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Abstract
The thermal radiation impact of MHD boundary layer flow of Williamson nanofluid along a stretching surface with porous
medium taken into account of velocity and thermal slips is discussed numerically. This model aims to examine the phenomena
of heat and mass transport caused by thermophoresis and Brownian motion. Through the help of similarity transformations,
the governing system of PDEs is converted to a set of nonlinear ODE’s. Here, ordinary differential equations provide the
mathematical formulation. The coupled system obtained has been analyzed using the Keller-Box technique; Newton’s system
dictates that the coefficients must be accurate and refined. To get a full understanding of the present situation, the effect
of the flow regulating factors on relevant profiles is quantified and qualitatively assessed. The wall friction factor, heat,
and mass transport coefficients are calculated graphically and tabulated. The findings reveal that when the slip and heat
factor parameters improve, the boundary layer’s thickness drops. Furthermore, the present findings indicate that raising the
Williamson parameter enhances the concentration and temperature of the nanofluid. The validity of the outcomes is further
shown by comparison to previously published data, which demonstrate good agreement.

Keywords Thermal radiation · MHD · Williamson nanofluid · Velocity and thermal slips · Keller Box scheme · Stretching
sheet
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Nc � ρpcp
ρc (Cw − C∞) Denotes the heat capacities ratio

parameter
Nbt � T∞DB(Cw−C∞)

DT(Tw−T∞)
Represents diffusivity ratio param-
eter

Le � α
DB

Denotes Lewis number
Sc � ν

DB
Is Schmidt number

M � σ B2
0

ρb Is magnetic field
Kp � ν

k′b Is the permeability parameter

R � 4σ ∗T 3∞
kk∗ Indicates the radiation parameter

a, b Stretching rate constants
B∗ Thermal slip factor
C Volume fraction of the nanoparticle
T Temperature of the fluid (K)
Cp Specific heat capacity of nanoparti-

cle
C∞ Ambient nanoparticle volume frac-

tion (mol m−3)
DB Brownian diffusion coefficient
DT Thermophoresis diffusion coeffi-

cient
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f Stream function in dimensionless
form

Re Reynolds number
Sh Sherwood number
Tw Fluid temperature near sheet (K)
u Component of velocity along x-axis

(m s−1)
v Component of velocity along y-axis

(m s−1)
α Thermal diffusivity of the nanofluid

(m s−1)
θ Temperature in dimensionless form

(K)
Cw Nanoparticle volume fraction at the

sheet (mol m−3)
φ Nanoparticle volume fraction in

dimensionless form (mol m−3)
� Time constant
δ Parameter of the velocity slip
ν Kinematic viscosity (m2 s−1)
μ Dynamic viscosity
ρp Nanoparticles density (kg/m3)
T∞ Ambient fluid temperature (K)
ρ Nanofluid density (kg/m3)
(ρc) f Fluid heat capacity
(ρc)p Effective heat capacity of the

nanoparticle
k′ Permeability of the porous medium
B0 Induced magnetic field (Tesla)
A∗ Velocity slip factor
x , y− Coordinate axes (m)
Nu Nusselt number
σ Electrical conductivity (�−1 m−1)
β Thermal slip parameter
Uw Velocity along x-axis (m s−1)

1 Introduction

Magnetohydrodynamics is the science that scrutinizes the
magnetic properties of electrically accompanying materials
and has become the basis for a variety of industrial, scientific,
and technical applications, including production of chemi-
cals, liquid metals, automobile cooling systems, electrolytes,
plasma, electronic chip cooling, nuclear power plant heat
extraction, and saltwater, among others. In the fields of met-
allurgy and polymer technology, it appears to be frequently
utilized. Magnetic drug targeting, astrophysical sensing, and
engineering may all benefit from MHD applications [1, 2].
Magnetic fields, in particular, are critical in the formation
of stars. Based on all these significant benefits, analysts and

researchers monitorMHDflows on a continuous basis. Metri
et al. [3] explore the impact of heat sink/source over MHD
forced convective visco-elastic fluid flow subjected to dis-
sipation with porous medium. Akbar et al. [4] numerically
studied the influence of MHD heat transport nanofluid flow
over a stretched surface for the newheat flux concept.Numer-
ous authors Rashidi et al. [5], Rashidi and Erfani [6], Khedr
et al. [7], Fang and Zhang [8], Magyari and Chamkha [9],
Ishak et al. [10],Yasin et al. [11], Falodun andOmowaye [12],
Madhusudan et al. [13] have recently examined the problems
on MHD impact of magnetic fields on stretching sheet and
various aspects of flow issues. Magnetic effect is said to have
a key impact in heat control applications.

Nanofluids have become a topic of wide spread research
due to the fact that the inclusion of nanoparticles is utilized
in novel ways to improve thermal conductivity and hence
heat transmission process. Colloidal suspensions of nano-
materials in a base liquid are utilized to create these fluids. A
nanofluid is a fluid that contains tiny volumetric amounts of
nanometer-sized particles (0–100 nm) called nano-particles.
Typically, the nanomaterials used in nanofluids include car-
bides, carbon nanotubes,metals, and oxides. Ethylene glycol,
water, and oil are all components of basic base fluids. There
are additional thermo-physical characteristics that also influ-
ence nanofluid heat transfer enhancement. The dispersion,
amorphous movement, thermophoresis effects, Brownian
motion, and thermophoresis impacts are a few of these physi-
cal properties. The examination of nanofluid flow has piqued
the interest of researchers in recent years, due to a rise in
applications in many sectors of science & technology, bio-
mechanics, nuclear, and chemical sectors. For instance, food
materials (mayonnaise, chocolate, ketchup, alcoholic bev-
erages, yoghurt, milk and apple sauce in liquefied form),
chemical materials (paints, cosmetics, pharmaceutical chem-
icals, toothpastes, oil, reservoirs, shampoos, grease, etc.), and
biological materials (synovial fluid, syrups, vaccines, blood,
etc.). The term nanofluid was first coined by Choi [14]. The
thermal conductivity of copper nanoparticles embedded in a
nanofluid of ethylene glycol was explored by Eastmann et al.
[15]. Since then, thermophoresis and Brownian diffusion
demonstrations have fueled the advancement of mathemat-
ical modeling of nanofluids. The free convective flow of a
nanoliquid was investigated by Kuznetsov and Nield [16]
using an analytical approach.

The stagnation-point flow of a nanofluid toward a non-
linear stretching sheet was explored with Anwar et al. [17].
Azimi and Riazi [18] discussed heat transmission between
twoparallel disks ofGo-waterNanofluid. Bhargava et al. [19]
described an effective hybrid method for modeling MHD
nanofluid flow through a permeable stretched sheet. [20]
Raza et al. scrutinized MHD Flow of nano-Williamson liq-
uid caused via multiple slips on a stretched plate. Khan
[21] investigated the stability of magneto convective flow
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of SiO2–MoS2/C2H6O2 hybrid nanoliquids using a shrink-
ing/stretching wedge. Chamkka et al. [22] investigated the
laminar MHD mixed convection flow of a nanoliquid over
a stretched permeable area with heat production or absorp-
tion. Turkyilmazoglu [23] investigated an accurate analytical
solution for heat and mass transport in nanofluids with MHD
slip flow. Wubshet and Shankar [24] studied the flow and
heat transfer of a nanofluid via a permeable stretched sheet
under a variety of boundary conditions, including velocity,
temperature, and solutal slip. Nagendra et al. [25] investi-
gated the numerical simulation of hydromagnetic heat and
mass transport in a nano-Williamson liquid passing through
a vertical plate through thermal and momentum slip effects.
Garoosi et al. [26] studied numericalmodeling of natural con-
vection in heat exchangers utilizing the Buongiorno model.
Konda et al. [27] analyzed the performance of a non-uniform
heat sink/source on the MHD boundary layer flow and melt-
ing heat transport of a Williamson nanoliquid in a porous
media. Yahaya et al. [28] explored nanofluid hydromagnetic
slip flow with thermal stratification and convective heating.
Acharya et al. [29] investigated the impact of numerous slips
and chemical reactions on the radiative MHD Williamson
nanoliquid flow in porous media: A computational approach.
Mishra and Mathur [30] used a semi-analytical technique to
investigate Williamson nanofluid flow in porous media with
melting heat transport boundary conditions.

Asogwa et al. [31] investigated the comparative analy-
sis of water-based Al2O3 nanoparticles via H2O-based CuO
nanoparticles through heat transport toward an exponen-
tially accelerated radiative Riga plate area. Warke et al. [32]
investigated nonlinear radiation through magnetomicropolar
stagnation point flow over a heated stretching sheet using a
numerical investigation.

The thermal radiation effect has piqued the interest of
academics due to its vast range of scientific, technical uses,
and industrial sectors. It encompasses electric power, food,
solar cell panels, gas turbines, different propulsion mech-
anisms for aeroplanes, and the medical sector. The impact
of radiation and mixed convection on nanofluid flow over
a vertical plate with melting heat transport was investigated
by Mahanthesh et al. [33]. FazleMabood et al. [34] investi-
gated the radiation impact on MHD Williamson nanoliquid
flow with a heated surface. On a shrinking/stretching porous
sheet, thermo-diffusion and radiation effects on Williamson
nanofluid were investigated by Bhatti and Rashidi [35]. The
influence of radiation on nanofluid flow across a stretched
surfacewas inspected byKrishnamurthy et al. [36], Dulal Pal
et al. [37], Ghadikolaei et al. [38], and Almakki et al. [39].
This work is based on several recent articles as [40–46].

Inspired by above reputed researchers, the present work
discusses the Williamson nanofluid flowing via a porous
media with a constant stretching sheet. In this case, the

Fig. 1 Physical model of the problem

influence of radiation plays an important role in tempera-
ture control, and the technique of convective heat transport
is very important in issues where comparatively higher tem-
perature has happened. According to the aforementioned
literatures, no study has been conducted on MHD nanofluid
via a stretching sheet when thermal radiation and slip condi-
tions are present. The solution of coupled nonlinear equations
is obtained by numerical computing. For numerous values
of physical restrictions, the consequence of dimensionless
parameters has been evoked. The originality of this obser-
vation is to consider the behavior of the radiation, velocity,
and thermal slips on MHD boundary layer flow through heat
and mass transport in a Williamson nanoliquid with porous
media.

2 Mathematical Formulation

Assume that the steady-state 2-D and incompressible MHD
Williamson nanofluid flow toward a horizontal stretching
sheet with porous medium and radiation. Figure 1 illustrates
the physical model of the problem. The plate is expanded
along the direction of the coordinated axis ‘x’and it has a
velocity Uw(x) � bx , (b > 0). y is the coordinate mea-
sured vertical to the sheet at y � 0. The temperature at the
wall is denoted by Tw � T∞ + ax2 and the constant along
the stretching sheet is delineated as the nanoparticles volume
fractionCw. The volume fraction of nanoparticles and ambi-
ent values of temperature are represented withC∞ and T∞ as
y → ∞. In thermal equilibrium, the nanoliquid is assumed
to have been a single phase, and slip velocity among base
liquid and particles exists. Nanoparticles are considered to
be consistent in size and shape.
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In the occurrence of magnetic field and radiation, the
boundary layer equations (Ref. [48]) that regulate two-
dimensional flow are:

∂u

∂x
+

∂v

∂y
� 0 (1)

u
∂u

∂x
+ v

∂u

∂y
� ν

∂2u

∂y2
+

√
2ν�

∂u

∂y

∂2u

∂y2
− σ B2

0

ρ
u − v

k′ u (2)

(3)

u
∂T

∂x
+ v

∂T

∂y
� α

∂2T

∂y2

+
(ρc)p
(ρc)n f

[
DB

∂C

∂y

∂T

∂y
+

DT

D∞

(
∂T

∂y

)2
]

− 1

(ρc)n f

∂qr
∂y

u
∂C

∂x
+ v

∂C

∂y
� DB

∂2C

∂y2
+

DT

T∞
∂2T

∂y2
(4)

The following are subject to the appropriate conditions at
the boundary:

u � uw + A∗μ
(

∂u

∂y

)
, v � 0,

T � Tw + B∗ ∂T

∂y
, C � Cw at y � 0

u → 0, T � T∞, C � C∞ as y → ∞ (5)

where A∗ and B∗ are velocity and thermal slip factors.
When the Rosseland approximation for radiation is used,

the radiative heat flux is simplified as follows,

qr�
4σ ∗

3k∗
∂T 4

∂y
, (6)

where σ ∗ represents the constant of Stefan-Boltzmann, and
k∗ indicates the coefficient of mean absorption. Assumed
that there are small temperature variations in the fluid flow
so that T 4 can be represented as a function of T which is in
linear form with the help of truncated Taylor’s series about
the temperature at free stream T∞, and omitting the terms
which are in higher-order then we get,

T 4 ≈ 4T T 3∞ − 3T 3∞, (7)

Now substitute (6) and (7) in (3), we have

(8)

u
∂T

∂x
+ v

∂T

∂y
� α

∂2T

∂y2

+
(ρc)p
(ρc) f

[
DB

∂C
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∂y
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(
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)2
]

+
16σ ∗T 3∞
3k∗ (ρc) f

∂2T

∂y2

Employing the following similarity transformations:

u � bx f ′(η), v � −(bν)
1
2 f (η), η �

√
b

ν
y (9)

θ(η) � T − T∞
Tw − T∞

, φ(η) � C − C∞
Cw − C∞

(10)

Using transformations in (9, 10), Eqs. (2), (4), and (8)
subject to the constraints in (5) will be in the following form:

f ′′′ − (
f ′)2 + f f ′′ + λ f ′′ f ′′′ − (M + Kp) f ′ � 0 (11)

(12)

(
3 + 4R

3

)
θ ′′ + Pr . f θ ′ − 2 Pr . f ′θ

+

(
Nc

Le

)
θ ′φ′ + Nc

(Le) (Nbt)

(
θ ′)2 � 0

φ′′ + Sc. f φ′ +
(

1

Nbt

)
θ ′′ � 0 (13)

where

λ �
√
2b3

ν
�x , Pr � ν

α
,

Nc � (ρc)p
(ρc) f

(Cw − C∞), Nbt � T∞DB(Cw − C∞)

DT(Tw − T∞)
,

Le � α

DB
, Sc � ν

DB
, M � σ B2

0

ρb
,

Kp � ν

k′b
, and R � 4σ ∗T 3∞

kk∗

where f , θ and φ are functions of η and prime designates
diff. w.r.to η. The equivalent transformed boundary condi-
tions are

θ(0) � 1 + βθ ′(0), f ′(0) � 1 + δ f ′′(0), φ(0) � 1,
f (0) � 0 at η � 0

θ(∞) � 0, f ′(∞) � 0, φ(∞) � 0

⎫
⎪⎬
⎪⎭
(14)
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The quantities of physical interest are described as the
coefficient of friction factor C f , Nu, the local Nusselt num-
ber, and Sh the local Sherwood number, are specified as

C f � τw

ρU 2
w

, Nu� xqw

k(Tw−T∞)
and Sh � xqm

DB(Cw − C∞)

(15)

where τw is the shear stress, qw is the heat flux and qm is
the mass flux volume fraction of the nanoparticle at the plate
surface, which are specified by

(16)

τw � μ

[
∂u

∂y
+

�√
2

(
∂u

∂y

)2
]
, qw

� −k
∂T

∂y

∣∣∣∣
y�0

and qm � −DB
∂C

∂y

∣∣∣∣
y�0

finally, using Eqs. (16) and (10), Eq. (15) becomes

(17)

C f
√
Re � f ′′ (0) + λ

2
f ′′2 (0) , Nu√

Re

� −θ ′ (0) and
Sh√
Re

� −φ′ (0) ,

where Re � Uw(x)
ν

x is the Reynold’s number.

3 Method of Solution

Due to the model’s extreme nonlinearity, an exact solution of
the set of Eqs. (11)–(13) subject to boundary constraints via
Eq. (14) is implausible. The approach based on implicit dif-
ferences is utilized for numerical evaluation. The following
are the steps which are involved in this method:

• In order to get the finite difference nonlinear algebraic
equations with the second-order truncation error, use the
central difference derivatives and the average mid points
of the rectangle to figure out the nonlinear equations.

• The resultant differential equations are first expressed in
finite difference form, and then linearized by Newton’s
technique.

• After using the finite difference scheme and Newton’s
technique, a block tridiagonal matrix is created that has
square blocks on the upper, main, and lower diagonals and
zero blocks on the remaining diagonals. It also contains
submatrices in lieu of scalars.

• The tridiagonal matrix factorization technique is used
to solve block matrix problems. The LU decomposition
method is based on forward and backward sweeps.

This procedure is continued until convergence occurs.

3.1 Keller Box Procedure

In this scheme, the below set of steps are implicated to attain
numerical solutions:

• Transform Eqs. (11)–(13) ODE’s of higher order into set
of first-order ODE’s. We add new independent variables
in this circumstances, p(η), q(η), θ(η) � v(η), g(η),
φ(η) � s(η) and n(η) and Eqs. (11)–(13) and (14) change
to the following form
f ′ � p, p′ � q, v′ � g and s′ � n so that
Eqs. (11)–(13) can be written as

q ′(1 + λ.q) + f q − p2 − (M + Kp)p � 0 (18)

(19)

(
1 +

4R

3

)
g′ + Pr . f g − 2 Pr .pv

+

(
Nc

Le

)
.gn −

(
Nc

Le.Nbt

)
g2 � 0

n′ + Sc. f n +

(
1

Nbt

)
g′ � 0 (20)

In Eq. (14) the terms have been modified.

f (0) � 0, p(0) � 1 + δ.q(0),

v(0) � 1 + β.g(0), s(0) � 1 and

p(η) → 0, v(η) → 0, s(η) → 0 as η → ∞ (21)

Determine the finite differences with first-order differen-
tial equations ODE’s.
For instance the finite differences at any point of the form
are

(22)

( )
n− 1

2
j � 1

2

[
( )nj + ( )n−1

j

]
, ( )

n
j− 1

2

� 1

2

[
( )nj + ( )nj−1

]

(23)

(
∂u

∂x

)n− 1
2

j− 1
2

� 1

kn

[
(u)n

j− 1
2

− (u)n−1
j− 1

2

]
,

(
∂u

∂η

)n− 1
2

j− 1
2

� 1

h j

[
(u)

n− 1
2

j− 1
2

− (u)
n− 1

2

j− 1
2

]

• Obtaining linearized algebraic equations through the
help of Newton’s technique.

Ex: f (i+1)
j � f (i)

j + δ f (i)
j . (24)

• To find the solution, the set of linear equations can be
arranged into the matrix form and implement the proce-
dure of block tri-diagonal elimination technique.
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Ex. :

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

[A1] [C1]
[B2] [A2] [C1]

· · ·
· · ·

[Bi−1] [Ci−1] [B2]
[Bj ] [A j ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

[δ1]
[δ2]
· · ·
· · ·
[δ j−1]
[δ j ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

[r1]
[r2]
· · ·
· · ·
[r j−1]
[r j ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

i.e., [A][δ] � [r ] (25)

• In accordance with the convergence criterion and com-
pliance with the B.C’s (14), the following starting
assumptions are acceptable guesses:

(26)

f (η) � 1

(1 + δ)

(
1 − e−η

)
, θ (η)

� 1

(1 + β)
e−η, φ (η) � e−η

The presentedmethod is completely trustworthy, has second-
order consistency, and is simple to programme, all of which
contribute to a highly desirable conclusion. The adaption of
the accompanying initial estimations is one of the factors
affecting the consistency of the scheme. To solve the afore-
mentioned difference equations in block-matrix form, the
Thomas method is utilized. The current research uses a con-
sistent grid size of�η � 0.001, which provides four decimal
places of accuracy for the majority of the indicated values in
the table, with a tolerance for error 10−5 in every circum-
stance, MATLAB software was utilized to program.

4 Validation and Convergence
of the Numerical Technique

The convergence of the Keller-Box method gets after 100
iterations. The accuracy of the current numerical solution
is taken as 10−5. Table 1 shows an outstanding agreement
between our procedure outcomes and the works of Hayat
et al. [47] (Analytical Method) and Kho et al. [48] (Shooting
Method).

5 Results and Discussion

To gain a physical understanding of the present investigation
of MHD heat and mass transport Williamson nanofluid flow
with thermal radiation and porousmedium, extensive numer-
ical computations are accomplished using the Keller-Box

Table 1 Comparison of Nusselt number values for various Pr when
Nc � 2.5, Nbt � 2.0, Le � 10, Kp � R � Sc � β � λ � δ � 0.5,
M � 0.3

Pr Nusselt number
−θ ′(0)

Hayat et al. [47] Kho et al. [48] Present study

0.72 0.808631 0.808834 0.808629

1 1.00000 1.00000 1.00000

3 1.923682 1.923678 1.923681

10 3.720673 3.720671 3.720675

Fig. 2 Variations of slip parameter on velocity profile

approach. The findings validate the impact of various non-
dimensional factors on the standard profiles, including the
thermal radiation parameter, the magnetic field, and others.
Additionally, evaluated the same on the coefficient of friction
factor, rate of heat transport, and mass transfer using tables
and diagrams. In this investigation the non-dimensional
parameter values δ � 0.25, λ � 0.5, M � 0.3, Kp � 0.2,
β � 0.5, Pr � 7.0, Nc � 2.5, Nbt � 2.0, Le � 10,
Sc � 5.0 and R � 0.5 were used. These variables are
treated as constants throughout this research, except for the
changedparameters shown in the graphs. The results are visu-
ally shown in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23 and 24. To validate the current
numerical outcomes, a comparison with Hayat et al. [47] and
Kho et al. [48] was performed, and a good agreement was
found, as shown in Table 1.

Figure 2 demonstrates that velocity patterns decrease with
slip parameter δ. Slip means that the fluid velocity in the
vicinity of the sheet is no longer equivalent to the stretched
sheet velocity. Increasing δ lowers the velocity because only
a portion of the tugging on the sheet can be transferred to
the fluid. Additionally, slip parameter δ reduces boundary
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Fig. 3 Variations of slip parameter on temperature profile

Fig. 4 Variations of slip parameter on concentration profile

Fig. 5 Variations of thermal slip parameter on temperature profile

Fig. 6 Variations of thermal slip parameter on concentration profile

Fig. 7 Variation of the Williamson parameter on velocity profile

Fig. 8 Variation of the Williamson parameter on temperature profile
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Fig. 9 Variation of the Williamson parameter on concentration profile

Fig. 10 Variation of Prandtl number on temperature

Fig. 11 Variations of heat capacitance ratio parameter on temperature

Fig. 12 Variation of Lewis number on temperature profile

Fig. 13 Variations of the diffusivity ratio parameter on temperature pro-
file

Fig. 14 Variations of the diffusivity ratio parameter on concentration
profile
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Fig. 15 Variations of Schmidt number on concentration profile

Fig. 16 Variations of magnetic parameter on velocity profile

Fig. 17 Variations of magnetic parameter on temperature

Fig. 18 Variations of magnetic parameter on contration profile

Fig. 19 Variations of radiation parameter on temperature profile

Fig. 20 Variations of the permeability parameter on velocity profile
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Fig. 21 The variations of thermal slip parameter and Prandtl number on
temperature gradient

Fig. 22 The variations of diffusivity ratio parameter and heat capaci-
tance ratio parameter on temperature gradient

layer width. Additionally, as the slip parameter δ grows, the
width of the boundary layer decreases. The slip parameter, δ,
rises, the fluid temperature increases, thereby increasing the
thermal boundary layer thickness (See Fig. 3). Increasing the
slip parameter produces friction at the surface, which, in turn,
provides a frictional force to enable more fluid to flow over
the stretched surface, decreasing the fluid velocity. Figure 4
pictorially represents for escalating values δ, enhances the
species concentration gradients.

Figure 5 explains the outcome of the thermal slip factor
(δ) on temperature curves. This figure indicates that when
the thermal slip factor grows, the temperature field and its
associated boundary layer width drop. This augmentation is
very substantial in the area immediately next to the wall, but
it has a minor impact farther away from the wall. Figure 6

Fig. 23 The variations of Lewis number and Prandtl number on tem-
perature gradient

Fig. 24 The variations of radiation and Prandtl number on temperature
gradient

depicts the concentration fluctuation as a function of β. It
reveals that when the value of β rises, the concentration φ(η)

declines.
Figures 7, 8, 9 explore the consequence of theWilliamson

parameter (λ) on the curves of velocity, temperature, and
species concentration. It is noted that the growing values of
λ, enhance the fluid velocity close to the wall and fall it at
the free stream. As a result, as the Williamson parameter is
raised, the width of the momentum boundary layer near the
wall grows. It has been discovered that enhancing the values
of λ raises the temperature and concentration distributions.

The influence of the Prandtl number (Pr) over the temper-
ature curve is depicted in Fig. 10. When a rise in Pr causes a
temperature drop, this indicates that the liquid’s thermal con-
ductivity is significantly smaller than its viscosity. It’s worth
noting that increasing Pr values pointedly lowers the tem-
perature. Thus, variable thermal conductivity is an excellent
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tool for determining the rate of transmission in heat. Dur-
ing the process of heat transfer, Pr is utilized to regulate the
thickness of the thermal boundary layer. The effects of Nc
on temperature distributions are depicted in Fig. 11. It is dis-
covered that boosting Nc improves temperature gradients,
resulting in a thicker boundary layer. Nc is defined as the
ratio of nanoparticle’s and nanofluid’s heat capacities. Gen-
erally, nanoparticles have a lower specific heat capacity (Cp)
than liquids. Thus, the inclusion of solid particles raises the
specific heat of the base fluid, resulting in a rise in the tem-
perature profile.

Figure 12 describes the evolution of the temperature gra-
dient as a function of the Lewis number (Le). Temperature
diffusivity divided by nanoparticlemass species diffusivity is
known as the Lewis number. As illustrated in Fig. 12, enhanc-
ing the Lewis number lowers temperature magnitudes, hence
decreasing the thickness of the thermal boundary layer. Due
to the fact that mass diffusivity is dependent on the species
of nanoparticles present in the base fluid, proper selection of
nanoparticles by polymer doping has a significant influence
on the thermophysical behavior of enrobing flow. In Figs. 13
and 14, several values of the diffusivity ratio parameter
(Nbt) were plotted against thermal and species concentration
fields, respectively. Both profiles degraded as the Nbt value
increased. It is important to note that the temperature and
breadth of the thermal boundary layer decline as the value of
Nbt grows. BecauseNbt is defined as the ratio of Brownian to
thermophoretic diffusivities, an increase in Nbt suggests that
nanofluid particles are becoming more actively dispersed.

Figure 15 portrays the variance in the concentration pro-
file for higher Schmidt indices. The concentration field is
shown to be diminishing as the Schmidt volume rises. This
is due to the fact that the Schmidt number is inversely pro-
portional to the mass diffusivity. As a result, a liquid flow
regime via a higher Sc has lower mass diffusion values as the
concentration distribution becomes more focused.

Figure 16 depicts a plot of a velocity profile to assess
the influence of the magnetic parameter. In this study, it
was discovered that there is a verse relationship between
positive changes in the magnetic parameter and the veloc-
ity curve. This is because of a resistive force known as the
Lorentz force, which is triggered as the size of the magnetic
field rises, opposing liquid flow and so diminishing the liq-
uid’s velocity. The applied magnetic field substantially raises
the temperature of the fluid and, as shown in Fig. 17, the
density of the classical thermal nanofluid boundary layer.
Increasedmagnetic parameter values have a substantial effect
on nanoparticle concentration gradients. As shown in Fig. 18,
classical nanofluid occupies a larger volume percentage than
non-Newtonian nanofluid.

Figure 19 exemplifies the impact of the radiation param-
eter on temperature scattering. An important observation

demonstrates that escalate temperature sketches with mod-
ified values of R. Physically, R denotes the ratio of heat
transmission by thermal radiation to heat transfer via conduc-
tion. Thermal radiation takes precedence over conduction at
greater levels of R. The greater the R value, the more heat
enters the system, causing an increase in θ (η).

The impact of the permeability parameter on the profiles
of velocity is displayed in Fig. 20. It is evident that the
occurrence of porous media restricts fluid flow, causing it
to move more slowly. As a result, as the permeability param-
eter increases, the resistance to liquid motion rises and hence
drops in velocity.

The fluctuation of the thermal slip parameter, Nusselt
number for Prandtl number Pr is shown in Fig. 21. It has
been revealed that with the rise of values for the thermal slip
and Prandtl numbers Pr, theNusselt number is enhanced. The
variation of the Nusselt number through Nc and Nbt is seen
in Fig. 22. It is noticed that when the amounts of both param-
eters rise, the Nusselt number increases as well. Figure 23
depicts the change in Nusselt number for incremental values
of Pr and Le. Incremental levels of Le and Pr are accom-
panied by an increase in the temperature gradient. Figure 24
reveals the combined influence of the Prandtl number and the
Radiation term R on the Nusselt number. It’s worth noting
that the magnitude of the Nusselt number increases via rising
Pr and R values.

The variation in the skin friction coefficient − f ′′(0) for
various pertinent flow, parameters are shown in Table 2.

Table 2 Computational values of - f ′′(0) for various values of δ, λ, M ,
Kp when β � 1.0, Pr � 7.0, Nc � 2.5, Nbt � 2.0, Le � 10,
Sc � 5.0, R � 0.5

δ λ M Kp f ′′(0)

0.25 0.5 0.3 0.2 − 1.1551

0.75 − 0.6689

1.25 − 0.4694

1.75 − 0.3598

0.0 − 0.7201

0.3 − 0.7903

0.5 − 0.8461

0.7 − 0.9630

0 0.7062

0.2 0.8004

0.4 0.8911

0.8 1.0684

0.1 0.8004

0.3 0.8911

0.5 0.9799

0.7 1.0684
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Table 3 Computational values of−θ ′(0) and−ϕ′(0) for various values
of δ, β, λ, Pr, Nc, Nbt when Le � 10, Sc � 5, M � 0.5, R �
0.5 and Kp � 0.2

δ β λ Pr Nc Nbt −θ ′(0) −ϕ′(0)

0.25 1.0 0.5 7 2.5 2 1.3357 0.8086

0.75 1.0444 0.7169

1.25 0.9168 0.6239

1.75 0.8244 0.5558

0.2 1.8752 0.5016

0.4 1.6095 0.5999

0.6 1.4098 0.6739

0.8 1.2541 0.7315

0.0 1.1461 0.8014

0.3 1.1386 0.7874

0.5 1.1294 0.7777

0.7 1.1180 0.7633

4 0.8074 0.9135

6 1.0313 0.8198

8 1.2208 0.7379

10 1.3882 0.6639

5 1.0819 0.7988

10 0.9932 0.8377

15 0.9129 0.8726

20 0.8404 0.9038

0.3 1.0939 − 1.4932

0.4 1.1041 − 0.8427

0.6 1.1145 − 0.1780

0.9 1.1216 0.2734

According toTable 2, the skin friction coefficient is a decreas-
ing function of λ. Furthermore,− f ′′(0) rises, while δ, andM
increase. Moreover, as the permeability parameter increases,
the coefficient of skin friction − f ′′(0) increases as well.
This is because increasing the Kp at the wall slows the
fluid motion, resulting in a drop in velocity at the surface.
The variation of the Nusselt and Sherwood numbers with
respect to various physical parameters is shown in Table 3.
As shown in this table, increasing the values of λ, δ, β and
Nc lowers the Nusselt number, while increasing the values
of Pr and Nbt has the opposite effect observed. Enhancing
values of λ, δ and Pr drops the values of local Sherwood
number, but a reverse trend is observed in the case of β,
Nc, and Nb. Table 4 illustrates the variation of the Nusselt
number and Sherwood number with respect to Le, Sc, M ,
R and Kp while the other governed flow factors are fixed.
As the rising values of Schmidt number Sc, the local Nus-
selt number −θ ′(0) decreases, however, the local Sherwood
number −φ′(0) increases. An accumulated values of Lewis
number Le and Radiation parameterR escalates the rate of

Table 4 Numerical computations of −θ ′(0) and −ϕ′(0) for different
values of Le, Sc, M , R, Kp

Le Sc M R Kp −θ ′(0) −ϕ′(0)

1 5 0.3 0.5 0.2 0.7752 0.9315

1.5 0.8879 0.8834

2.0 0.9520 0.8556

2.5 0.9932 0.8377

2 1.1487 0.1866

4 1.1345 0.6090

6 1.1251 0.9294

8 1.1180 1.1970

0 1.1526 0.8160

0.2 1.1369 0.7899

0.4 1.1221 0.7666

0.8 1.0944 0.7228

0.1 1.3874 0.6645

0.3 1.2406 0.7293

0.5 1.1294 0.7777

0.9 0.9695 0.8459

0.1 1.1369 0.7899

0.3 1.1221 0.7660

0.5 1.1080 0.7437

0.7 1.0944 0.7228

heat transfer and the opposite trend is noticed in the values
of wall nanoparticle volume fraction. The variation of both
−θ ′(0) and −φ′(0) diminishes for noticeable values of M
and Kp.

6 Final Remarks

A numerical study of MHD Williamson nanofluid passing
through a stretched surface is performed, taking into consid-
eration the effects of heat radiation and the porous medium.
The findings are obtained using the Keller-Box approach.
The influence of several critical flow parameters on three
fluid flow profiles is described using a graphical representa-
tion form. The following are the major conclusions drawn
from the preceding discussion:

• In the presence of increasing magnetic field (M) and per-
meability parameter values, it is predicted that the velocity
profile would diminish.

• While an increase in the value of δ reduces the velocity,
but heat and mass transfer gradients exhibit the opposite
pattern
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• For larger values ofWilliamson parameter, a drop in veloc-
ity field is seen, along with an upsurge in temperature and
concentration.

• As the values of Nc and R increase, the fluid temperature
increases; however, the reverse trend is seen as the values
of Pr, Le, and Nbt increase.

• The temperature and concentration profiles become more
pronounced as M increases, but thermal slip factor β has
the reverse trend.

• The fluid concentration gradients diminish as enhanced
values of Nbt and Schmidt number (Sc).

• Enhancement in the values of Pr against Le, and Nc versus
Nbt, all contribute to an increase in the magnitude of heat
transfer rate.

Appendix

After using the similarity transformations

u � bx f ′(η), v � −(bν)
1
2 f (η), η �

√
b

ν
y

θ(η) � T − T∞
Tw − T∞

, φ(η) � C − C∞
Cw − C∞

The following Partial differential Eqs. (1)–(4) are trans-
formed into Ordinary differential equations:

First we need to find the following differentials of η, u,
v, T and C with respect to x&y.

∂η

∂x
� 0,

∂η

∂y
�

√
b

ν
,

∂u

∂x
� b f ′(η),

∂u

∂y
� bx f ′′(η)

√
b

ν

∂v

∂x
� 0,

∂v

∂y
� −b f ′(η),

∂2u

∂y2
� xb2

ν
f ′′′(η),

∂T

∂x
� 2axθ ′(η),

∂T

∂y
�

√
b

ν
ax2θ ′(η)

∂2T

∂y2
� b

ν
ax2θ ′′(η),

∂C

∂x
� 2axφ(η),

∂C

∂y
�

√
b

ν
ax2φ

′(η),
∂2C

∂y2
� b

ν
ax2φ′′(η)

Then Eq. (1) itself satisfies

∂u

∂x
+

∂v

∂y
� b f ′(η) + (−b f ′(η) � 0

Equation (2) u ∂u
∂x + v ∂u

∂y � ν ∂2u
∂y2

+
√
2ν� ∂u

∂y
∂2u
∂y2

− σ B2
0

ρ
u−

v
k′ u transformed to the following form.

⇒ bx f ′(η).b f ′(η) +
[
−(bν)

1
2 f (η)

]
.

[
bx

√
b

ν
f ′′(η)

]

� ν

[
b2x

ν
f ′′′(η)

]

+
√
2ν�bx

√
b

ν
f ′′(η)b

2x

ν
f ′′′(η) − σ B2

0
ρ

bx f ′(η)

− ν

k′ bx f
′(η)

⇒ b2x f ′2(η) − b2x f (η) f ′′(η) � b2x f ′′′(η)

+

√
2b3

ν
b2x� f

′′
(η) f ′′′(η) − b2xσ B2

0
ρb

f ′(η) − νb2x

k′b f ′(η)

⇒ f ′2(η) − f (η) f ′′(η) � f ′′′(η) +

√
2b3

ν
� f ′′(η) f ′′′(η)

− σ B2
0

ρb
f ′(η) − ν

k′b f ′(η)

⇒ f ′′′(η) + λ f ′′(η) f ′′′(η)

− f ′2(η) + f (η) f ′′(η) − M f ′(η) − K pf ′(η) � 0

The Energy Eq. (3)

u ∂T
∂x + v ∂T

∂y � α ∂2T
∂y2

+
(ρc)p
(ρc) f

[
DB

∂C
∂y

∂T
∂y + DT

D∞

(
∂T
∂y

)2]
+

16σ ∗T 3∞
3k∗(ρc) f

∂2T
∂y2

is transformed to the following form:

⇒ bx f ′(η).2axθ ′(η) +
[
−(bν)

1
2 f (η)

]
.

[
ax2

√
b

ν
θ

′(η)

]

� α

[
abx2

ν
θ

′′(η)

]

+
(ρC)p

(ρC) f

⎡
⎣DBax

2

√
b

ν
θ ′(η).ax2

√
b

ν
φ′(η) +

DT

T∞

(
ax2

√
b

ν
θ ′(η)

)2
⎤
⎦

+
16σ ∗T 3∞

(ρC) f 3k∗ν
ax2bθ ′′(η).

⇒ 2abx2 f ′θ ′ − abx2 f θ ′ � α
abx2

ν
θ ′′ +

(ρC)p

(ρC) f
DBa

2x4
b

ν
θ ′φ′

+
(ρC)p

(ρC) f
a2x4

b

ν

DT

T∞
θ

′2
+

16σ ∗T 3∞
(ρC) f 3k∗ν

ax2bθ ′′

⇒ 2 f ′θ − f θ ′ � α

ν
θ ′′ +

(ρC)p

(ρC) f
DB

ax2

ν
θ ′φ′

+
(ρC)p

(ρC) f

ax2

ν

DT

T∞
θ

′2
+

16σ ∗T 3∞
(ρC) f 3k∗ν

θ ′′

⇒ 2 f ′θ − f θ ′ � 1

Pr
θ ′′ + Nc

Le. Pr
θ ′φ′ + Nc

Pr .Le.Nbt
θ

′2
+

4

3 Pr
Rθ ′′

⇒ 2 f ′θ − f θ ′ � 1

Pr
θ ′′ + 4

3 Pr
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Pr .Le.Nbt
θ
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4

3
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Pr .Le
θ ′φ′ + Nc

Pr .Le.Nbt
θ

′2
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)
θ ′φ′

+
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(Le)(Nbt)

(
θ ′)2 � 0
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Similarly, we get
Species concentration equation from (4) in the following

form

φ′′ + Sc. f φ′ +
(

1

Nbt

)
θ ′′ � 0
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