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Abstract
Design of an optimal extended surface having functionally gradedmaterial is significant in cooling performance of hot attached
structures in technological applications. The present endeavor is to search for axially variable thermal conductivity formula
for a prescribed longitudinal fin shape of rectangular or triangular cross section. Heat transfer is presumed to take place
through conductive, convective and radiative effects. The well-known fact is that it is not possible to solve in closed-form the
highly nonlinear heat transfer equation under such considerations in general, unless some effects are ignored. Temperature
or spatial dependence of material properties of the fin make the problem even harder to treat without numerical simulations.
To help designer to avoid such simulations, prescribed temperature distributions in the form of elementary polynomial
functions involving some shape parameters are utilized. Under operative geometric and thermal parameters such as the
Biot number and the radiation parameter, exact solution formulae for the pertinent thermal conductivity distribution along the
functionally graded extended surface are then obtained. The price to pay is only towork out the domain of definition of physical
parameters acting on the loaded temperature profile.Designer can benefit from the advantage of the presented elementary
solutions while analyzing the efficiency of convecting-radiating longitudinal fins of rectangular, triangular or a more general
tapered longitudinal fin class cross sections and control/adjust the physical parameters to the desired temperature/material
conditions. With a preloaded temperature profile to the energy equation, the tip temperature can be adjusted so as to enhance
the heat transfer rate by increasing/decreasing the governing fin parameters. Such promising inverse problem of extracting
axial thermal conductivity distribution from a prescribed temperature solution can also be utilized in other kinds of fin profiles
without resorting to the numerical simulations.

Keywords Convective-Radiative longitudinal fins · Inhomogeneous fin · Fin efficiency · Variable thermal conductivity ·
Physical parameters · Exact solutions

1 Introduction

Many technological applications operating/generating high
energy require removal of some amount of heat from the
medium through conventional equipment of fins/extended
surfaces by increasing the area of surface to be cooled.
Some of these include computer engineering [1], indus-
trial engineering [2,3], micro-macro mechanical engineering
[4], mechanical engineering [5,6], solar energy engineer-
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ing [7], automotive engineering [8] and nuclear engineering
[9]. Numerically simulating the highly nonlinear convective-
radiative temperature equation demands too much time of an
engineer while designing fins. To ease the designers task,
prescribing the temperature in terms of basic polynomials
and determining the spatially distributed (temperature depen-
dent) heat transfer coefficient/thermal conductivity along the
inhomogeneous fin may be an alternative tool, as proposed
in this research paper.

Constructing governing heat transfer equation for a fin of
given cross section can be found in the open access books
[10] and [11]. Abundant research papers are available now
in the literature on the classical fin problem by means of
numerical/semi-analytical solution of the governing equa-
tion. Some of these, such as [12–15] employ the simplifying
assumption that material properties are uniformly set. Since
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addition of radiation term makes the problem quartic and
more nonlinear, the radiation effects are generally ignored
in the fin analysis, refer to the publications [16–19]. Tak-
ing into these two omitted effects into account, on the other
hand, is important to getmore realistic temperature solutions,
as implied from the publications [20–26]. It was reported in
[27] that the physical quantities of base heat transfer rate and
fin efficiency can be directly accessiblewithout fully simulat-
ing the heat equation for some special circumstances. Other
interesting treatments and physical applications of various
kinds of fins in different geometries can be seen in the recent
articles [28–35].

The literature survey indicates obviously that the capabil-
ity of heat dissipation of fins attached to the bodies of heat
removal inherently depends on their geometry and function-
ally graded material properties. Imposing these beforehand
and looking for the temperature response of a fin may not be
a friendly approach from a designer point of view, since gov-
erning highly nonlinear heat transfer equation necessitates
numerical simulation of full energy equation in that case, as
has been fulfilled by the above researchers, or for instance,
[36] for the pin fin arrangement simulations concerning a
heat sink of flat plate kind. On the other hand, from an inverse
problem thinking, prescribing a desired temperature distribu-
tion defined by simple polynomial functions and seeking for
the corresponding axially changing (or temperature depen-
dent) thermal conductivity/heat transfer coefficient across the
finunder considerationmay facilitate the engineer’s jobwhile
designing the fin shape influenced by the certain physical
parameters, like the Biot number and radiation parameter.
The variation in thermal conductivity/heat transfer coeffi-
cient along the fin surface becomes vital especially when
the temperature gradient is large enough. In this way, the
efficiency of heat transfer will be under control by resultant
material properties. The prime objective here thus is to work
out the responsive thermal conductivities for an imposed
temperature solution associated with the non-homogeneous
longitudinal cooling rectangular and triangular fin shapes,
as well as a more general tapered fin family from a highly
nonlinear conductive-radiative heat equation. It is exhib-
ited that once the other parameters/quantities are fixed, the
ideal variable thermal conductivity along the longitudinal
fins can be determined by a direct integration. The validity
region of solutions can later be sorted out by loading physi-
cal constraints on the temperature and variable properties. It
is particularly deduced that adjusting the tip fin temperature
acquires a control on the rest of the fin properties.

2 Governing Equations

The heat loss problem by the thermal enhancement instru-
ment of longitudinal rectangular or triangular fin as shown
in Fig. 1(a,b) is considered. The heat conduction takes place
in the direction of decreasing X along the fin of length L
and width W . As in the usual practical applications, fin is
maintained with a hot base temperature Tb at X = L and
insulated at the fin tip X = 0 with no heat flux. Temperature
of the fluid in the neighborhood of the fin is Ta (the ambient
temperature) and radiation temperature to the environment
occurs with Tr . A variable thermal conductivity K (X) and a
variable heat transfer coefficient H(X) influence the temper-
ature distribution T (X) along the axial locations. Moreover,
the Stefan–Boltzmann law constant is σ and the emissivity
of the fin is ε. In addition to these, the fin shape and thickness
are governed by the function F(X).

In place of optimizing the fin geometry with uniform
K and H , changing the material properties like the ther-
mal conductivity or heat transfer coefficient along the fin
could be another approach to enhance the heat transfer and
fin efficiency. In the present work, we prefer allocating
the temperature distribution under a constant heat transfer
coefficient, and determining the axially variable thermal con-
ductivity, althoughdependence of both physical properties on
the spatial variable could be searched. Eventually, assuming
that the fin thickness is much smaller as compared the fin
length so that the one-dimensional heat transfer model can
be adopted, and also taking into account the dimensionless
quantities

θ = T

Tb
, x = X

L
, F = δ f ,

K = k0k(x), H = h0h(x), (1)

the temperature equation of an inhomogeneous fin whose
thermal performance is affected by the heat losses due to
conductive, convective and radiative heat transfer can be
expressed in the following form (see; [20,22,23,25,26])

[ f (x)k(x)θ ′(x)]′ = Nch(x)(θ(x)−θa)+Nr(θ4(x) − θ4r ),

θ(1) = 1, θ ′(0)=0. (2)
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(a) (b)

Fig. 1 Geometries of longitudinal fins of rectangular cross section (a) and triangular cross section (b)

Keeping in mind that δ is the half-fin thickness at the
location that the fin is attached to the hot surface (refer to
the configurations in Fig. 1(a,b)), k0 and h0 are the reference
values of thermal conductivity and convective heat transfer
coefficient, the followings hold true

f (1) = k(1) = h(1) = 1. (3)

Additionally, as a consequence non-dimensionalization via
the transformations in (1), the following thermo geometric
parameters arise

Nc = h0L2

δk0
, Nr = σεL2T 3

b

δk0
,

θa = Ta
Tb

, θr = Tr
Tb

, (4)

where they are called, respectively, Nc the Biot number, Nr
the conductive-radiative parameter, θa the sink temperature
parameter and θr the radiation parameter.

The heat loss at the fin surface (that fin base minus fin tip)
due to Fourier’s heat law is

q = K (L)WF(L)T ′(X = L), (5)

whereas the ideal case of the whole temperature at the base
temperature (with an infinite thermal conductivity) yields the
heat flux

q = 2H(L)LW (Tb − Ta) + 2σεLW (T 4
b − T 4

a ). (6)

Taking into consideration the scalings in (1), the ratio of (5)
to (6) gives rise to the definition of fin efficiency η

η =
∫ 1
0 (Nch(x)(θ(x) − θa) + Nr(θ(x)4 − θ4r ))dx

Nc(1 − θa) + Nr(1 − θ4r )

= θ ′(1)
Nc(1 − θa) + Nr(1 − θ4r )

. (7)

3 Exact Solutions

We should remark that imposition of temperature function
in terms of elementary polynomials will lead to more conve-
nient formulae at the disposal of engineers; otherwise, results
would appear in implicit forms in terms of advanced math-
ematical functions represented by infinite series, as can be
referred to the literature. For instance, Taylor polynomial
approximationwas reported in [14], which had to be simulta-
neously justified from the numerical simulations. In the case
of simultaneous convecting-radiating scenario, no exact solu-
tion so far in any scientific form is known owing to the quartic
nonlinearity. On the other hand, simply accessible solutions
are desirable as the present work adheres. Therefore, the tem-
perature distribution θ(x) satisfying the boundary conditions
in (2) is assumed in the form

θ(x) = 1 + a(1 − x2) + b(1 − x3), (8)

where a and b are the shape parameters whose validity
range to be identified later. With the prescribed temperature
solution (8), the corresponding dimensionless thermal con-
ductivity spatially distributed over the entire fin of arbitrary
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shape can be obtained by integrating once Eq. (2)

k(x)

=
∫ x
1 (Nc(θ(x) − θa) + Nr(θ(x)4 − θ4r )dx + θ ′(1)

f (x)θ ′(x)
.

(9)

Without losing the generality, we assume θa = θr = 0 to
ease the analysis in what follows.

3.1 Longitudinal Rectangular Fin Profile

For this specific fin geometry, we have a constant cross sec-
tion at all spatial locations as inferred from Fig. 1(a), so

f (x) = 1. (10)

On substitution of (8) and (10) into (9), the material conduc-
tivity across the longitudinal rectangular fin is given by the
formula

k(x) = −
(

− 3b − Nc − 3bNc

4
− 2

3
a(3 + Nc) − Nr

−
(
2288a(105 + 2a(63 + 4a(9 + 2a)))

+1287(210 + a(490 + a(413 + 121a)))b

+39(8910 + a(14740 + 6397a))b2

+858(243 + 208a)b3 + 48114b4
)
Nr

/
90090

+(1 + a + b)
(
Nc + (1 + a + b)3Nr

)
x

−1

3
a

(
Nc + 4(1 + a + b)3Nr

)
x3

−1

4
b

(
Nc + 4(1 + a + b)3Nr

)
x4

+6

5
a2(1 + a + b)2Nrx5 + 2ab(1 + a + b)2Nrx6

−2

7
(1 + a + b)

(
2a3 − 3(1 + a)b2 − 3b3

)
Nrx7

−3

2
a2b(1 + a + b)Nrx8

+1

9
a

(
a3 − 12(1 + a)b2 − 12b3

)
Nrx9

−2

5
b

(−a3 + (1 + a)b2 + b3
)
Nrx10 + 6

11
a2b2Nrx11

+1

3
ab3Nrx12 + 1

13
b4Nrx13

)/
(x(2a + 3bx)). (11)

Because denominator of k(x) in (11) is zero, numerator
should also vanish to get realistic solutions, leading to the
restriction on the conductive-radiative parameter Nr

Nr = −
(
(15015(12Nc + 8a(3 + Nc) + 9b(4 + Nc)))

/((
572(315 + 8a(105 + 2a(63 + 4a(9 + 2a))))

+2574(210 + a(490 + a(413 + 121a)))b

+78(8910 + a(14740 + 6397a))b2

+1716(243 + 208a)b3 + 96228b4
)))

. (12)

Moreover, the physical parameter Nr in (12) should be
positive, permitted to be zero only when

Nct = − 12(2a + 3b)

12 + 8a + 9b
, (13)

which gives the threshold for theBiot number Nc. In addition
to this, the requirements on the temperature θ(x), thermal
conductivity k(x), Nr and Nc, keeping in mind (8), (11) and
(12)

0 ≤ θ(x), k(x) ≤ 1, 0 ≤ x ≤ 1,

Nc ≥ 0, Nr ≥ 0 (14)

result in the domain of validity of parameters in the intervals

− 1 < b ≤ 0, −1 − b ≤ a < 0, 0 ≤ Nc ≤ Nct,

0 < b ≤ 2, −1 − b ≤ a < −3b

2
, 0 ≤ Nc ≤ Nct, (15)

which imply that the allowable range of a × b = (−1, 2] ×
(−3, 0].

3.2 Longitudinal Triangular Fin Profile

The only difference between the rectangular and triangular
fin shapes is that there appears x2 term for the thermal con-
ductivity in the denominator of Eq. (11) in the latter, since
the fin thickness is given by f (x) = x . Therefore, not only
the numerator of k(x) but also its derivative should disappear,
forcing the Biot number to completely vanish. Therefore, the
heat transfer occurs through only radiation mechanism with
the supplemented formulas
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b = −(1 + a),

Nr = 6435(3 + a)

495 + a(−165 + a(45 + (−9 + a)a))
,

θ(x) = x2(a(−1 + x) + x),

k(x) = (3 + a)x7
(
715a4 − 2574a3(1 + a)x + 3510a2(1 + a)2x2 − 2145a(1 + a)3x3 + 495(1 + a)4x4

)

(495 + a(−165 + a(45 + (−9 + a)a)))(−2a + 3(1 + a)x)
. (16)

It should be alerted that to maintain the convective heat
transfer route over longitudinal fin of triangular cross sec-
tion one should consider higher order terms in the prescribed
temperature function (8), which can be implemented with an
extra effort.

4 Results and Discussion

Results of the previous analysis will be presented sepa-
rately in regard to the longitudinal rectangular fin and the
longitudinal triangular fin. It is noted that the cited lit-
erature on the 0studied fin problem numerically solves it
always by fixing the fin parameters under restricted ther-
mal conductivities like linearly varying with temperature.
However, the present approach does not pose any such
confinement to neither the fin parameters nor the material
properties, but only preassigns a suitable temperature pro-
file. From this respect, the present approach is not directly
comparable with the available results, otherwise a more
general space/temperature-dependent thermal conductivity
result would be needed for a potential comparison.

4.1 Longitudinal Rectangular Fin

Critical boundaries for Nc in (13) in the domain of defini-
tion given by (15) are shown in Fig. 2. Solution domains lie
underneath piece of the curve shown for a particular value of

Fig. 2 Thresholds for the physical solutions for fixed parameter b

parameter b. For instance, when b = −0.5 to be presented
solutions are valid in the domain a ∈ [−0.5, 0), when b = 0
in a ∈ [−1, 0) and when b = 0.5 in a ∈ [−1.5,−0.75).
Obviously, as b increases within the interval (-1,2] the effec-
tive range of Nc decreases. Indeed, when b = 2, a = −3
and Nc = 0. On the other hand, when b = 0, Nc ∈ [0, 6].

Knowing the existence of physical solutions from the
range of parameters via the relation in (15) and from Fig. 2,
it is easy to control the variation of temperature and thermal
conductivitywithin the functionally graded longitudinal rect-
angular fin profile from the exact expressions in (8) and (11).
To serve the fin designer, the fin tip values can be assigned
from the formulas

θ(0) = 1 + a + b,

k(0) =
(
180180(1 + a + b)4(2a + 3b)

+(1 + a + b)
(
572a(315 + a(567 + 41a(9 + 2a)))

+1287(105 + a(455 + a(469 + 143a)))b

+39(6435 + a(14410 + 6841a))b2

+168597(1 + a)b3 + 38907b4
)
Nc

)

/(
4a

(
286(315 + 8a(105 + 2a(63 + 4a(9 + 2a))))

+1287(210 + a(490 + a(413 + 121a)))b

+39(8910 + a(14740 + 6397a))b2

+858(243 + 208a)b3 + 48114b4
))

. (17)

To illustrate the practical use of the formulae obtained
in this section, valid region of physical parameters Nc,
Nr , a and the corresponding complete temperature field
are revealed at b = −0.5 in Fig. 3(a,b). In compliance
with Fig. 2, Fig. 3(a) clearly indicates that higher values
of conductive-radiative parameter Nr can be picked by fix-
ing the Biot number small and parameter a in the vicinity of
a = −0.5, which signify radiation-dominated heat transfer.
Otherwise, convective-dominated heat transfer takes place at
higher values of Biot numbers Nc at comparatively smaller
values of Nr . Proper choices of fin temperature distribution
can be taken from the assigned value of a in Fig. 3(b). It is
anticipated that the fin tip temperature can be reduced to the
lowest value of zero provided that a is set -0.5, otherwise,
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Fig. 3 Radiation parameter Nr against Nc and a are shown for b = −0.5 in (a). Part bDepicts the entire temperature distribution for the parameters
in (a)

increase in a will lead to increase in tip temperature, and
hence the increase in the whole temperature. Figure 3(a,b)
shows also evidence thatmost of the heat transferwill happen
by pure convective mechanism, rather than radiation mech-
anism as also concluded in [20].

Having fixed the physical parameters from Fig. 3(a) and
imposing a temperature distribution from Fig. 3(b), the cor-
responding spatial loading of thermal conductivity can be
fulfilled from Eq. (11). Some selected cross-sectional tem-
perature profiles and corresponding thermal conductivity
variation are demonstrated in Fig. 4(a–f). It is interesting to
observe that for tip temperatures close to zero, the tip thermal
conductivity should also be reduced to zero at all stations Nc
and Nr , enforcing a monotonically increasing non-uniform
thermal conductivity distribution from tip to the base of the
rectangular fin. On the other hand, increase in the fin tip
temperature makes it possible to load axially varying ther-
mal conductivity whose tip value may exceed the base value,
particularly for increasing Biot numbers.

The valid region of physical parameters Nc, Nr , a and the
corresponding temperature field are next exhibited at b = 0
in Fig. 5(a,b). Figure 5a is consistent with Fig. 2 and makes it
clear that smaller radiation effects are achieved as compared
to b = −0.5 in Fig. 3(a). This is possible by enhancing the
temperature profiles as witnessed from Fig. 5(b) (see the one
for b = −0.5 in Fig. 3(b)).

Some selected cross-sectional temperature profiles and
corresponding thermal conductivity variation are demon-
strated in Fig. 6(a–f) for b = 0. Similar scenario as above
holds for smaller values of a, but no matter the prescribed
temperature distribution, the tip thermal conductivity is
always less than the fin base one. It is worthy of noting the
phenomenon that one is able to increase the fin tip tempera-
ture and hence enhance the temperature distribution over the
rectangular fin as high as possible by imposing the parameter
a close to zero.

Finally, the valid region of physical parameters Nc, Nr ,
a and the corresponding temperature field are revealed at
b = 0.5 in Fig. 7(a,b). The unique feature here distinct from
the above cases of b is that it enables prescription of temper-
ature profiles having inflectional character. This is achieved
by sharply varying thermal conductivity distribution close to
the hot body and relaxing it to zero in most of the rest of the
fin up to the tip, refer to Fig. 8(a–f).

For the purpose of qualitative referencing, some explicit
elegant formulae from the selection of unity Biot num-
ber and special parameters are outlined below; (a, b) =
(−0.5,−0.5)
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 Prescribed temperature profiles and loaded thermal conductivities for some selected parameters a at b = −0.5. a, b a = −0.5, c, d
a = −0.25 and e, f a = −0.1
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Fig. 5 Radiation parameter Nr against Nc and a are shown for b = 0 in (a). Part b depicts the entire temperature distribution for the parameters
in (a)

Nr = 227370/9439 = 24.0884,

θ(x) = 1

2
x2(1 + x),

k(x) = x2
(
37756 + 28317x + 53x6(715 + 3x(858 + 5x(234 + 11x(13 + 3x))))

)

113268(2 + 3x)
. (18)

(a, b) = (−1, 0)

Nr = 15,

θ(x) = x2,

k(x) = 1

6
(x2 + 5x8). (19)

(a, b) = (−3/2, 1/2)

Nr = 4290/521 = 8.23417,

θ(x) = −1

2
(−3 + x)x2,

k(x) = x2
(−2084+521x−3x6(6435+x(−7722+5x(702+11(−13+x)x)))

)

6252(−2+x)
. (20)

Figure 9 demonstrates mutual temperature profiles and
thermal conductivity variations for Nc = 1 from (18-20).

Further Fig. 10(a,b) illustrates mutual temperature pro-
files and thermal conductivity variations for Nc = 1,
corresponding to the formulae (a, b) = (−0.25,−0.5)

Nr = 2539680/206287 = 12.3114,

θ(x) = 1

4

(
1 + x2 + 2x3

)
,

k(x) =
(
1475817 + 730034x2

+1095051x3 + 285714x4

+952380x5 + 952380x6 + 714285x7

+1296295x8 + 952380x9

+519480x10 + 634920x11

+293040x12
)/

2475444(1 + 3x). (21)

(a, b) = (−0.5, 0)

Nr = 105/83 = 1.26506,

θ(x) = 1

2

(
1 + x2

)
,

k(x) = 2307 + 1084x2 + 378x4 + 180x6 + 35x8

3984
. (22)
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 Prescribed temperature profiles and loaded thermal conductivities for some selected parameters a at b = 0. a, b a = −1, c, d a = −0.5 and
e, f a = −0.1
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Fig. 7 Radiation parameter Nr against Nc and a is shown for b = 0.5 in (a). Part b depicts the entire temperature distribution for the parameters
in (a)

(a, b) = (−9/8, 1/2)

Nr = 1281280/2590949 = 0.494522,

θ(x) = 1

8

(
3 + 9x2 − 4x3

)
,

k(x) = −
(
15951099 + 17167314x2 − 5722438x3

+4378374x4 − 3243240x5 + 6872580x6

−7297290x7 + 6531525x8 − 6222216x9

+3538080x10 − 960960x11 + 98560x12
)

/
31091388(−3 + 2x). (23)

Interestingly, a more cooled fin possessing less temperature
is supported via a non-monotonic thermal conductivity dis-
tribution, dissimilar to the other cases shown. This indicates
that a better fin may demand more care during manufactur-
ing.

The fin efficiency regarding the inhomogeneous longitu-
dinal rectangular fin from (7) turns out to be

η = −
((

2(2a + 3b)
(
286(315 + 8a(105 + 2a(63 + 4a

(9 + 2a)))) + 1287(210 + a(490 + a(413 + 121a)))b

+39(8910 + a(14740 + 6397a))b2

+858(243 + 208a)b3 + 48114b4
))

/(
− 180180(2a + 3b)

+
(
1144a(315 + 8a(63 + 4a(9 + 2a)))

+1287(315 + 2a(490 + a(413 + 121a)))b

+78(8910 + a(14740 + 6397a))b2

+1716(243 + 208a)b3 + 96228b4
)
Nc

))
. (24)

The resulting fin efficiencies from (24) are exhibited in
Fig. 11(a–c). Expectedly, smaller Biot numbers lead to high-
est fin efficiencies owing to the shortest fin heights. Higher
fin efficiencies are also as a result of higher surface radiation,
whose thermal conductivity variations are shown in Figs. 4, 6
and 8. From the fin designing point of view, Fig. 11(a–
c) has the utmost significance, since the fin designers can
easily decide what parameters should be selected for the pre-
scribed fin temperature from (8) giving rise to the optimal non
homogenous thermal conductivity distributions from (11).

4.2 Longitudinal Triangular Fin

It should be recalled from (16) that solutions are valid in the
absence of convective heat transfer with Nc = 0, so pure
radiative heat loss is present. The domain of existence of
solutions relies upon the illustrated graph in Fig. 12. It is
easy to deduce that radiative heat transfer happens over the
longitudinal triangular fin cross sections with the solutions
(16) when a ∈ [−3, 0] and Nr ∈ [0, 39].

From the determined validity region in Fig. 12, temper-
ature distribution and thermal conductivity variation over a
triangular fin shape are shown in Fig. 13(a,b). Inflectional
prescribed temperature distributions close to a = −3 in
Fig. 13(a) are available supported by largely varying thermal
conductivities adjacent the attached surface in Fig. 13(b).
Otherwise, for values of a near 0, monotonically increasing
temperature and thermal conductivity profiles can be made
use to construct non-homogeneous longitudinal triangular fin
sections.

Some explicit cute solutions are given, for instance at a =
−2

Nr = 6435/1093,
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 Prescribed temperature profiles and loaded thermal conductivities for some selected parameters a for b = 0.5. a, b a = −1.5, c, d a = −1
and e, f a = −0.76
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Fig. 9 Mutual temperature profiles and thermal conductivity variations
at chosen parameters for Nc = 1

θ(x) = −(−2 + x)x2,

k(x) = − x7
(
11440 − 20592x + 14040x2 − 4290x3 + 495x4

)

1093(−4 + 3x)
,

(25)

at a = −1

Nr = 18,

θ(x) = x2,

k(x) = x7, (26)

and at a = 0

Nr = 39,

θ(x) = x3,

k(x) = x10. (27)

Fin efficiency from (7) computed for triangular fins is
given by the formula

η = 495 − 165a + 45a2 − 9a3 + a4

6435
. (28)

Figure 14 eventually reveals the corresponding fin efficiency
from (28). Interesting, the smaller the value of a, the fin
efficiency becomes higher with an inflectional temperature
distribution along the triangular fin shape.

Finally, we should state that the present analysis is not
confined to the longitudinal rectangular or triangular fin pro-
files, but a general tapered longitudinal fin family could be
considered with the thickness function

f (x) = 1 − α(1 − x), 0 ≤ α ≤ 1, (29)

The controlling fin shape parameter α = 0 and α = 1 are
special cases just studied here. Hence, the thermal response
of such inhomogeneous tapered fin coolants can be guessed
from these limiting fin surface results. It is also noteworthy
to mention that a linear function of heat transfer coefficient
h(x) = 1 + βx could be taken to investigate the effects of
variable function of convective heat transfer.

5 Conclusions

The present research considers the classical fin problem
concerning longitudinal rectangular and triangular profiles
taking into account the conductive, convective and radiative
effects. Instead of uniform and homogenous fin material,
inhomogeneous and spatially variable thermal properties
such as the heat transfer coefficient and the thermal con-

(a) (b)

Fig. 10 At chosen parameters for Nc = 1. a Temperature and b thermal conductivity
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Fig. 11 Fin efficiencies for the longitudinal rectangular fin profiles. a b = −0.5, b b = 0 and c b = 0.5

ductivity of the fin. With the above effects in the functionally
graded fin surface, the governing equation of the heat con-
duction through the fin is highly nonlinear and no explicit or
implicit form of the solution can be rewritten except in some
special cases, or numerical methods were consulted by the
researchers.

On the other hand, a fin designer always hopes to have
explicit formulae to understand the impacts of physical
parameters on the fin shape under consideration. Not only the
thermal solutions satisfied by the highly nonlinear differen-
tial equation are desired, but also an adjustable route of purely
convective or radiative-dominated heat transfer mechanisms
is required, accounting for mutual heat losses. To avoid the
heavily involved numerical computations, a prescribed tem-
perature distribution is therefore assumed within the present
approach in terms of elementary polynomials. Then, the cor-
responding axially varying thermal conductivity is elaborated

from the fin equation. Themathematical task of such an anal-
ysis only necessitates the determination of the thresholds of

Fig. 12 Threshold for the physical solutions
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Fig. 13 Longitudinal triangular fins. a Temperature distribution and b Thermal conductivity variation

Fig. 14 Fin efficiency

the thermo-geometric parameters inherent in the equation.
As a result, unique features of temperature and thermal con-
ductivity along the longitudinal convecting-radiating fins can
be viewed by the fin analyst. Besides, having fixed the Biot
number and conductive-radiative parameter, the correspond-
ing fin efficiency can be realized from the explicit elegant
formulas. To conclude, the great advantage of elementary
solutions of highly nonlinear fin provided here can be taken
granted by the scientific community actively working on the
fin problem.

We should finally emphasize that the present approach can
be extended to other fin profiles, such as the pin fins, and to
other physical mechanisms, such as the moving fins. More-
over, the present work can further be utilized interchangeably
for determining the conventional/optimal shape of a desired
fin, when all other physical quantities and parameters are
given.
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