
phase, a new node is placed at the centre of the coverage
hole. Although adding a new node bypasses selecting a suit-
able node, it does so at the expense of adding new nodes
to the network when redundant nodes can perform the same
function.

A distributed reinforcement learning-based protocol
called coverage and connectivity maintenance (CCM-RL)
is given in [13]. It utilizes the sensing range customization to

activate a minimum number of nodes for coverage and con-
nectivity in the target area. Although CCM-RL minimizes
the coverage overlapping but it neglects the occurrence of
coverage holes during this process.

A fully distributed algorithm is suggested to detect and
repair coverageholes [14]. First, the algorithmdetects a failed
node then identifies the size and position of the hole. Even
though the minimum movement of nodes is incorporated,
several nodes need to be displaced to restore a coverage void.

A novel distributed self-healing algorithm called dis-
tributed hole detection and repair (DHDR) is presented [15].
DHDR handles both hole detection and repair with the help
of already deployed nodes. The nodes share information and
coordinate their movements to relocate in such a way that the
coverage hole is restored without disrupting the existing cov-
erage and connectivity. All the nodes bounding the coverage
holes are candidates for hole repair. Movement of nodes can
be further reduced by allowing the nodes to customize their
sensing radius. Mobile sensor nodes are dispatched to heal
the coverage holes detected by a set of static sensor nodes
[16]. The authors have proposed an improved self-organized
mapping (SOM) for coverage hole restoration. The nodes
for coverage hole restoration are chosen using a fuzzy sys-
tem which assigns eligibility to each mobile sensor node.
Eligibility of a sensor node depends on its moving distance
and residual energy. SOM detects the coverage holes after
their occurrence.

The occurrence of coverage holes due to unoptimal
deployment of sensor nodes [17]. The authors have com-
bined the gradient algorithm-based recovery method with
clustering technique to detect redundant sensor nodes. These
nodes are relocated to restore the coverage holes, but the
movements of the sensor nodes have not been minimized.
An intersection-based method has been utilized to detect the
boundary of coverage holes [18]. But during the hole recov-
ery phase, a new node is placed at the centre of the coverage
hole. Although adding a new node bypasses the process to
select a suitable node, but at the expense of adding new nodes
to the network when redundant nodes can perform the same
function.

It has been observed from the literature review that solu-
tions to the problems of coverage overlapping and coverage
holes go hand in hand. While the former happens due to
unnecessarily active sensor nodes in one area, the latter
occurs because of the deficiency of active sensor nodes.
Therefore, a solution to either of these can negatively impact
the problem if both are not acknowledged together.

A solution to restore the coverage in the holes involves
sensing range customization and relocation. Without proper
trade-offs, both solutions can increase the coverage over-
lapping. Therefore, during the initialization of the network,
minimal nodes are activated with zero coverage holes and
minimal overlap in the present study. After the initialization,
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Table 1 Categorization of coverage optimization algorithms based on important parameters

Algorithm Hole recovery method Existence of holes
N-node R-node DRD ARD M-Nodes SRC COM HR Learning

HORA [3] × � × � � × � � ×
Hybrid CH recovery [4] × � × � � � � � �
HACH [5] � � � × � × � � ×
CHD-CR [6] × × × � × � × � ×
CNI [7] × � × � � × × � ×
Greedy [8] � × × � × × × � �
DCHD [9] × � � � � × × � ×
Hybrid recovery [10] × � × � � � × � �
Coverage enhancement [11] × � × � � × × � ×
CBHC [12] � × × � � × � � ×
CCM-RL [13] × × � × × � � × �
DHDR [15] × � × � � × × � ×
SOM [16] × � × � � × × � �
Proposed approach × � × � � � � � �

The parameters namely, N-node, R-node, DRD, ARD, M-nodes, SRC, COM and HR represent new node, redundant node, during random deploy-
ment, after random deployment, mobile nodes, sensing range customization, coverage overlap minimization and hole recovery, respectively

the active set of nodes periodically checks for the occur-
rence of coverage holes. A few existing algorithms related to
coverage optimization are categorized in terms of important
parameters as shown in Table 1. The classification parame-
ters used are hole recovery method (new node i.e. N-node is
introduced to recover the hole or existing redundant node i.e.
R-node is used), existence of holes (holes exist during the
random deployment (DRD) or after the random deployment
(ARD)), inclusion of mobile nodes in the network (M-node),
sensing range customization (SRC), coverage overlap min-
imization (COM), inclusion of hole recovery method (HR)
and the use to learning to recover the holes. The hole recovery
algorithm proposed in the present study, works energy effi-
ciently to recover the coverage without generating any new
holes and increasing the existing minimal coverage overlap-
ping.

3 Important Terminologies and Network
Model Assumptions

Some important terminologies used in this study are defined
as follows:

• ini t_node: This is the node which initiates the learning
process inside a cell during the starting of a scheduling
round.

• detector_node: It is the node responsible for detecting a
coverage hole.

• rescue_node: Node chosen by the detector_node to
recover the hole.

• Neighbour nodes: Nodes within the transmission distance
of a node and located inside cell boundary. These are
denoted by the set {NN }.

• First neighbours: Nodes within the sensing distance of
a node and located inside the cell boundary. These are
denoted by the set {FN }, such that {FN } ⊂ {NN }

• Single hop distance: It is equivalent to the sensor node’s
transmission range.

• First neighbour coverage (FNC): Sensing the region of a
node that is surrounded by its first neighbours.

• Intersection point (I P): The points of intersection are
formed by the overlapped sensing areas of two or more
sensor nodes.

• Boundary intersection point (BI P): The points where the
sensing field of a sensor node located inside a cell, inter-
sects with the cell boundary.

• B-node: The node closer to the boundary of the cell as
compared to its centre.

The sensor nodes are randomly deployed in the AOI. The
following are the system model and the assumptions consid-
ered:

(i) The network is homogeneous at the beginning. Each
node can customize its sensing radius within a defined
range and move over short distances. The network
becomes heterogeneous when nodes set their sens-
ing range individually based on their requirements and
learning.

(ii) The coverage holes can occur due to both sudden node
failure and battery drainage.
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(iii) A node localization algorithm [19] informs each node
of its position. The node also has details about its neigh-
bours’ location, state, and residual energy.

(iv) Basic energy dissipation for transmission and recep-
tion of data packets is adapted from the work based on
energy-efficient coverage [20,21].

(v) Transmission radius (Rc) of each node is equal to twice
themaximumpossible value of the sensing radius (Rs).

(vi) The AOI is divided into multiple square cells with each
side of the cell equal to the sensing radius of the nodes
during random deployment. Hence for the AOI of size
L × L , number of cells required for partitioning is:

| Cells |= L × L

Rs × Rs
(1)

Figure 1 shows the cell partitioning of a randomly
deployed AOI.

(vii) For N number of nodes deployed in theAOI, each node
S j , resides in a celli ∈ Cells, where i ≤| Cells | and
j ≤ N . It is defined formally using a tuple n j consti-
tuting of seven attributes.
n j = {id j , l j , Rc[ j], Rs[ j], er [ j], NN j , FN j }where
id j is a unique identity number of S j , and l j is the loca-
tion of S j . Rc[ j] represents the communication range
and Rs[ j] is the sensing range of S j which is customiz-
able. er [ j] is the residual energy, NN j and FN j are
the sets of neighbour nodes and first neighbours of S j ,
respectively. NN and FN contain 3-attribute tuples
pertaining to the neighbour nodes and first neighbours
of S j . A tuple belonging to kth neighbour andmth first

neighbour can be accessed as NN j
k and FN j

m , respec-
tively, for k ≤| NN j | and m ≤| FN j |.

(viii) Due to the wider scope of random deployment, the
nodes are deployed randomly in the AOI. In the sim-
plest form of random deployment (simple diffusion),
the nodes are scattered from above the ground and the
randomly generated node locations are defined by a
probability density function (pd f ) as follows [22]:

pd f (X) = 1

2πσ 2 H(|| X −C ||), H(v) � e(
−v2

2σ2 ), X ∈ IR

(2)

where X defines the location of a node, C refers to
the ground reference point above which lies the scat-
tering point. σ 2 refers to the variance of the random
distribution of the nodes.

Fig. 1 Square cell-based partitioning of the randomly deployed WSN

4 ProposedMethodology

In this section, three algorithms viz., MO_ZHC, PNP_HRS,
and GT_RL are proposed to achieve an energy-efficient cov-
erage scheme with augmented coverage hole restoration and
minimal overlapping. The low cost and small size of sensor
nodes allow the scattering of a considerable number of sen-
sor nodes in the AOI, which minimizes the probability of the
occurrence of coverage holes due to randomdeployment. But
the more the nodes scattered during random deployment, the
more is the overlapping in the AOI. Such a situation results
in redundant sensing, which increases the redundancy of the
transmissions of data packets towards the sink. Too many
redundant communications increase the chances of collisions
in the network and lead to unnecessary energy drainage of
redundant sensor nodes. MO_ZHC puts a maximum number
of redundant nodes to sleep in a scheduling cycle,minimizing
the coverage overlapping, resulting from randomdeployment
of substantial sensor nodes.

The detector nodes use PNP_HRS to recover the cover-
age holes occurring during a scheduling round. The dying
nodes or nodes facing abrupt hardware/software failures
could be responsible for the generation of these holes in
the network. Every active node periodically checks for the
occurrence of non-predictable holes. The detector node takes
energy-efficient decisions involving relocation and range
customization to recover the holes while maintaining the
percentage of coverage overlap, earlier minimized using
MO_ZHC. In the case of predictable holes, when a node
reaches the residual energy level lower than the threshold
energy (et ), it informs the initiator node so that a coverage
hole due to its death can be prevented.

MO_ZHC and PNP_HRS utilize game theory-based rein-
forcement learning to achieve Nash equilibrium in the WSN
environment. Learning is initiated at the initiator node in
each cell concurrently. In [13], the sensor nodes were cho-
sen randomly to run the learning algorithm sequentially. This
process can result in a delay in providing or restoring cov-
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Fig. 2 a Coverage overlapping with degree 0; b coverage overlapping
with degree 1; c coverage overlapping with degree 2

erage in the AOI. Therefore, in the present study, initiator
nodes are chosen from each cell, which simultaneously exe-
cutes the learning process. In the proposed algorithms, nodes
belonging to different cells do not interfere with each other’s
decisions. Thereby allowing the simultaneous execution of
learning algorithms by the nodes in different cells possible.

4.1 Minimal Overlapping and Zero Holes Coverage
Algorithm (MO_ZHC)

Coverage overlapping results from the overlapped sensing
areas of sensor nodes. Degree of coverage overlapping refers
to the number of times a particular region (Reg) is covered
by overlapped coverage. The degree of overlap is 0 if only
a single node covers Reg, the degree is equal to 1 if the
sensing ranges of two nodes overlap the region. Similarly,
the degree is equivalent to 2 if the sensing ranges of three
nodes overlap the Reg. Figure 2 shows the scenarios for up
to 2 degrees of coverage overlapping. It is important to note
that the degree of coverage overlapping is not the same as
the degree of coverage. A degree of coverage overlapping
equal to 0 results in a single degree of coverage. Likewise,
degree 1 and degree 2 coverage overlapping results in double
and triple degrees of coverage, respectively. A region Reg in
the AOI can be divided into various regions based on the
degrees of coverage overlapping experienced by them. The
AOI is said to have complete coverage when all the cells have
each point covered by at least one node. Cell coverage can
be estimated by Eq. (3).

η = [Ar(celli )
⋂{Ar(S1)

⋃
Ar(S2)

⋃
Ar(S3)

⋃ · · · ⋃ Ar(SNc )}]
Ar(celli )

(3)

where Nc is the total number of nodes inside celli , Ar(celli ),
and Ar(S j ) for j ≤| Nc |, represent the area of the i th cell
and the sensing area of the node S j , respectively. A cell is
fully covered when η =1. MO_ZHC aims to keep coverage
overlap to a minimum while avoiding coverage holes in the
network. As a result, minimal number of nodes are involved

in a single scheduling round to maintain coverage for the
AOI.

Algorithm 1 details the steps for achieving minimum
overlapping and zero holes coverage. After the random
deployment, the AOI is partitioned into cells of size Rs × Rs .
This is done so that even a single node inside the cell
could cover at least 80% of the cell area. Total num-
ber of cells in the AOI can be determined using eq(1).
Each cell is defined using four attributes, viz., the number
given to the cell (cellno), the coordinates of intersection
of the diagonals and the maximum and minimum values
of the x and y coordinates of the points inside a cell.
celli = {cellno, (xc, yc), (xmax , ymax ), (xmin, ymin)}. For
each celli ∈ Cells, the sink node determines a node S j which
is located at the least distance from (xc, yc) and sends the cell
tuple to that node. Using these values each node can identify
the cell number it belongs to. S j broadcasts this message to
the nodes within its transmission distance. Using this tuple
each node in the AOI identifies the cell it belongs to. A node
might receive the cell tuple from a number of nodes if it is
located near the boundary of a cell. Hence, the node sends
back an acknowledgement message only to the node with
which it shares a cell. Each node also identifies its neighbour
nodes (NN ) and first neighbours (FN )within the same cell,
based on their distance from it. Each node in the AOI esti-
mates the first neighbour coverage percentage (FNC j ) of its
sensing area. It is computed as follows:

FNC j =
∑|FN j |

m=1 (Ar(Sm) ∩ Ar(S j ))

Ar(S j )
× 100 (4)

where (Ar(Sm)
⋂

Ar(S j )) denotes the area of S j that is dis-
tinctly occupied by Sm ∈| FN j |. Each node S j creates a first
neighbour coverage list (FNC_List) and initializes it with
its own id and the corresponding FNC j value. S j broadcasts
its own FNC j value to all the neighbour nodes within the
cell. S j updates its own FNC_List by appending the FNC
percentage values received from its neighbours. At the end
of FNC_List updation process, all the nodes belonging to a
particular cell are aware about the FNC values correspond-
ing to their neighbour nodes. The list is then sorted in the
ascending order of the FNC values. Each node calculates
a timer t[ j] which depends on the FNC value and the time
taken by a node tomake a learning decision i.e.�t . The value
of �t is very small and is estimated as 0.1725. This value is
20% higher than the actual average time of state transition to
ensure that two nodes in the same cell do not take an action
at the same time. If two or more nodes in a cell start to make
decisions about their actions together, it could result in con-
flicts.
The node with the least FNC value has a timer value of 0
and is called the initiator node (ini t_node). There is one
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Algorithm 1: Minimum Overlapping and Zero Holes
Coverage Algorithm
Input: celli , n j , Rs , er [ j], l j
Output: FNC_List , FNC j , �rs

1 Randomly deploy N nodes in the AOI of size L × L .
2 Divide the AOI into cells of size Rs × Rs , Rs ← sensing range
of the nodes during deployment.

3 Each celli = {cellno, (xc, yc), (xmax , ymax ), (xmin, ymin)},
celli ∈ Cells.

4 FNC_List = {}
5 foreach node S j ∈ celli do
6 Estimate n j = {id j , l j , Rc[ j], Rs [ j], er [ j], NN j , FN j}.

7 NN j
k = {idk , lk , er [k]}, for kth neighbour node, k ≤| NN j |.

8 FN j
m = {idm , lm , er [m]}, for mth first neighbour,

m ≤| FN j |.
9 Estimate the percentage of first neighbour coverage in the

sensing area of S j as FNC j .
10 Broadcast the FNC j value to the neighbour nodes.
11 Initialize the FNC_List by appending own FNC value to

the list.
12 FNC_List = {(S j , FNC j ), append}
13 Complete the FNC_List by appending the FNC values

received from the first neighbours and other neighbour nodes.
14 FNC_List = {(id, FNC), append}, such that

id ∈ FN j OR id ∈ NN j .
15 Sort the FNC_List in the ascending order of FNC value.
16 FNC_List = sort(FNC_List(2), ascend)

17 while FNC_List �= Null do
18 pos j = index((S j , FNC j ), FNC_List)
19 t[ j] = (pos j − 1) × �t , �t is the estimated time of a

node to decide its state and action.
20 ini t_node = node with least t[ j].
21 foreach nodeS j do
22 if t[ j] ← 0 then
23 if FNC j == 100 then
24 Action (S j ) ← sleep.
25 else
26 Identify the neighbours with id ∈ FN j and the

least area of intersection.
27 Compute the intersection points and store them in

the set I P[ j].
28 if S j ∈ B − nodes then
29 Identify the cell boundary intersection points

and store them in BI P[ j].
30 Estimate �rs, such that the intersection points

(xp, yp) ∈ I P[ j]or B I P[ j] remain covered, p is
the total number of intersection points of S j
including I Ps and BI Ps.

31 if �rs > 0 then
32 Compute the new range as

Rs [ j] = Rs [ j] − �rs.
33 Action(S j ) ← Customize the range.
34 Action(S j ) ← maintain active state.

35 else
36 Action(S j ) ← maintain active state.

initiator node in each cell. The nodes in different cells can
start the learning process together. The nodes in the same
cell perform the learning process one after another as their
timer expires to avoid any conflicts. Each node identifies its
FNC state i.e. full first neighbour coverage or partial first
neighbour coverage. Full FNC implies that the sensing area
of a node is completely covered by its first neighbours. In
this case, the node goes to sleep mode and broadcasts its new
state to its neighbours within the cell. On the other hand, if
the node is in the state of partial FNC then it estimates �rs
which denotes the sensing range customization variable. A
node identifies the set of intersection points (I P) with the
first neighbours which contribute the least to its FNC value.
In case a node belongs to the set of B-nodes, it finds the
intersection points with the cell boundary (BI P). Final esti-
mated value of �rs must be such that all the intersection
points belonging to the set I P and BI P must remain cov-
ered after sensing range customization. If a positive value to
this variable can be found, then the sensing range is decreased
by �rs and the node remains active. But if a positive value
cannot be found then no action is taken by the sensor node.

4.2 Predictable and Non-predictable Holes Recovery
Scheme (PNP_HRS)

When the algorithm (MO_ZHC) converges, theAOI hasmin-
imal coverage overlapping with minimal active nodes and
zero coverage holes. The second algorithm, PNP_HRS, is
executed by the active set of nodes to prevent the occur-
rence of the predictable holes and restore the coverage loss
caused by non-predictable coverage holes in the shortest pos-
sible time span. Algorithm 2 provides steps for restoring the
predictable and non-predictable coverage holes. The active
nodes in the AOI periodically check for the occurrence of
non-predictable coverage holes. The hole detection is done
using the intersection points-based algorithm as discussed in
[14]. The nodes learn to make optimal decisions for restoring
the holes using reinforcement learning.

Each node checks for the occurrence of coverage holes
when the timer, th expires. The value of th depends on the
total expected lifetime of the WSN and is estimated in step
3. �x extracts a time period from TE and generates a small
period of time after which hole occurrence is checked. The
randomvariable, nrand j is used to randomize the value of th .
The sensor node which detects the coverage is designated as
the detector_node. The detector_node is responsible for
determining the hole location (xH , yH ) and the hole bound-
ary using the intersection points-based algorithm, discussed
in [14]. The boundary identification involves the determi-
nation of uncovered intersection points (U I Ps). In Fig. 3,
I1, I2, I3 are covered intersection points (C I Ps) which are
enclosed by the sensing areas of S5, S4 and S6, respectively.
However, points I4, I5, I6, I7 and I8 are the U I Ps as they
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Algorithm 2: Predictable and Non-predictable Hole
Recovery Scheme
Input: TE , th , er , et
Output: (xh, yh), action_list

1 Part(a) Non-predictable coverage holes recovery
2 TE ← Total expected lifetime of the WSN.
3 th ← TE × �x × nrand j , �x = 0.0125, nrand j ∈ (0, 1].
4 foreach node S j in the i th cell do
5 Check for the occurrence of coverage hole after th expires.
6 if hole H is found then
7 S j ← detector_node
8 Generate the hole location (xH , yH ).
9 Find the rescue_node.

10 Send a wake_up_signal to the rescue_node.
11 Wait to receive ACK_signal and send the coordinates of

the hole H with appropriate action_list .
12 Rescue_node follows the action_list .
13 Estimate the cost of hole recovery.

14 Part(b) Predictable coverage holes recovery
15 foreach node Sk in the celli do
16 if er < et then
17 Update ini t_node about the potential hole.
18 Send HELP < POT_HOLE, lk >.

19 if HELP message is received then
20 Goto Step 7

are not covered by the sensing range of any node, as seen in
Fig. 3. Hence, they form the boundary of hole H . Out of these
U I Ps, two points with maximum distance (dmax ) are deter-
mined. The point of bisection of straight line connecting these
twopoints is the location (xH , yH )of the hole H aswell as the
new location of the rescue_node. The new required sensing
radius of the rescue_node to cover H is equal to dmax

2 . The
detector_node is responsible for selecting a rescue_node.
The detector_node identifies a candidate set of nodes and
chooses the rescue_node based on the hole restoration time
and the energy consumed in the process. If the estimated hole
restoration time exceeds the average expected hole restora-
tion time for a low energy consuming rescue_node option
then the rescue_node has to be chosen by trading off energy
for time.

In case of predictable holes, coverage restoration mech-
anism is the same as discussed for non-predictable holes
recovery. A node Sk with low energy levels i.e. er < et
informs the ini t_node about the potential coverage hole by
sending a help message as HELP < POT _HOLE, lk >.
lk denotes the location of Sk . The hole location xH , yH is the
same as lk . The threshold value of residual energy is consid-
ered as 15% of the initial energy value. The value is taken
such that the node can inform the initiator node about the
potential coverage hole and the rescue node could be found
and activatedwith necessary actions regarding relocation and
/or sensing range customization. The hole boundary com-
prises the sensing area periphery of Sk . ini t_node acts as

Fig. 3 Intersection points marking the boundary of coverage hole H

the detector_node and starts looking for a rescue_node in
the vicinity of xH , yH . The rescue_node is always searched
within one hop distance from the coverage hole location
so that the displacement is never more than a single hop.
This ensures minimum mobility which is very crucial for an
energy constrained WSN. It is vital to note that a dying node
does not look for a rescue_node itself because due to its
low energy levels, it will not be able to choose an optimal
candidate. Therefore, this responsibility is delegated to the
ini t_node.

Following candidate set of nodes is identified by the
detector_node to recover both predictable and non-
predictable holes.

(a) node with current location at the least distance from
(xH , yH ) and which does not need range customization.

(b) node which doesn’t need to move to the new location and
can cover the hole from its current location by sensing
radius customization.

(c) node which needs to be moved to the new location along
with sensing radius customization.

(d) node which can cover the hole without any movement
and without needing any radius customization.

Point (d) above, refers to a scenario when the candidate node
is very close to the hole location and its sensing radius is
already larger than the radius of the coverage hole. Based on
these candidates, detector_node chooses the rescue_node
and decides the action_list .

4.3 GameTheory-Based Reinforcement Learning
(GT_RL) UsingMO_ZHC and PNP_HRS

Reinforcement learning-based AI and game theory are two
integral parts of the multi-agent reinforcement learning.
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Game theory is a mathematical framework used to describe
and analyse the behaviour of multiple agents which coordi-
nate to achieve a global optimum [23,24]. Each agent has
an individual goal to mark its individual performance and a
global goal to specify the performance of the environment
it interacts with. The results of a decision made by an agent
affects the decisions of others. Either all the agents work col-
laboratively to achieve a single goal, or each agent can have
their own local as well as global goals. A game is formally
described as � = {λ, A, μ}. These attributes λ, A, μ repre-
sent three fundamental components of the game, where,

(i) λ represents the set of players or the learning agents. λ =
{1,2,...,n},where n is the total number of players. All the
players except the i th player are represented collectively
by −i .

(ii) A represents the set of strategies/actions belonging to
each player. A = {A1, A2, ..., An}where Ai is the strat-
egy opted by i th playerwhich is basically a set of actions
taken by it.

(iii) Eachplayer has a reward functionwhichmaps its actions
to the positive reward value or the expected payoff. μ is
a reward function for each player. μi : A → IR.

In the present study, Q-learning is applied to the nodes
located in different cells constituting the AOI. Q-learning
is a reinforcement learning technique. The nodes learn by
engaging with the environment repeatedly. The learning
nodes perform an action that alters the state of the system
in exchange for a reward. This reward-related knowledge
acquired by the agent aids it in making better decisions in
the future. ε-greedy strategy is used by the nodes to select
their actions. An action made by one node has an impact on
the actions of other nodes.Q-learning in amulti-agent system
likeWSN, incorporates the concept of game theory,where the
reward is provided to an agent depending on the joint actions
of other agents as well. A learning agent uses Q-values to
learn optimummethodswhen attempting to optimize the total
reward value. The agent begins with a collection of arbitrary
initial values for the variable Q. The Q-values at any point in
time (t) are cached in a matrix and updated as follows [25].

Q(s, a) ← Q(s, a) + α[r + γmax
a′ Q(s′, a′) − Q(s, a)] (5)

s ∈ S, S is a set of states, a ∈ A and r is the reward while
transiting from state s to st+1. The reward is estimated on the
basis of the effect of a learning agent’s actions on the per-
formance parameters of the environment. α is learning rate
(0 < α ≤ 1) and γ is the discount factor (0 < γ ≤ 1). The
degree to which new knowledge supersedes old information
is defined by the learning rate. At time t , Q-value is initial-
ized as Q(s, a). s′ is the new state at time t+1 after action a

Fig. 4 Reinforcement learning in a multi-agent system

is taken in state s at time t . [αγmax
a′ Q(s′, a′)] represents the

maximum estimated reward from state s′.
Figure 4 shows the scenario of reinforcement learning in

a multi-agent system.
Variable Q in Q-learning represents quality of an action.

The more rewarding an action is in a particular state,
the higher is the Q-value. Hence each player greedily
chooses an action based on the Q-value. ε-greedy is used to
choose actions based on the Q-value [13]. ε-greedy switches
between exploration and exploitation. ε denotes the proba-
bility of exploring the options during a game and (1 − ε)

denotes the probability of exploitation. At ε=1, maximum
exploration happens. In a long run this could lead to awastage
of resources when unrewarding actions are explored. At ε=0,
maximum exploitation happens. If only exploitation hap-
pens then an agent might miss out on some better rewarding
actions. Therefore, value of ε must be changed regularly to
balance between exploration and exploitation of the environ-
ment. In the present study, the rate of exploration (ROE) is
taken in the interval [0, 0.55]. Based on the value of ROE, ε
is optimized so that a player chooses most rewarding actions
for a particular state. There must be further exploration of the
environment before the players hit Nash equilibrium. The
learning agents will achieve the global optimum faster by
using Nash Equilibrium. In this state, each agent has the best
strategy in response to strategies expected from other agents.
Considering, � a stochastic game then the strategy (a′

i , a
′−i )

is attributed as Nash equilibrium state if and only if ∀ai ∈ Ai

and ∀a−i ∈ A−i , μ(a′
i , a

′−i )) ≥ μ(ai , a′−i ),∀i ∈ λ. The
problem of achieving optimized coverage, with minimal
overlapping and zero coverageholes, is formulated as amulti-
player game. The sensor nodes are the learning agents or
players that communicate with one another to reduce cov-
erage redundancy while avoiding network holes. GT_RL
illustrates the steps for achieving global optimum. When the
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Fig. 5 Possible state transition duringa coverage overlapminimization;
b coverage hole recovery

learning process is initiated and the nodes are in exploita-
tion phase, instead of taking random actions, they utilize the
MO_ZHC and PNP_HRS algorithms to build the knowledge
base. As the nodes enter in the exploration phase, they choose
actions with the highest Q-value. A learning agent identifies
one of the five states it belongs to with the help of MO_ZHC
and PNP_HRS. An action is performed from the action pro-
file. After the action is taken the local and global states are
affected with respect to the parameters such as AWCOP ,
coverage rate, energy consumption and hole restoration time,
reward is generated, and Q-values are updated. As the agent
learns, it uses ε-greedy to choose an action which corre-
sponds to highest Q-value. The agents strive to achieve
Nash-equilibrium. When the agents are in Nash equilibrium,
each agent has the best response action with respect to other
agents in the game. An action profile for the agents does not
belong to Nash equilibrium until there is a possibility for at
least one agent to improve the payoff but changing the action
in the action profile. A learning agent node can be in one of
the following states during its lifetime:

(i) Partial FNC withminimal coverage overlapping: In this
state, the coverage overlapping cannot be reduced fur-
ther without generating a coverage hole.

(ii) Complete FNC with the first neighbours providing full
coverage to the sensing area of the node.

(iii) Partial FNC with coverage overlapping which can
be minimized further without generating any coverage
holes.

(iv) Presence of a coverage hole in the neighbourhood.
(v) Coverage hole is restored in the neighbourhood.

To achieve minimal coverage overlapping, avoid poten-
tial coverage holes and recover the holes due to node failure,

a node has to perform the following set of actions, viz., (i)
Select a rescue node to recover the hole, (ii) Customize the
sensing radius, (ii) Active, (ii) Sleep, (iv) Move and cus-
tomize the sensing radius. Figure 5 shows possible state
transitions during coverage overlap minimization and hole
recovery. As WSN is a dynamic environment and the nodes
are continuously learning, it is possible that a node may not
take an action at all in a particular state. In Fig. 5b, the
node has a set of actions available to recover the coverage
hole. The action chosen by the node may vary according to
the residual energy available and the energy consumed to
perform an action during the exploitation phase. Afterward,
as the node advances towards exploration phase, the action
attributed with highest Q-value is chosen.

Algorithm 3: Game Theory-based Reinforcement
Learning algorithm
Input: Q, s, a
Output: Q, r

1 λ ← {agt1, agt2, . . . , agtn}, λ is a set of agents in the
system.

2 Sts ← {s1, s2, s3, s4, s5}, Sts is a set of states.
3 A ← {a1, a2, a3, a4, a5, a6}, A is the set of actions available
to an agent.

4 Initialize the Q value.
5 repeat
6 foreach agti in a state si do
7 Choose an action using the ε-greedy based on the

Q-value such that overall reward gained is maximized
and Nash equilibrium is attained.

8 until the multi-agent system reaches the global optimum
9 Estimate the reward r gained by observing the impact on the
reward parameters of the environment.

10 Update Q-values using Eq. (7).

4.4 Reward Estimation Criteria for MO_ZHC

The node is rewarded for its activities based on the resulting
impact on the environment, both locally and globally. The
targets of a node to achieve a local reward is to decrease the
degree of coverage overlapping in its cell without disrupting
the coverage. For this purpose, Area-wise coverage overlap-
ping percentage AWCOP estimation is done by a node for
its own sensing region as well as for the AOI to determine
local and global rewards, respectively. Each node finds the
degree of coverage overlap in its sensing region and estimates
the percentage of sensing area corresponding to each degree.
Locally, each node aims to decrease the degree of cover-
age overlap to 0 for single degrees and higher. During this
attempt, each node also makes sure that any point in its sens-
ing area does not lose coverage. The initiator nodes in each
cell collaborate with one another to estimate the AWCOP
with respect to four degrees (0,1,2,3) for the entire AOI. For a
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region Reg in the AOI, the AWCOP can be formally stated
as follows for m degrees of coverage overlapping.

AWCOP = [Reg0 Reg1 Reg2 Reg3 . . . Regm] (6)

After minimal coverage overlapping is achieved using
MO_ZHC , the overlap degrees are reduced to the range
[0, 3] with degree 3 exceedingly small. Major percentage
contributions are made by degrees 0, 1 and 2. Hence,

AWCOP = [Reg0 Reg1 Reg2 Reg3] (7)

The degree of coverage overlap for any part of node’s
sensing region is calculated by identifying the areas found
by the intersection of the sensing ranges of the node’s first
neighbours. The theorems provided in [26,27], which are
completely dedicated for identifying these areas have been
used in the present study. Nodes estimate the local and global
rewards based on the decrease and increase observed in the
value of AWCOP as a result of the decisions taken by it. A
node receives a local negative reward if its actions disrupt
the coverage in the cell i.e. generates a coverage hole or if
the existing AWCOP for degrees greater than 0, increases
in the cell. On the other hand, a node receives a positive local
reward if the AWCOP for degrees greater than 0 decreases
in the AOI without generating any coverage holes. The same
is the case for global rewards with respect to AWCOP and
coverage criteria in the AOI. A node is also provided a long-
term rewardbasedon its decision regarding the customization
of the sensing range. If the energy consumed to customize the
sensing range is more than the energy saved after decreasing
the sensing range, then a negative reward is attributed else
a positive reward is attributed to encourage the node to take
such decision during similar situations in the future. The cost
of increasing the sensing range by �rs is given as follows.

Cs(S j ) =
{
e|�rsi t ′|, if �rsi > 0
−e−|�rsi t ′|, if �rsi < 0

(8)

where t ′ denotes the period starting from the point when the
sensing range becomes Rs + �rs to the point when it is
further changed by the node S j . Negative cost is incurred
when the sensing range is decreased by �rs units. Once the
overlapping is minimized, Eq. (9) is used for estimating the
reward with respect to the coverage rate.

CR =
∑|Na |

i=1 π(Rst [ j])2
Ar

(9)

CR represents the rate of coverage provided by the active
set of nodes [13]. | Na | represents the total active nodes
in the network. Ar is the area of AOI and Rst [ j] represents
the sensing radius of i th active node during time ′t ′. CR >1

implies coverage overlapping state which means a negative
reward, CR =1 or CR approaching a value of 1 implies the
network coverage rate is achieved which means a positive
reward. IfCR < threshold value, then it implies the presence
of coverage hole in the network and yields a negative reward.

4.5 Reward Estimation Criteria for PNP_HRS

The chosen rescue_node should not increase the existing
coverage overlapping in the network. Choosing a
rescue_node also depends on the availability of sleeping
nodes which decreases as the number of rounds achieved by
the network increases. Negative reward is provided if there
is an increase in the existing percentage of various degrees
(> 0) of coverage overlapping. In PNP_HRS, along with
the cost of sensing range customization, the cost of moving
a node is also involved. It is estimated using Eq. (10). �m
represents the amount of distance moved by a sensor node.

CP = e�m (10)

Total cost of sensing range customization and node move-
ment is calculated as follows.

CT = K1CP + K2Cs (11)

where Cs is calculated using Eq. (8), K1 and K2 are cost
balancing coefficients for Cp and Cs , respectively. Positive
rewards are provided for restoring the hole in minimum pos-
sible time which is done by comparing the detector_node’s
hole restoration time with already existing minimal time of
restoration. In the beginning, hole restoration time is equal to
the expected time of hole restoration (texp). In this study, texp
is taken as 25s for 1000 deployed nodes. (texp) is computed
during the execution of PNP_HRS in a controlled environ-
ment with best and worst cases. texp = tb+tw

2 , where tb
denotes the best case time and tw denotes the worst case
time. The best case is considered when the values of �m
and �rs for a rescue_node are equal to 0 for the hole
recovery. In this case, the rescue_node just needs to switch
from sleep to active state after receiving a wake up signal
from detector_node. The worst case is considered when the
rescue_node has to move the maximum possible distance
and the value of �rs is equal to the difference between the
highest and lowest values of the sensing radius.

4.6 Time Complexity Analysis

The computational complexity of the proposed method is
determined to analyse the time taken by a computer to

123



10858 Arabian Journal for Science and Engineering (2022) 47:10847–10863

Table 2 Parameters and their
values used in the simulation

Parameters Values

Size of AOI 500m × 500m

Range of total deployed nodes 1000–4000

Initial sensing radius 25m

Sensing range 10–35m

Transmission range up to 70m

Total energy 140J

Maximum time period of a scheduling round 23min

Learning rate 0.2

Discount factor 0.65

Average speed of a node 1m/s

Fig. 6 Effect of total number of
deployed nodes on the average
number of active nodes with a
comparative analysis

run the algorithm. The complexity of the proposed learn-
ing algorithm GT_RL is determined by the complexity of
the algorithms proposed for overlap minimization and hole
recovery, namely MO_ZHC and PNP_HRS, in the current
analysis. This overall complexity is estimated to be of the
orderO(Nm), where N is the total number of nodes deployed
in the AOI and m is the average number of first neighbours
a node has inside a cell partitioning the AOI.

5 Results and Discussion

This section presents the simulation results as well as
the performance analysis of the proposed algorithms viz.,
MO_ZHC, PNP_HRS, and GT_RL. A comparative analy-
sis is conducted between the findings of the current study
and five other similar methods namely, Cascaded neigh-
bour intervention algorithm [7], Hybrid recovery algorithm
[10], Coverage enhancement algorithm [11], CBHC [12],
CCM-RL [13], DHDR[15], and SOM[16]. The simulation
parameters and their values are enlisted in Table 2.

5.1 Change in the Average Number of Active Nodes
with Respect to Total Nodes

As the number of deployed nodes grows, Fig. 6 shows how
the average number of active nodes in the network changes.
The average size of the set of active nodes generated using
MO_ZHC has been compared with [7,10–13]. Too many
active nodes in the network incur energy wastage which can
be avoided by activating only a minimal number of nodes.

The least number of average active nodes are reported
for hybrid recovery algorithm [10] compared to cascaded
neighbor intervention [7], coverage enhancement algorithm
[11], CBHC [12], and CCM-RL [13]. However, the proposed
MO_ZHC generates a significantly lower number of active
nodes as compared to [10]. The average number of active
nodes only rise by an average of 1.11% as the total number of
nodes are increased. This is because the requirement of active
nodes to cover the target area does not change if the size of
the target area remains the same. The same behaviour can
be observed for [7], [10–13]. The WSN is assumed to have
completed one round of service when the nodes successfully
transfer the sensed data to the sink node. In the current work,
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Fig. 7 Effect of the number of rounds achieved by the network on the
percentage of coverage overlapping in the target area

Fig. 8 Effect of the total number of deployed nodes on the average
number of holes generated in the network

constrained shortest-path energy-aware routing algorithm is
used for routing the data efficiently [28].

5.2 AWCOPVariation with Respect to the Number of
Rounds

Figure 7 depicts the relationship between the number of
rounds of service reached by the network and the AWCOP
for four distinct degrees of coverage overlapping in the tar-
get region. It is essential to minimize the degrees of coverage
overlapping greater than 0 to maximize the desired degree of
coverage in the target area, i.e. degree 0.

Aminimal coverage overlapping in the target area ensures
minimal sensingdata redundancy in the network.As the num-
ber of rounds reached by the network approaches 2000, the
0th degree of the coverage shows anoverall increase of 400%;
degree 1 shows an overall decrease of 71.6%; degree 2 shows
an overall decrease of 80%, and degree 3 shows an overall
reduction of 91.6%.

5.3 Variation in the Average Number of Holes with
Respect to Total Nodes

The total number of coverage holes in the network changes
as the number of deployed nodes varies, as shown in Fig. 8. A
node has more opportunities to sleep and save energy as the
number of deployed nodes in the network increases. There-
fore, coverage holes due to untimely energy drainage of a
node decrease. Any algorithm can only impact the holes
caused by energy drainage. There is no way to monitor the
holes caused by sensor node software and hardware failure
before their occurrence.Theproposed approachgenerates the
least number of holes as compared to algorithms presented
in [7,10–12].

When the total number of deployed nodes is increased
by 500, the average decrease in the number of holes in the
network is approximately 10.5%, and the overall decline in
the number of holeswhen the total number of deployed nodes
is increased from 1000 to 4000 is about 44.4%.

5.4 Changes in ANM, ANC and ANCAwith Respect to
Number of Rounds and Total Nodes

In Fig. 9a–d, ANM refers to the average number of nodes
moved, ANC represents the average number of nodes
required to customize the sensing radius and ANCA stands
for the average number of nodes required to take a com-
bined action ofmoving and customizing the sensing radius to
restore the coverage holes. The results pertain to the proposed
algorithm PNP_HRS. In Fig. 8a, for 1000 deployed nodes,
the number of nodes belonging to the set ANM decrease by
an average of 10.62% as the number of rounds increases by
50. This happens because an increase in the number of rounds
implies that the learning of nodes has also improved towards
making an optimal decision.

As the cost in terms of energy is very high for moving a
node, the likeliness of such a decision decrease significantly
at first. It then starts to fall nominally due to the unavailabil-
ity of nodes near the coverage hole. The number of nodes
belonging to the set ANC increases for the first 150 rounds
and then becomes stable. The same is the case for the nodes
belonging to the set ANCA. As the total deployed nodes
are increased to 2000, the overall decrease in the number of
nodes belonging to ANM could be determined to be 35% as
the rounds rise from 50 to 300. In Fig. 9b, the total number of
deployed nodes has been doubled, reducing the need tomove
nodes. Compared to Fig. 9a, the curve denoting the change in
the number of nodes belonging to the set ANC moves up the
curve depicting the number of nodes belonging to ANCA.
At around 250 rounds, the number of nodes belonging to
ANM and ANC is nearly equivalent. This may be due to
an unexpected rise in the number of holes, necessitating the
relocation of nodes once more to recover the holes. The total
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Fig. 9 Effect on the number of nodes belonging to sets ANM, ANC and ANCA with the number of rounds achieved by the network for a 1000; b
2000; c 3000; d 4000 nodes for PNP_HRS algorithm

deployed nodes in Fig. 9c are 3000, making deployment in
the AOI denser. The likelihood of finding nodes near the cov-
erage hole location has increased evenmore than the scenario
in Fig. 9a, b. The curve representing the change in the number
of nodes belonging to the set ANC has moved slightly up the
curve representing the number of nodes belonging to the set
ANM. The network at this point is heterogeneous, with each
node having a different sensing radius based on the network
requirements. The curve for nodes belonging to ANCA has
moved down. This implies that the combined action of radius
customization and nodemovement is resulting in higher costs
of energy as compared to the cost pertaining to ANM. There-
fore, the number of decisions related to taking a combined
action has decreased. The situation similar to Fig. 9c can be
observed in Fig. 9d as well. The average difference between
the number of nodes belonging to set ANC and set ANM
is approximately 19 nodes which show that the nodes are
learning to make optimal decisions for the network.

5.5 Effect on the Average Power Consumption with
Respect to Total Nodes

Figure 10 depicts the transition in the average power con-
sumption of the active nodes as the number of deployed

nodes increases in the network. Average power consumption
denotes the overall power consumed by the network during
the execution of MO_ZHC, PNP_HRS and GT_RL. A com-
parison between the proposed approach and other existing
similar works shows that the proposed method incurs the
least amount of average power consumption. For the pro-
posed solution, as the number of nodes in the network grows
by 500, the power consumption increases by an average of
20.3%. One of the main reasons for this trend is that as the
number of deployed nodes grows, so does the number of
messages sent between them for information sharing and
updating.

5.6 Average Convergence Time and the Percentage
ofWrong Decisions with Respect to the Total
Nodes

Figure 11 depicts the average convergence time of the learn-
ing algorithm used in the proposed solution [12,13]. Ref.
[13] has the longest convergence time, while the suggested
solution has the shortest. Convergence time is defined as the
period inwhich the learning algorithm reaches its global opti-
mum. It happens when any decision taken by a learning node
is always globally optimal. Since the computations needed
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Fig. 10 Effect of the number of
deployed nodes on the average
power consumption for the
active set of nodes

Fig. 11 Effect of total number of deployed nodes on the average con-
vergence time for the proposed approach

Fig. 12 Effect of total number deployed nodes on the average number
of wrong decisions made by a learning node

to achieve it are energy-intensive, a minimum convergence
time is desirable.

Convergence time increases with an increase in the total
number of deployed nodes in the network. This is because

Fig. 13 Effect of total deployed nodes on the hole restoration time for
proposed approach

the number of nodes influencing a node’s decision to achieve
global optimality grows. When nodes are increased from
1000 to 4000, the average increase in convergence time is
9.72%. The effect of the total number of deployed nodes in
the network on the average percentage of incorrect decisions
can be seen in Fig. 12.While, as shown in Fig. 11, the conver-
gence time increases as the number of nodes increases. This
is because, while the convergence time for a larger num-
ber of nodes is more prolonged, a learning node has more
knowledge locally and is more aware of the global optimal-
ity requirements of the network. Therefore, as the number of
nodes increases, number of incorrect decisions made by an
agent before reaching the convergence point decreases.

5.7 Variation in the Average Hole Restoration Time
and Distance Moved by a Node with Respect to
Total Nodes

For the proposed hole recovery algorithm PNP_HRS, cov-
erage enhancement algorithm [11] and CBHC [12], Fig. 13
depicts the impact of the total number of nodes on the average
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Fig. 14 Effect of total deployed nodes on the average distance moved
by a node

hole restoration period. The cumulative time from when the
detector nodefinds thehole andwhen the rescuenode restores
the coverage hole is referred to as hole restoration time.
PNP_HRS shows the least restoration time. When nodes are
increased in the range from 1000 to 4000, the average reduc-
tion in restoration time is estimated to be 20.5%. For different
values of rounds reached by the network, Fig. 14 shows the
effect of the total number of deployed nodes on the aver-
age distance moved by the node. As the number of rounds
increases from 100 to 600, the curve depicting the change in
average length traversed by a node to repair a hole, decreases
with the total number of deployed nodes. But when the net-
work reaches the 850th round, the curve moves up. This is
because as the network reaches higher rounds of service, the
death rate of the nodes increases, reducing the availability of
nodes near the coverage holes.

6 Conclusion

The current study focuses on network coverage holes and
the overlapped coverage issue in a WSN. The target area is
divided into square cells so that nodes in different cells can
learn simultaneously without interfering with one another’s
decisions. A Minimal Overlapping with Zero Holes Cov-
erage algorithm is introduced to minimize the coverage
overlapping due to the random deployment of sensor nodes.
The nodes aim to minimize the Area Wise Percentage of
Coverage Overlapping Percentage for degrees ≥1 without
generating new holes. While reducing the coverage over-
lap, boundary nodes also make sure that no coverage holes
are generated near the cell boundaries due to simultaneous
learning. A second algorithm called Predictable, and Non-
Predictable Holes Recovery Scheme is designed to recover
the network from predictable and non-predictable coverage
holes. The active nodes select a sleeping node to recover

a detected coverage hole, using the least amount of energy
in the shortest amount of time possible. The utilization of
sleeping nodes allows the network to maintain the minimal
coverage overlapping and guarantees that no new holes shall
be generated during the hole recovery process.GameTheory-
based Reinforcement Learning algorithm is proposed to help
the nodes learn from their actions. GT_RL incorporates
MO_ZHC and PNP_HRS so that nodes can take actions
strategically during their initial stage of learning rather than
taking random actions. Each node strives to achieve Nash
Equilibrium and the state of global optimum. Once GT_RL
converges, each node becomes capable of making the best
decisions independently. The simulation results are recorded,
and a comparison with the cascaded neighbor intervention
algorithm [7], the hybrid recovery algorithm [10], the cov-
erage enhancement algorithm [11], the CBHC [12], and the
CCM-RL [13] is performed. Various performance metrics,
namely the average number of active nodes, area wise cov-
erage overlapping percentage, the average number of holes,
the average number of nodes moved, the average number
of nodes moved with sensing range customization, the aver-
age number of nodes with sensing range customization for
the hole recovery, average power consumption, average con-
vergence time, percentage of wrong decisions, average hole
restoration time, and average distance moved by a node to
recover a hole, have been evaluated, which verify the effi-
cacy of the proposed algorithms. It shall be interesting to
investigate the occurrence of coverage holes during random
deployment. Exploration of the integration of the WSN with
the 5G networks. The effect of 5G networks on the commu-
nication overhead and the security aspects of WSN can also
be considered for future study.
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