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Abstract
Innovation in UAV design technologies over the last decade and a half has resulted in capabilities that flourished the devel-
opment of unique and complex multi-mission capable UAVs. These emerging new distinctive designs of UAVs necessitate
development of intelligent and robust Control Laws which are independent of inherent plant variations besides being adaptive
to environmental changes for achieving desired design objectives. Current research focuses on development of a control
framework which aims to maximize the glide range for an experimental UAV employing reinforcement learning (RL)-based
intelligent control architecture. A distinct model-free RL technique, abbreviated as ‘MRL’, is suggested which is capable of
handling UAV control complications while keeping the computation cost low. At core, the basic RL DP algorithm has been
sensibly modified to cater for the continuous state and control space domains associated with the current problem. Review of
the performance characteristics through analysis of the results indicates the prowess of the presented algorithm to dynamically
adapt to the changing environment, thereby making it suitable for complex designed UAV applications. Nonlinear simulations
carried out under varying environmental conditions illustrated the effectiveness of the proposed methodology and its success
over the conventional classical approaches.
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List of symbols
b : Wing span (m)
c̃ : Mean aerodynamic chord (m)
C AD : Computer-aided design
C F D : Computational fluid dynamics
CMx : Coefficient of rolling moment
CMy : Coefficient of pitching moment
CMz : Coefficient of yawing moment
CFx : Force coefficient in the X-direction
CFy : Force coefficient in the Y-direction
CFz : Force coefficient in the Z-direction
DoF : Degree of freedom
DDD : Dull dirty and dangerous
g : Acceleration due to gravity (m/sec2)
h : Altitude (m)
L F : Left-side control fin
M RL : Model-free reinforcement learning
M L : Machine learning
m : Mass of the vehicle (kg)

PE : East position vector (km)

PN : North position vector (km)

P : Roll rate (deg/sec)
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Q : Pitch rate (deg/sec)
R : Yaw rate (deg/sec)
RL : Reinforcement learning
RF : Right-side control fin
S : Wing area (m2)

U AV : Unmanned aerial vehicle
VT : Far stream velocity (m/sec)
n : Numerical weights
xpos : Current X-position(m)

zpos : Current Z-position(m)

r : Momentary reward
R : Total reward
pny : Penalty

Greek Symbol
α : Angle of attack (deg)

β : Sideslip angle (deg)

γ : Flight path angle (deg)

ψ : Yaw angle (deg)

φ : Roll angle (deg)

θ : Theta angle (deg)

δL : LF deflection (deg)

δR : RF deflection (deg)

ρ : Air density (kg/m3)

1 Introduction

UAVs are one of the most rapidly expanding and active
divisions of the aviation business [1–6]. Unmanned aerial
vehicles (UAVs) are useful in a variety of situations, such as
search and rescue, monitoring, and exploration. As a result,
UAVs need to be able to detect their trajectory quickly and
accurately, especially in emergency situations or in a con-
gested environment [7–10]. They are used in non-military
applications such as search and rescue/health care, disaster
management, journalism, shipping, engineering geology, and
so on [11–16]. The demand is enormous and will continue to
grow as new technologies become available. UAVs can also
be effective with Internet of things (IoTs) components when
used to perform sensing activities. UAVs, on the other hand,
operate in a dynamic and uncertain environment due to their
great mobility and shadowing in air to-ground channels. As
a result, UAVs must increase the quality of their sensing and
communication services without having compromising com-
prehensive information; therefore, reinforcement learning is
a good fit for the cellular Internet of UAVs [17].

UAV models are now being developed in quite a large
number and are acting as an indispensable aid to human
operators in a wide range of military and civilian applica-
tions [7]. As a result, the fast growing fleet of UAVs, as
well as the broadening scope of their applications, poses a

Fig. 1 Basic reinforcement learning framework

severe challenge to designers. The development of hi-fidelity
systemswas aided by technological improvements in the avi-
ation [18–21] and ground transportation sectors [22–24].

Linear and nonlinear control systems have been utilized
to solve a variety of control problems and obtain desired out-
comes [4,5,5,9,10,20]. However, a thorough knowledge of
these methodologies’ inherent limitations became the driv-
ing force behind developing an intelligent system capable of
making optimal, sequential decisions for a complex control
situation.

Intelligent technologies, grouped under the banner of
machine learning (ML), have begun to show promising
results in resolving previously thought-to-be-impossible
domain. Researchers are exploring various algorithms while
altering the application of optimal control theory in new and
unique ways, thanks to tremendous advancements in com-
putational technology [25–29]. Events and their effects are
reinforced by the actions taken in RL inspired by human and
animal behavior [30]. At its core, RL [31] has an agent that
acquires experience through trial and error as a result of its
interactions with a specific environment, thus enhancing its
learning curve. The agent is completely unaware of the under-
lying system and its ability to be controlled [32]. However, it
recognizes the concept of a reward signal (as shown in Figure
1 on which the next decision is made). During the training
phase, the agent learns about the best actions to take based
on the reward function. The trained agent selects actions that
result in the biggest rewards in order to attain optimal task
performance.

As the system dynamics change or the environment trans-
forms, the reward signal optimizes as well, and the agent
alters its action policy to get bigger rewards. RL has baggage
connected to the safety of its activities during the explo-
ration phase of its learning, despite the aforementioned facts,
indicating that it is a powerful tool to be used in control
problems [33–36]. Control system design based on intelli-
gent techniques is deemed most appropriate to cope with the
rising complexity of system dynamics and management of
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complicated controls for enhancing flexibility with the
changing environment [37].

In recent studies, deep RL has been applied employing
deep deterministic gradient policy (DDGP), trust region pol-
icy optimization (TRPO), and proximal policy optimization
(PPO) algorithms for conventional quadcopters only, primar-
ily focusing on controlling some specific phases of flight-like
attitude control [38,39] or compensating disturbances, with
PPO outperforming others [40]. Further similar studies have
been discussed in relevant studies section. However, the
goal of the current study is different from these mentioned
researches as it aims to provide an RL-based control system
for an experimental UAV which has an unusual design and
is under-actuated with respect to controls, making its control
challenging in the continuous state and action domains.

1.1 Relevant Studies

Xiang et al. [41] presented the learning algorithm which is
capable of self-learning. The technique is being studied and
developed in particular for cases where the reference trajec-
tory is either overly aggressive or incompatible with system
dynamics. A numerical analysis is undertaken to confirm the
suggested learning algorithm’s effectiveness and efficiency,
as well as to exhibit improved tracking and learning perfor-
mance.

Zhang et al. [42] introduced geometric reinforcement
learning (GRL), for path planning of UAVs. The authors pre-
sented that GRL can make the following contributions: a)
For path planning of many UAVs, GRL uses a special reward
matrix, which is simple and efficient. The candidate points
are chosen from a region along the geometric path connecting
the current and target sites. b) The convergence of computing
the reward matrix has been theoretically demonstrated, and
the path may be estimated in terms of path length and risk
measure. c) In GRL, the reward matrix is adaptively updated
depending on information shared by other UAVs about geo-
metric distance and risk. Extensive testing has confirmed the
usefulness and feasibility of GRL for UAV navigation.

Jingzhi Hu et al. [43] integrated UAV with Internet of
things. They presented a distributed sense-and-send mecha-
nism for UAV sensing and transmission coordination. Then,
in the cellular Internet of UAVs, an integration of rein-
forcement learning added to handle crucial challenges like
trajectory control and resource management.

For conventional UAVs, onboard flight control system
(FCS) based upon linear control strategies with well-
designed closed-loop feedback linear controls has yielded
satisfactorily results [9,44–47]. Posawat designed cascaded
PID controllers [44] with automatic gain scheduling and con-
troller adaption for various operating conditions. However,
the control architecture was incapable of adapting to envi-
ronmental disturbances and was highly dependent on sensor

accuracy. Oualid [46] utilized two different linear control
techniques for controlling UAV dynamics. Linear quadratic
servo (LQ-Servo) controller based on L2 and L∞ norms
was developed. Results, however, showed limited robustness
to external disturbances, particularly to wind gusts. Further,
Doyle et al. [48] utilized H-1 loop shaping in connection
withμ-synthesis, while Kulcsár [49] utilized linear quadratic
regulator (LQR) architecture for the control of UAV. Both
schemes satisfactorily manage the requisite balance between
robustness and performance of the devised controller. But
both these linear methods, besides being mathematically
intricate, lose their effectivitywith increasing complexity and
nonlinearity of the system.

Realizing the limitations of linear control and evolving
enhanced performance requirements of UAVs, researchers
gradually resorted to applying nonlinear techniques to make
the controllers more adaptive and responsive to chang-
ing scenarios. Methodologies such as back-stepping sliding
mode control (SMC), nonlinear dynamic inversion (NDI),
and incremental nonlinear dynamic inversion (INDI) have
emerged to be strong tools in handling uncertainties and non-
linearities satisfactorily, besides having the potential to adapt
to changing aircraft dynamics in connection with the evolv-
ing environment. Escareno [50] designed nonlinear control
for attitude control of a quadcopter UAV using nested sat-
uration technique . Results were experimentally verified.
However, the control lacked measures for performance con-
trol in a harsh environment. In another work, Derafa [51]
implemented a nonlinear control algorithm for a UAV incor-
porating back-stepping slidingmode techniquewith adaptive
gain. The authors have successfully kept the chattering noise
low because of the sign function pronounced in fixed gain
controllers. Experimental results of UAV showed acceptable
performance with regards to stabilization and tracking. How-
ever, the algorithm was computationally expensive.

Understanding of inherent limitations of linear [44–46]
and nonlinear control techniques [52] along to achieve auton-
omy in controls for complex aerospace systems provoked
researchers to look for intelligent methods [53]. Under the
ambit of ML, RL-based algorithms [54] have emerged as
an effective technique for the design of autonomous intel-
ligent control [55,56]. Coupled with neural nets, RL-based
algorithms have emerged as a robust methodology in solv-
ing complex domain control problems, which significantly
overpowers the contemporary linear and nonlinear control
strategies. Further, with the computer’s increasing compu-
tation power, state-of-the-art RL algorithms have started to
exhibit promising results. Due to its highly adaptive charac-
teristics, RL has increasingly found use in aerospace control
applications for platforms like aircraft,missile trajectory con-
trol, fixed wing UAVs, etc.

Kim et al. [57], in their work for flat spin recovery
for UAV, utilized RL-based intelligent controllers. Aircraft
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nonlinearities were handled near the upset region in two
phases as ARA (angular rate arrest) and UAR (unusual atti-
tude recovery) using DQN (Q-learning with ANN (artificial
neural network)). Dutoi [58], in similar work, has high-
lighted the capability of the RL framework in picking the
best solution strategy based on its offline learning, which is
especially useful in controlling UAV in harsh environments
and duringflight-critical phases.Wickenheiser [59] exploited
vehicle morphing for optimizing the perching maneuvers
to achieve desired objectives. In another study, Novati [60]
employed deep RL for gliding and perching control of a two-
dimensional elliptical body and concluded that model-free
character and robustness of deep RL suggest a promis-
ing framework for developing mechanical devices capable
of exploiting complex flow environments. Krozen in his
research [61] has implemented reinforcement learning as an
adaptive nonlinear control.

Based on our review of the related research and cited
papers, it has been assessed that application of RL, especially
deepRL for continuousactionand statedomains, is limited
to complex yet straightforward tasks of balancing inverted
pendulums, legged and bipedal robots [62], various board
and computer games by effectively implementing a novel
mix approach of both supervised and deepRL [63,64]. Imple-
mentation of RL-based control strategywith continuous state
& action spaces for developing Flight Controls of UAVs have
not been applied on the entire flight regime. It has been used
only for handling critical flight phases [57] where linear con-
trol theory is difficult to implement and for navigation of
UAVs [65,66]. Moreover, the in-depth analysis of the results
shows slightly better performance by eliminating overshoots
besides tracking a reference heading compared to a well-
tuned PID controller However, it still lacked the required
accuracy as was anticipated. Further, Rodriguez-Ramos et al.
[67] successfully employed deep RL for autonomous land-
ing on a moving platform again, just focusing on the landing
phase. Considering the immense potential of RL algorithms
and their limited application in entirety for UAV flight con-
trol systems development, it is deemed to be mandatory to
explore this dimension.

1.2 Research Contributions

In this research, we explore the efficacy of RL algorithm
for an unconventional UAV. The RL-based control strat-
egy is formulated with continuous state and control space
domains that encompass the entire flight regime of the UAV,
duly incorporating nonlinear dynamical path constraints. An
unconventional UAV designed with the least number of con-
trol surfaces has been used to reduce the overall cost. This
distinctive UAV design resulted in an under-actuated system,
thusmaking the stability and control of the UAVprominently
challenging.

A novel RL-based algorithm named as MRL has been
devised. The algorithm has been specifically modified to
achieve the desired objective of range enhancement while
keeping the computational time required for learning the
agent minimal, making it suitable for the practical onboard
application. The designed control framework optimized the
range of the UAVwithout explicit knowledge of the underly-
ing dynamics of the physical system. Developed RL control
algorithm learns offline based on reward function formulated
after each iteration step. Control algorithm in line with the
finalized reward function autonomously ascertains the opti-
mum sequence of the available deflections of control surfaces
at each time step (0.2 sec) to maximize UAV range.

Vehicle’s six-degree-of-freedom (DoF) model is devel-
oped, registering its translational and rotational dynamics.
The results from two developed algorithms are compared and
analyzed. Simulation results show that apart from improved
circular error probable (CEP)of reaching thedesignated loca-
tion, the range of UAV has also significantly increased with
the proposed RL controller. Based on promising results, it
is evidently deduced that RL has immense potential in the
domain of intelligent controls for future progress because
of its capability of adaptive, real-time sequential decision-
making in uncertain environments.

2 Problem Setup

2.1 UAV Geometric andMass parameters

Geometrical parameters of an experimental UAV (refer Fig-
ure2) utilized in this research are selected tomeet themission
requirements. The UAV has a mass of 596.7 kg, wing area of
0.865m2 withmean aerodynamic chord 0.2677m, and awing
span of 1.25m. The UAV has a wing–tail configuration with
unconventional controls which consist of two all-moving
inverted V tails to function as ruddervators. These control
surfaces can move symmetrically to control pitch motion
and differentially for coupled roll and yaw movements. An
additional ventral fin is also placed at the bottom side for
enhancing lateral stability

Fig. 2 UAV modal
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2.2 UAVMathematical Modeling

In current research, the flight dynamics modeling is carried
out utilizing 6-DOF [9] model, which is typically utilized
to model the vehicle motion in 3D space [9]. Assuming flat
non-rotating Earth, equations are defined as follows:

U̇ =RV − QW − g sin θ + X A

m

V̇ = − RU + PW + g sin φ cos θ + YA

m

Ẇ =QU − PV + g cosφ cos θ + Z A

m
(1)

Γ Ṗ =JX Z (JX − JY + JZ )P Q − [JZ (JZ − JY )

+ J 2
X Z ]Q R + JZ l + JX Z n

Γ Q̇ =(JZ − JX )P R − JX Z (P2 − R2) + m

Γ Ṗ =[JX (JX − JY ) + J 2
X Z ]P Q

− JX Z (JX − JY + JZ )Q R + JX Z l + JX n (2)

φ̇ =P + tan θ(Q sin φ + R cosφ)

θ̇ =Q cosφ − R sin φ

ψ̇ = Q sin φ + R cosφ

cos θ
(3)

ṖE =U cos θ cosψ + V (− cosφ sinψ + sin φ sin θ cosψ)

+ W (sin φ sinψ + cosφ sin θ cosψ)

ṖN =U cos θ sinψ + V (cosφ cosψ + sin φ sin θ sinψ)

+ W (− sin φ cosψ + cosφ sin θ sinψ)

ḣ =U sin θ − V sin φ cos θ − W cosφ cos θ (4)

In the above equations, it is noteworthy that the thrust
terms have been removed from the force equations (1) as the
UAV has no onboard thrust generating mechanism. P,Q,R
and U,V,W represent angular velocity and linear components
along body x-, y- and z-axes, respectively. Euler angles are
defined as φ, θ and ψ representing orientation of UAVwith
respect to the inertial frame. Position coordinates along the
inertial north and east directions are defined as Pn and Pe,
whereas vehicle altitude is described by h. X A, YA, Z A are
the body axis forces, and moments are represented by l,m,n.
Moment of inertia matrix is given by J, and Jx , Jy , Jz are the
moments of inertia about the x-, y-, and z-axes, respectively.
Jxy , Jyz , and Jzx are the cross-products of inertia.

The problemwas formulated as a nonlinear systemdefined
as Eq. (5):

�̇x = f (�x, �u) (5)

In the above equation, �x ∈ R
12 represents the state vec-

tor, control vector is �u ∈ R
2, and fresh state estimates are

represented as �̇x ∈ R
12. The state vector in body and wind

axis is defined by Eq. (6) and Eq. (7), respectively.

�x = [U , V , W , φ, θ, ψ, P, Q, R, h, PN , PE ]T , �x ∈ R
12

(6)

�x = [VT , α, β, φ, θ, ψ, P, Q, R, h, PN , PE ]T ,

�x ∈ R
12 (7)

Control vector with continuous action space is defined in
Eq. (8):

�u = [L F, RF]T , �u ∈ R
2 (8)

Fresh state estimates are evaluated at each time step uti-
lizing Eqs. (1-3).

Aerodynamic forces and moments acting on the aerial
vehicle during different stages of the flight are governed by
Eq. (9) and Eq. (10), respectively.

L = q∞SCL , D = q∞SCD, Y = q∞SCY (9)

lw = q∞bSCl , mw = q∞cSCm, nw = q∞bSCn (10)

where L, D, Y and lw, mw, nw represent aerodynamic forces
(lift, drag, and side force) and moments (roll, pitch, and yaw)
being used in the equations of motions, whereas CL , CD, CY

and Cl , Cm, Cn are the dimensionless aerodynamic coeffi-
cients in wind axis for calculating forces and moments. q∞
is the dynamic pressure, whereas S is the wing area.

2.3 Aerodynamic Evaluation

The aerodynamic body force and moment coefficients in
Eq. (9) and Eq. (10) vary with the flight conditions and con-
trol settings. A high-fidelity aerodynamic model is necessary
to determine these aerodynamic coefficients accurately. Cur-
rent research utilizes both non-empirical (such as CFD [68]
and USAF Datcom [69]) and empirical [70]) techniques to
determine these coefficients. The generic high-fidelity coeffi-
cient model employed for aerodynamic parameter estimation
is elaborated in Eq. (11):

Ci = Ci,static + Ci,dynamic (11)

where Ci = CL , CD , CY , Cl , Cm , and Cn represent the
coefficient of lift, drag, side force, rolling moment, pitching
moment, and yawing moment, respectively.

The non-dimensional coefficients are usually obtained
through linear interpolations using data obtained from vari-
ous sources. Evaluation of static (basic) coefficient data (see
Eq. (12)) is achieved utilizing computational fluid dynamics
(CFD) [68,71] technique and are conventionally a function
of control (δcontrol), angle of attack (α), side slip (β), and
Mach number (M).
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Ci,static(α, β, δcontrol , M) ⇒ CDb (α, β, δcontrol , M),

CLb (α, β, δcontrol , M),

CYb(α, β, δcontrol , M),

Clb(α, β, δcontrol , M),

Cmb (α, β, δcontrol , M),

Cnb(α, β, δcontrol , M)

(12)

where CDb , CLb , CYb , Clb , Cmb , and Cnb represent the basic
components of the aerodynamic forces and moments as a
function of (δcontrol), angle of attack (α), side slip (β), and
Mach number (M).

Similarly, dynamic component (Eq. (13)) consists of rate
and acceleration derivatives which are evaluated again utiliz-
ing empirical [70] and non-empirical (‘USAF Stability and
Control DATCOM’ [69]) techniques.

Ci,dynamic(α̇, β̇, p, q, r) =Rate derivatives

+ Acceleration derivatives
(13)

Rate derivatives are the derivatives due to roll (p) rate,
pitch rate (q), and yaw rate (r), while acceleration derivatives
are the derivatives due to change in the aerodynamic angles
(α̇, β̇). They are shown in Eq. (14) and Eq. (15), respectively.

Rate derivatives

= (CLq , CDq , Cmq )

+(CYp , Cl p , Cn p ) + (CYr , Clr , Cnr ) (14)

Acceleration derivatives

= (CL α̇
+ CDα̇

+ Cmα̇
)

+(CYβ̇
+ Clβ̇ + Cmβ̇

). (15)

3 MRL Framework

3.1 Introduction

Basic reinforcement learning algorithms are aimed at find-
ing an optimal state-value function Vπ∗ or an action-value
function Qπ∗, while following a policy π which is a time-
dependent distribution over actions given states (16) and
guides the choice of action at any given state.

π(a|s) = P[At = a|St = s] (16)

State-value function is the expected return starting from
state s, while following policyπ and gathering scalar rewards
once transitioning between the states (17). The agent’s
behavior is carefully controlled during the exploration phase
so that maximum states are visited at least once during the
course of learning. However, the action-value function is

determined by the return that is accumulated by the agent
being in any particular state s and taking action a (18).

vπ(s) = Eπ [Gt |St = s] (17)

qπ (s, a) = Eπ [Gt |St = s, At = a] (18)

Total reward of each episode Ra
s is defined as expectation

of rewards at each step of the episode given state and action
and is shown (19)

Ra
s = Eπ [Rt+1|St = s, At = a] (19)

3.2 RL Algorithm Selection Challenge

The development of an appropriate RL algorithm corre-
sponding to any problem is challenging as its implementation
varies from the nature of problem in hand [72,73]. Factors
such as state (s) and action space (a) domain type (discrete
or continuous), direct policy search (π) or value function
(v), model-free or model-based, and requirement for incor-
poration of neural nets (deep RL) are dictating parameters in
formulation/selection of an appropriate algorithm.

Current research work problem is a complex nonlinear
problem with mixed coupled controls. The problem has a
12-dimensional state space and a 2-dimensional action space,
both of which are continuous. Realizing the complexity of
the problem in hand due to continuous state and action space
[74], a unique approach of MRL is employed which adapts
to the desired requirements optimally.

3.3 Model-Free Reinforcement Learning (MRL) and
RL Dynamic Programming (DP) Architecture

3.3.1 RL Dynamic Programming (DP)

RL DP algorithm employs Bellman’s principle of optimality
[75] at its core. The optimality principle basically works by
breaking a bigger complex problem into smaller subproblems
and then solving each in a recursive manner, i.e., it optimizes
subproblems and combines them to form an optimal solution
[76–79]. The RLDP algorithm requires that the environment
is a Markov decision process (MDP) whereby the environ-
ment model is known along with the state transition matrix.
It performs full widths backups at each step (refer Figure 3),
where every possible successor state and action is considered
at least once. It computes the value of a state based on all pos-
sible actions a, resulting in all possible successor states s′ and
all possible rewards. The RL DP algorithm evaluates values
and action-value functions using Eq. (20).
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Fig. 3 RL DP implementation

vπ(s) =
∑

a∈A

⎛
⎝Ra

s + γ
∑

s′∈S
Pa

ss′vπ(s′)

⎞
⎠ ,

qπ (s, a) =Ra
s + γ

∑

s′∈S
Pa

ss′
∑

a′∈A

π(a′|s′)qπ (s′, a′)
(20)

The policy (set of good actions) which gives maximum
reward as per the defined reward function is known as an
Optimal Policy π∗ and is defined in Eq. (21):

v∗(s) =max
π

vπ(s),

q∗(s, a) =max
π

qπ (s, a)
(21)

RL DP once configured optimally is ideally suited in
situations where the state of the system is changing continu-
ously over time and sequential decisions are required [80]. It
sequentially improves the policy because every action being
selected at each step maximizes the overall return.

3.3.2 MRL Framework

Devised new MRL algorithm in this research is a derivative
of RL DP algorithm. However, in MRL a priori knowledge
of the model parameters is not required. This effectively
makes the proposed algorithm model-free. Further, the pro-
cess of policy optimization is managed through the iterative
development of an optimal reward function instead of a
value function or action-value function only. This ensures
that from the ab initio, optimal action is chosen at each time
step [81,82].

After the development of an optimal reward function,
the proposed MRL algorithm, which is the improved and

a model-free variant of RL DP, takes all the available actions
into account one by one, while calculating reward for actions
taken at every step of the algorithm. Then, among all the
rewards accumulated for each action taken in a particular
state, it characterizes the action with maximum reward as
the optimal action as shown in Eq. (22). MRL algorithm is
elaborated at Algorithm 1.

V (St)
max←−− [Rt+1 + γV (St+1] (22)

Algorithm 1MRL Policy Iteration Algorithm
1: Initialize states s
2: Embed iterative reward function
3: Initialize action policy π

4: Evaluate reward (R) for entire action space: (a) π(s) =
argmax

a∈A
q(s, a) = argmax

a∈A
(Ra

s + γ
∑

s′∈S Pa
ss′vπ (s′)) (b) Using

synchronous updates, update each optimal state and action pair
5: repeat
6: Step 4
7:
8: Terminal state is reached

This process of identifying optimal action at each step
continues to ensure optimizing the entire trajectory starting
from the initial launch conditions to the terminal stage.

Configuring the trajectory optimization problem in the
MRL environment was challenging as it was difficult to
accurately formulate the reward function, which fulfills the
desired objectives optimally. Erroneously developed reward
functions drive the agent to achieve non-priority goals and
non-converging solution. Another manifested problem was
the fact that the optimization process is inherently iterative.
Arriving at the desired final reward function takes consider-
able time, which must be minimized. Lastly, the application
of MRL for a complex problem based upon the continuous
domain requires accurate discretization of the constituent
domains. These need to be curtailed to ensure that the algo-
rithm remains computationally viable.

3.3.3 MRL Controller Development Architecture

Tomake the above-statedMRLcontroller algorithmefficient,
the associated action space was analyzed. With two actions
u ∈ R2 (i.e., LF and RF), the search space was segregated
corresponding to deflection range of ±10◦. The action space
of each control was then discretized into 50 equal spaces,
making a total of 2500 actions. This was primarily done to
make the algorithm computationally acceptable. Then, scalar
reward function was formulated for maximizing the glide
range of the experimental glide UAV. An inherent penaliza-
tion was introduced in the reward function. This ensured that
if the platform sets of course from the desired state values
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Table 1 Initial launch conditions

No. Launch parameter Value

1 Altitude 30000ft

2 Mach No. 0.7

3 Angle of attack (α) 0◦ & 3 ◦

during the learning phase, the reward will decrease as the
penalty is deducted from the reward function.

Starting from initial conditions (launch conditions), the
entire discretized action spacewas swept. A scalar reward for
each action pair was calculated based on the finalized reward
function. Action pair, which resulted in the best compensa-
tion for a specific given set of states, is chosen as optimal
value of conditions and activities.

Subsequently, at the next step, for the chosen set of states,
the same sequence of 2500 actions is applied, and again an
optimal action pair based on the highest reward is selected
and stored along with the new set of states. This optimiza-
tion process at every step of the process continues until the
terminal state (when the experimental glide vehicle hits the
ground with the employed condition of z is less than or equal
to zero in the algorithm) is reached. It is noteworthy that the
optimal action corresponding to maximum reward was being
taken at every step, so the entire trajectory was optimal. The
results are discussed in Sect. 4.

4 Results and Discussion

Results obtained from the suggested MRL algorithm which
is a variant of RL DP algorithm are discussed here. Variation
of all the 12 states during the glide phase of an experimental
UAV as mentioned in Eq. (7) has been plotted against the
episodic steps. The simulation time step after test and trial
is kept as 0.1 secs as it adequately captures the quantum of
change of states yielding optimum results for the entire state
space. The initial launch conditions for the gliding vehicle
are specified in Table 1

4.1 MRL Controller Results

The initial reward function formulated for the MRL con-
troller is depicted in Equation (23).

pny = |P| + |Q| + |R|
r = xpos

Rew = r − pny

(23)

where pny represents the penalty defined at each step of
the simulation; r is a scalar value based on increasing xpos

Fig. 4 Roll rate variation reward function I

Fig. 5 Pitch rate variation reward function I

which is the incremental current x value or the gliding dis-
tance covered. At first, only three states corresponding to
body rates were included in the cost function. Simulation
carried out utilizing this initially formulated reward function
showed body rates exploding just after 300 episodic steps
(refer Figures 4, 5, 6) while only achieving approximately
19 kms of range, as shown in Figure 7. It is noteworthy that
roll and yaw rates are excessively high, thus showing plat-
forms instability in the roll and yaw dynamics along with
their inherent strong coupling due to unconventional design
of the UAV.

Analysis of the previous results necessitated for more
stringent control of the body rates. Therefore, next itera-
tion focused on adding variable weightages to the rates in
order to control them (Eq. (24) efficiently. The addition of
the weights primarily aimed at keeping the penalty low. This
focused effort resulted in increasing the reward also which is
evident through the increase in glide range. However, once
again, the rates started to grow, surpassing the anticipated
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Fig. 6 Yaw rate variation reward function I

Fig. 7 Glide range of UAV reward function I

tolerance range and causing instability.

pny = n1|P| + n2|Q| + n3|R|
r = xpos

Rew = r − pny

(24)

After continuous thought process, besides the rates, quan-
tum of change in rates was now targeted and a new reward
function was formulated as mentioned in Eq. (25).

pny = n1|P| + n2|Q| + n3|R| + ΔP + ΔQ + ΔR (25)

where Δ in the reward function represents the state change.
Analysis of the initial results of this new structure reveals

that the rates remained controlled for increased time steps and
the range slightly enhanced to22 kms as evident in Figure 16;
however, rates blew up in between shown (refer Figures 8,
9, 10)

Fig. 8 Rates variation reward function III

Fig. 9 Rates variation reward function III

Next, once again previous weightages were re-tuned and
variable weightages were added to the change in rates of
reward function. It is meaningful to highlight here that
because of the excessive nonlinearity associated with the
experimental vehicle based on its peculiar design, roll and
yaw rates were specially focused as shown in Eq. (26).

pny = n1|P| + n2|Q| + n3|R| + n4ΔP

+n5ΔQ + n6ΔR (26)

Although the rates controllability was achieved for a
longer duration (refer Figures 12, 13, 14), the vehicle
remained unstable (Figure 15) with range enhancement to
about 30 kms (Figure 16).
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The increasing range, precision, and rates of controlla-
bility over the increased number of steps built confidence
toward iterative re-tuning of the reward function.

It is critical to understand that a random increase in
the weights would increase pny, thus sharply decreasing
the reward for each step. Therefore, thorough analysis is
required during formulation of the reward function as an
ill developed reward function would result in an instability
and non-convergence of the MRL algorithm. Keeping same
concern in focus, next, the difference of rates with their cor-
responding desired absolute values was also included in the
reward function as elaborated in Eq. (27).

pny =n1|P| + n2|Q| + n3|R| + n4ΔP + n5ΔQ+
n6ΔR + n7δP + n8δQ + n9δR

(27)

where δ represents the difference from the desired refer-
ence value in the penalty part of the reward function. Interim
results on the basis of reward function mentioned as Eq. (27)

Fig. 10 Rates variation reward function III

Fig. 11 Glide range of UAV reward function III

Fig. 12 Roll rate variation reward function IV

Fig. 13 Pitch rate variation reward function IV

Fig. 14 Yaw rate variation reward function IV
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show improvement in controlling the rates as shown in Fig-
ures 17, 18, 19. The reward started to increase with each step
of the episode, as shown in Figure 20. Similarly, the range,
lateral distance, and altitude showed considerably improved
results as depicted in Figure 21 and Figure 22. A gliding
range of around 63kms was achieved.

The iterative process of formulating an optimal reward
function continued clearly focusing on arresting the rates
variation. To improve the control of states, additional
dynamic weights n7, n8, n9, and n10 were also added to
the already finalized structure Eq. (27) for gaining an effec-
tive control of the changing rates with each step of the
episode. Subsequently, y dis parameter was also added in
the penalty to restrict platforms lateral movement in the Y-
direction. Additionally, the attribute of altitude decrease was
also included in the r , i.e., zpos, to contribute positively with
every step. The final reward function is shown as a set of
Eq. (28).

Fig. 15 Variation of reward in reward function IV

Fig. 16 Glide range of UAV reward function IV

Fig. 17 Roll rate variation reward function V

Fig. 18 Pitch rate variation reward function V

Fig. 19 Yaw rate variation reward function V
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Fig. 20 Reward function V

Fig. 21 UAV glide path of UAV reward function V

Fig. 22 Altitude profile of UAV reward function V

Fig. 23 UAV rates for reward function V

pny =n1|P| + n2|Q| + n3|R| + n4ΔP + n5ΔQ

+ n6ΔR + n7δP + n8δQ + n9δR + n10 ydi s

r =10−3 × xpos2 + (36000 − zpos)

rew =r − pny

(28)

After incorporation of the final reward function as a set of
Eq. (28) in the control algorithm, final results corresponding
to all states ofMRL-based controller, plotted against sequen-
tial episodic time steps for the glide vehicle are presented
in ensuing paragraphs. The selection of optimal control
deflections by the controller during the flight regime amidst
changing scenarios can be appreciated from the states’ results
and the gliding range achieved.

Variation of rates during the flight of UAV are depicted in
Figure 23. Initial negative spike in roll and yaw rates high-
lights the exploration phase of the agent where it learns to
select best control deflections trying to arrest the increasing
roll and yaw rates. The graph also validates the vital role and
yaw coupling because of the unconventional design of the
UAV. After 500 episodic steps, an optimal trade-off among
the rates achieves the maximum glide range.

Figures 24, 25, and 26 explain Euler angles variation
during the flight. Considerable variation in roll angle (around
±3◦) is initially experienced until the time rates settle. Later,
it determines to ±0.8◦) which indicates loss of negligible
energy. The pitch angle variation in an episode is initially
large (around 0 to - 4 degs) until the time rates are conserved.
Later, it is close to - 2 dogs but shows a slight diverging
behavior at the culmination of the episode, which is not desir-
able but acceptable. The variation of yaw angle in an attack
is initially considerable (around +/- 2 degs) until the time
optimal rates trade-off is achieved. Later, it’s close to + 1
deg because the UAV is covering eastwards lateral distance.
The initial variation (up to 500 episodic steps) in roll and
pitch rate can also be connected with the roll angle variation.
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Fig. 24 UAV roll angle variation

Fig. 25 UAV pitch angle variation

Fig. 26 UAV yaw angle variation

Fig. 27 Optimal glide path of UAV

Fig. 28 Aerodynamic angles of UAV

Figure 27 shows the glide path of the UAV. Platform
achieved an optimal range of more than 120 kms. While
maintaining smooth descent, UAV maintains a constant yaw
angle of around 1 deg, and the total lateral distance covered
in the entire gliding flight is approximately 2.4 kms.

Figure 28 depicts the variation of aerodynamic angles dur-
ing the flight. Angle of attack launched from initial 2◦ is
maintained around 2.6◦, after controlling the initial fluctua-
tion of the body rates. Side slip angle is adjusted during the
flight to achieve maximum range.

Velocity decreases smoothly as a result of drag and slight
increase of alpha as shown in Figure 29.

Altitude variation is smooth along the trajectory, and the
vehicle descent is controlled optimally tomaximize the range
as shown in Figure 30.

It is evident from the results that the autonomous MRL
controller continuously arrests the rate through the reward
function while keeping them within limits in pursuit of opti-
mal performance.The reward functiongraphgradually grows
while increasing reward, thus indicating optimal actions
being taken at every step of the episode.

123



1234 Arabian Journal for Science and Engineering (2023) 48:1221–1236

Fig. 29 Velocity profile of UAV

Fig. 30 Altitude variation of UAV

5 Conclusion

In this research, RL-based intelligent nonlinear controller for
an experimental glide UAV was proposed utilizing the MRL
algorithm. Implemented control algorithm showed promis-
ing results in achieving the primary objective of maximizing
the range while keeping the platform stable within its design
constraints throughout the flight regime.MRL approach gave
the optimal range of around 120 kms, while handling the
nonlinearity of vehicle (controlling the roll, pitch, and yaw
rates in a trade-off) through effective control deflections,
which were being monitored by the changing reward func-
tion. Devised RL algorithm is proved to be computationally
acceptable, wherein the agent was successfully trained for
large state and action space.

The performance of the controller was evaluated in a 6-
DoF simulation developed with the help of MATLAB and
FlightGear software. RL-based controller outperformed the
classical controller as being effective in the entire flight

regime of the vehicle, thus disregarding the conventional
approaches of calculating various equilibrium’s during the
trajectory and then trying to keep the vehicle stable within
the ambit of these equilibria utilizing linear/nonlinear meth-
ods. The investigations made in this research provide a
mathematical-based analysis for designing a preliminary
guidance and control system for the aerial vehicles using
intelligent controls. This research must open avenues for
researchers for designing intelligent control systems for
aircraft, UAVs, and the autonomous control of missile tra-
jectories for both powered and un-powered configurations.
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