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Abstract
Themost commonly used kernel function of support vector machine (SVM) in nonlinear separable dataset inmachine learning
is Gaussian kernel, also known as radial basis function. The Gaussian kernel decays exponentially in the input feature space
and uniformly in all directions around the support vector, causing hyper-spherical contours of kernel function. In this study,
an adaptive kernel function is designed based on the Gaussian kernel, which is used in SVM. While the sigma parameter is
determined as an arbitrary value in the traditional Gaussian kernel, a modified Gaussian kernel method is used that calculates
an adaptive value depending on the input vectors in the proposed kernel function. The proposed kernel function is compared
with the linear, polynomial and Gaussian kernels commonly used in support vector machines. The results show that the
proposed kernel function performs well on separable linear and nonlinear datasets compared to other kernel functions. It is
also compared to state-of-the-art support vector machine kernels.

Keywords Support vector machine · Gaussian Kernel · Radial basis function · Data classification

1 Introduction

Support vector machine (SVM) [1, 2] may be called the flag-
ship of classification in machine learning. Since SVM offers
one of the most robust and accurate methods among all well-
known algorithms such as k-nearest neighborhood (k-NN),
artificial neural networks (ANN), decision trees (DT), it is
considered to be tried in classification. It has a solid theoreti-
cal basis, requires few samples for training and works stable
with a large number of dimensions. SVM [3] has been one of
the most developed and used methods of recent years, based
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on solid mathematical principles such as Lagrangian duality
optimization [4] and kernel function [5] trick approaches, in
classification tasks of supervised machine learning methods.
Classification with supervised learning [6–8] is a method
of machine learning [1, 9] task that categorically predicts
class to which a particular instance belongs. Kernel function
methods attract the attention of machine learning researchers
due to their robust mathematical infrastructure, higher accu-
racy rates and relatively fast training times compared to other
machine learning methods such as k-NN, ANN and DT in
solving nonlinear problems. Although there are quite a lot
of kernel function varieties, basic ones are linear, polyno-
mial, Gaussian or in other words radial basis function (RBF)
and sigmoid kernels [9] in classification. However, the ker-
nel selection [2] issue, aimed at which kernel function is
required to classify data most accurately, is an important
research topic in recent years. Also, novel kernel function
types [10–17] are produced continuously from large mathe-
matical functions space since a wide variety of nonlinearly
separable dataset are available in the real world. Kernelswere
applied to many areas including different dataset in literature
[18–20]. In order to select the most suitable kernel for the
topological structure of the dataset, kernel variety in litera-
ture should be increased.

Authors in [21] proposed a framework which can be
applied on kernels and transform them more accurately
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in terms of clustering, classification and dimensionality
reduction of dataset. They prepared a synthetic dataset in
3D spiral form and used a common repository dataset. In
experiments, their geometry aware kernels improved perfor-
mance. In study [22], a modified fuzzy c-means clustering
algorithm based on Mahalanobis distance that takes into
samples’ correlation account has been proposed and suc-
cess achieved in terms of reducing effect of outliers and
obtaining high classification accuracy. In [12], construction
methods of some orthogonal polynomial kernels and pro-
posed triangular-Chebyshev and triangular-Legendre kernels
were compared with universal kernels via classification and
regression scenarios. Proposed ones could achieve classi-
fication and regression tasks more accurately. Jiang et. al
[14] proposed stationary Mahalanobis distance-induced ker-
nels in SVM with applications in credit risk evaluation.
They focused on stationary kernel construction where they
assumed distance between two simultaneously translated
vectors would be the same as the one without translation.
Proposed kernels were appropriate for credit risk evaluation
and over classical machine learning methods by meaning of
performance. Baek and Kim [23] studied SVM’s computa-
tional expense and proposed a new look up table based on a
less costly optimal additive kernel. However, results showed
that their proposed kernel is not higher than Gaussian kernel
in accuracy. Ding et al. have proposed a kernel modifying
the traditional RBF kernel of SVM, which they call random
radial basis function (RRBF), in which kernel parameters
can be randomly assigned and expand a single parameter
to multivalued parameters of finite length. In experimen-
tal studies, datasets with 13 binary and 5 multi-class labels
were used. As a result of experimental comparisons, they
stated that RRBF outperforms RBF, polynomial, extreme
learning machine (ELM), Chebyshev and Hermite kernels
for both binary and multi-class classification datasets [24].
Another study byDing et al. is the random compact Gaussian
(RCG) kernel, which they proposed by combining random
featuremappingused in the extreme learningmachine (ELM)
kernel with a traditional Gaussian kernel. Unlike their pro-
posed method ELM kernel, all parameters in RCG kernel
are randomly assigned. Random feature mapping saves the
parameter selection time of RCG core and implicit mapping
saves core computation time of RCG core. Experiments on
both classification and regression datasets have reported that
RCG tends to achieve better generalization performance than
other kernels [25].

In the studies reviewed above, it is seen that improved new
kernels via modification where kernels modified accordingly
Mercer condition, distance metric where used metric pro-
vides positive semi-definition criteria andnumerical trick like
lookup tables. TheGaussian kernel in classification problems
is referenced in the literature very often since it accurately
classifiesmost of common datasets.Moreover, recent studies

on kernels for the SVM are compared with Gaussian kernels
especially on nonlinearly separable datasets. In this study,
we have proposed a new kernel named adaptive Gaussian
(AG). AG uses a mean-based method for preprocess of input
vectors of training dataset and ρ parameter selection method
based on standard deviation. The contributions of this study
are listed as follows:

(1) The proposed method offers an adaptive kernel method
by calculating the standard deviation value depending
on the norms of the input vectors instead of the variance
parameter in the Gaussian kernel.

(2) It performs automatic calculation by disabling the man-
ually determined parameter specific to the problem in
the traditional Gaussian kernel.

(3) Since it does not need problem-specific parameters, it
can be applied directly and practically to all classifica-
tion problems.

This paper is organized as follows; in the first section,
the literature about SVM and Gaussian kernels has been
introduced. In the second section, SVM has been briefly
explained. In the third section, the theoretical approach of the
proposed kernel function has been discussed. In the fourth
section, experimental results have been presented and com-
pared to well-known kernel functions and in the last section,
this paper is summarized.

2 Support Vector Machine

SVM is a supervised learning model in machine learning
used to classify binary or multiple datasets of linear or non-
linear separable type. Since the Lagrangian dual problem is
used as an optimization approach in the SVM classifier, the
number of training processes is saved, and a significant speed
advantage is obtained compared to other algorithms. Thus,
SVM is successful in high-volume datasets, as well as in
high-dimensional problems with few data. Support vectors
with hyperplanes are used for a linearly separable dataset as
given in Fig. 1.

Given m training pairs (x1, y1), . . . . . . , (xm , ym), where
xi ∈ Rn , with i � 1, 2, . . . , m, is an input vector labeled
by xyi ∈ {−1, +1}, the linear SVM classifier searches for an
optimal separating hyperplane given in Fig. 1.

〈ω, x〉 + b � 0 (1)

ω ∈ Rn is the normal vector to the hyperplane and b is
a scalar. Equation (1) is obtained by solving the following
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Fig. 1 Linear SVM classifier with hyperplane and margin

convex quadratic programming problem below:

min
ω, τi

‖ω‖2
2

+ C

(
n∑

i�1

τi

)
(2)

subject to:

{
y(〈ω, x〉 + b) ≥ 1 − τi

τi ≥ 0
with, i � 1, 2, ..., m,

(3)

where C is a regularity parameter greater than zero, which
balances the significance between maximization of margin
width and minimization of training error. The slack variable
τi ∈ R is the soft margin error of the i th training sample.
The solution of Eqs. 2 and 3 is obtained by finding the saddle
point of the Lagrange function and a decision function of the
form given in Eq. 4.

f (y) � sgn(〈ω, x〉 + b) � sgn

(
m∑
i�1

ai yi x
T
i x + b

)
(4)

The problems, caused by the nonlinear topology of
datasets, can be solved by mapping datasets to multi-
dimensional space by the kernel functions, which can be
divided into a linearly separable problem. SVMs with kernel
functions are created for nonlinearly separable data. These
kernel functions are basically polynomial, Gaussian and sig-
moid. The Gaussian kernel function allows the separation
of nonlinearly separable data by mapping the input vector to
Hilbert space. TheGaussian kernel is an exponential function
including norm and real constant given in Eq. 5.

KG (u, v) � exp

(
−‖u − v‖22

2ρ2

)
(5)

where u and v are input vectors, the Euclidean norm [26] in
the numerator part of the exponential expression is obtained

with input vectors, andρ in the denominator part is a real con-
stant, which is an arbitrary value. Gaussian kernel function
decays exponentially in the input feature space and uniformly
in all directions around the support vector, inducing to hyper-
spherical contours of the kernel function. When using the
Gaussian kernel in SVM, input vectors of the kernel are gen-
erally raw form; however in [27, 28] applied a correction
method as the mean of input vectors. Width of each bell-
shaped surface is directly proportional to ρ. The parameter ρ
that gives optimal width can be found by trying. Experimen-
tal process of finding ρ is an iterative approach that consumes
time and power. Therefore, the development of an efficient
method for tuning ρ to an optimal width for the data would
be an important solution for SVM classification problems. A
stationary state of a Gaussian kernel can be represented as
bell shaped with three-dimensional surface and data distri-
butions given in Fig. 2.

Other basic kernel functions used in SVMare linear kernel
given in Eq. 6 and polynomial kernel given in Eq. 7.

KLin(u, v) � 〈u, v〉 (6)

KPol(u, v) � (〈u, v〉 + 1)n (7)

where n is degree of polynomial.

3 The Kernel Approximation

Let {xn} be a sequence in the metric space (X , d). If there is
an N number in the form of

d(xn , xm) < ε (8)

for ∀ε > 0 and ∀k, l ≥ N , the {xn}, a sequence is called the
Cauchy sequence. The metric space to which every Cauchy
sequence is convergent is the complete metric space. On the
other hand, a normed space and d(xn , xm) is defined by

d(xn , xm) � ‖xn − xm‖ (9)

in that case d is a metric. Further, the complete inner product
space as metric space is named Hilbert space H .

The kernel function K : X × X → R is defined by

K (u, v) � 〈ϕ(u), ϕ(u)〉H (10)

where the space H is a feature space of K and ϕ : X × X →
H is a feature map. Also, from the property of the inner
product h, g ∈ H be given by.

g(x) �
m∑
i�1

ηi K (vi , u) and h(x) �
n∑

i�1

λi K (vi , u) (11)
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Fig. 2 Behavior of SVM with Gaussian kernel on nonlinear separable dataset; a 3D Gaussian surface b nonlinearly separable dataset c dataset
mapped to Hilbert space by Gaussian kernel

Then

〈g, h〉 �
m∑
i�1

n∑
j�1

ηiλi K (ui , v j ) �
m∑
i�1

ηi h(ui )

�
n∑
j�1

λ j g(v j ) (12)

Theorem1 (Mercer) [3] Tobe avalidSVMkernel, forϕ(u),
the following integration should always be nonnegative for
the given kernel function K (u, v)

∫ ∫
K (u, v)ϕ(u)ϕ(u)dudv ≥ 0 (13)

If K (u, v) is a kernel and κ is the kernel matrix with
κi , j � K (u, v),

(14)

ςT κς �
∑
i , j

ςiς j K (u, v) � 〈ϕ(u), ϕ(v)〉

�
∥∥∥∥∥
∑
i

ςiϕ(u)

∥∥∥∥∥
2

≥ 0

4 ProposedMethod

In SVM and statistics, we take advantage of kernels, which
are measures of the similarity between two examples. Most
features of SVM are determined by the choice of kernel
function. The use of different kernel functions represents the
inner product in different feature space. The Gaussian ker-
nel in classification problems is referenced in literature very

often since it accurately classifies most of common datasets.
Gaussian kernel function decays exponentially in the input
feature space and uniformly in all directions around the sup-
port vector, inducing to hyper-spherical contours of the kernel
function. The Gaussian kernel is defined by

K(u, v) � exp
(
−γ ‖u − v‖22

)
, (15)

where γ � −1
2ρ2 and ρ is a positive real constant and ‖.‖ is

the Euclidean norm for vectors. In addition to possessing the
advantages of the Gaussian kernel, we present a new kernel
named adaptive Gaussian (AG) in Eq. 16.

KAG(u, v) � exp

(
−‖u − v‖2 − δ(‖u − v‖2) + 

δ(‖u − v‖2)

)
(16)

where δ(•) is the standard deviation function and  is as
shown in Eq. 17.

 �
{ ∣∣min

(‖u − v‖2 − δ(‖u − v‖2))∣∣, min
(‖u − v‖2 − δ(‖u − v‖2)) < 0

0, otherwise

(17)

To avoid division by zero, a term is added to the denomi-
nator of the equation as in Eq.18.

KAG(u, v) � exp

(
−‖u − v‖2 − δ(‖u − v‖2) + 

δ(‖u − v‖2) + ε

)
(18)

ε is a negligible number to avoid a division by zero. Equa-
tion 19 is defined to simplify reading complexity.

ξ � ‖u − v‖2 − δ(‖u − v‖2) (19)
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Fig. 3 AG vs. Gaussian kernel function curves a data between −1 and 1 b data between −5 and 5 c data between −10 and 10 d data between −
100 and 100

As a result, the equation of the proposed kernel function,
Eq. 20, is obtained.

KAG(u, v) � exp

(
− ξ + 

δ(‖u − v‖2) + ε

)
(20)

The denominator of the proposed kernel function adapts to
the input vectors. At the same time, adaptation is provided by
calculating squared norm of the differences of input vectors
and their standard deviations in the numerator part. There-
fore, the proposed kernel function is considered adaptive.
With the piecewise function  used in the numerator part, if
its minimum value is below zero, its absolute value is calcu-
lated and an offset operation is applied to the entire dataset.

To simplify the understanding of the adaptive property,
visualization can be made on a dataset whose property space
is two dimensional. As a result of all the vectors entering the
kernel according to the vector in the center, in other words,
in the central static state, distributed vectors on a three-
dimensional bell-shaped surface are obtained. These vectors

in Hilbert space can now be easily classified with SVM. The
bell curve of the AG corresponding to input vectors in differ-
ent value ranges and the bell curves of the Gaussian kernel
are compared in Fig. 3.

The AG kernel function adapts to different data intervals
and creates an optimal Gaussian bell curve. With this adap-
tive feature of the AG, the problem of finding optimum value
of the parameter ρ which is an arbitrary real constant value in
the Gauss kernel function is eliminated. The time complexity
of a conventional Gaussian kernel is O(dNSV), where NSV is
the number of support vectors and d is the number of features
[25]. In the time complexity of the proposedmethod, the stan-
dard deviation of the normof the input vectors is calculated in
addition to the Gaussian kernel. In the time complexity, the
d-dimensional standard deviation calculation cost is added
for each support vector, and thus, the time complexity of the
proposed method is found as O((d + d)NSV).
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Table 1 Datasets used in
experimental studies No Dataset Repository Features Instances Classes

1 Balance KEEL 4 625 3

2 Bands KEEL 19 365 2

3 Cleveland KEEL 13 297 5

4 Dermatology KEEL 34 358 6

5 German KEEL 20 1000 2

6 Haberman KEEL 3 306 2

7 Heart KEEL 13 270 2

8 Hepatitis KEEL 19 80 2

9 Housevotes KEEL 16 232 2

10 Mammographic KEEL 5 830 2

11 Optdigits KEEL 64 5620 10

12 Sonar KEEL 60 208 2

13 Spectfheart KEEL 44 267 2

14 Titanic KEEL 3 2201 2

15 Vehicle KEEL 18 846 4

16 Wine KEEL 13 178 3

17 Wisconsin KEEL 9 683 2

18 Australian UCI 14 690 2

19 Ionosphere UCI 34 351 2

20 Monks 1 UCI 6 124 2

21 Monks 2 UCI 6 169 2

22 Monks 3 UCI 6 122 2

23 Transfusion UCI 4 748 2

24 WDBC UCI 30 569 2

25 WPBC UCI 33 194 2

5 Experimental Results

In order to test the accuracy of the proposed method in
experimental studies, a total of 25 datasets, 17 of which are
KEEL-dataset repository and 8 of them UCI machine learn-
ing repository, were used as shown in Table 1. TheMATLAB
platform was used to implement the AG into SVM. The real
constant ofGauss kernel functionsγ values is taken as default
value 1. In addition, the degree of polynomial kernel function
is taken as the default value of 2.

Figure 4 shows the k-fold cross-validation technique for
the datasets given to the classifier model. Here, the k-value
is determined as 10. We use a common procedure of tenfold
cross-validation to run the experiments. Cross-validation is
the process of creating grouped datasets by selecting different
amounts of samples from the same dataset.

The cross-validation technique is used to measure the pre-
dictive ability of a machine learning model on previously
unseen data with less bias. Each dataset used in our exper-
iments is divided into ten subgroups with an approximately
equivalent number of samples. Thus, ten runs are performed

for each dataset during the training and testing process of
machine learning models. Then, by calculating their mean
accuracy values, the overall success rate of machine learning
models was obtained.

Accuracy (ACC), F-measure (FM) and Matthews cor-
relation coefficient (MCC) metrics were used to measure
classification success of the proposedmethod. ACC is a com-
monly used metric to measure the classification success of a
model. The ACC value is equal to the ratio of correct pre-
dictions of a classifier to the total number of samples in a
dataset. However, only model accuracy is not sufficient in
imbalanced datasets.

ACC � TP + TN

TP + TN + FP + FN
(21)

F1-score is obtained by calculating the harmonic mean
of the precision and recall values. It is more appropriate to
use this scale instead of the ACC to avoid choosing a wrong
classifier model in imbalanced datasets.

FM � 2

TPR−1 + PPV−1 (22)
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Fig. 4 k-fold cross-validation of the dataset

Matthews correlation coefficient (MCC) is a correlation
coefficient between observed and predicted binary classifi-
cations. Like most correlation coefficients, the MCC ranges
from−1 to 1.Ahigher correlation between observed and pre-
dicted values is better estimation. Coefficient −1 represents
the total disagreement between prediction and observation,
coefficient 0 is not better than a random prediction, and + 1
represents a perfect estimate.

MCC � TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(23)

Table 2 shows the proposed method and the results of
the classification processes applied on 25 datasets of other
SVM kernels. As seen from the table, it is obvious that the
proposed kernel ACC and FM are better than other methods.
The proposed kernel and polynomial kernel have very close
scores in terms of MCC.

Figure 5 shows the general classification accuracies of
SVM kernel according to dataset repositories. It is seen that
the proposed method has higher classification accuracy on
both KEEL and UCI dataset repositories compared to other
kernels.

In Table 3, Wilcoxon signed-rank test is given to test
whether there is a difference between the two measurement
results obtained from the datasets in experimental studies.
In the hypothesis test, significance level was determined as

0.05. According to the test results obtained from the hypoth-
esis test, it is seen that the proposed method is significantly
different from other SVM kernels.

In recent years,many kernel functions have been proposed
for the SVM. Comparison results of some of them with the
proposed method are given in Table 4.

6 Conclusion

The use of kernel functions in SVM is one of the popular
studies of recent years, and efforts to develop new kernel
functions are given in detail in the introduction section. Espe-
cially the success of the Gaussian kernel function, which
is one of the basic kernel functions, on nonlinear separable
datasets is obvious. This kernel function is introduced and its
usage in SVM is explained. The fact that the Gauss function
depends on an arbitrary real constant parameter causes the
problem of finding the optimal value of the parameter in the
training process. In this study, an adaptive kernel function is
proposed bymaking an improvement on theGaussian kernel,
which is an effective kernel function. The proposed kernel
function was used in SVM classifiers and applied in 25 well-
known datasets and comparisons were made with the basic
kernel functions:Gaussian, linear and polynomial.As a result
of the comparisons of the experimental studies, the proposed
model achieved a higher success than other kernel functions
with 84.7% ACC and 73.6% FM. Although the Gaussian
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Table 2 Comparison of classification results

Datasets SVM-AG SVM-G SVM-LIN SVM-POL

ACC FM MCC ACC FM MCC ACC FM MCC ACC FM MCC

Balance 0,937 0,058 0,863 0,933 0,062 0,826 0,939 0,042 0,807 0,984 0,009 0,952

Bands 0,719 0,675 0,378 0,709 0,635 0,340 0,692 0,616 0,299 0,713 0,691 0,387

Cleveland 0,824 0,257 0,174 0,833 0,260 0,244 0,829 0,307 0,235 0,798 0,262 0,138

Dermatology 0,984 0,951 0,944 0,824 0,343 0,477 0,989 0,962 0,957 0,992 0,972 0,970

German 0,762 0,684 0,392 0,716 0,504 0,176 0,760 0,685 0,389 0,678 0,624 0,253

Haberman 0,748 0,594 0,262 0,737 0,506 0,164 0,728 0,426 0,073 0,744 0,534 0,197

Heart 0,802 0,797 0,607 0,763 0,755 0,529 0,833 0,829 0,667 0,764 0,762 0,531

Hepatitis 0,846 0,693 0,505 0,838 0,455 0,000 0,842 0,688 0,519 0,850 0,615 0,481

Housevotes 0,965 0,965 0,933 0,776 0,745 0,601 0,957 0,956 0,916 0,947 0,946 0,896

Mammographic 0,803 0,803 0,610 0,802 0,802 0,611 0,798 0,797 0,603 0,809 0,809 0,623

Optdigits 0,992 0,962 0,960 0,945 0,777 0,779 0,996 0,982 0,981 0,998 0,990 0,989

Sonar 0,865 0,864 0,751 0,719 0,676 0,506 0,790 0,786 0,585 0,886 0,884 0,778

Spectfheart 0,793 0,619 0,296 0,791 0,572 0,239 0,811 0,658 0,360 0,789 0,672 0,358

Titanic 0,781 0,720 0,469 0,786 0,697 0,493 0,776 0,714 0,456 0,780 0,699 0,472

Vehicle 0,861 0,706 0,625 0,876 0,748 0,669 0,885 0,766 0,692 0,927 0,855 0,808

Wine 0,985 0,976 0,967 0,981 0,970 0,959 0,984 0,974 0,965 0,979 0,967 0,954

Wisconsin 0,955 0,952 0,910 0,965 0,962 0,926 0,967 0,964 0,930 0,938 0,931 0,866

Australian 0,854 0,852 0,710 0,843 0,840 0,684 0,852 0,852 0,716 0,805 0,803 0,609

Ionosphere 0,927 0,919 0,843 0,921 0,917 0,845 0,883 0,863 0,750 0,881 0,864 0,741

Monks 1 0,743 0,735 0,506 0,668 0,659 0,351 0,651 0,642 0,308 0,770 0,763 0,554

Monks 2 0,677 0,650 0,320 0,723 0,679 0,404 0,621 0,383 0,000 0,787 0,772 0,564

Monks 3 0,891 0,888 0,799 0,808 0,803 0,639 0,781 0,775 0,576 0,819 0,813 0,665

Transfusion 0,774 0,539 0,208 0,766 0,477 0,146 0,762 0,436 0,081 0,768 0,496 0,164

WDBC 0,921 0,919 0,851 0,971 0,969 0,938 0,978 0,977 0,954 0,961 0,958 0,919

WPBC 0,775 0,616 0,298 0,763 0,464 0,158 0,793 0,645 0,380 0,734 0,652 0,327

Averages 0,847 0,736 0,607 0,818 0,651 0,508 0,836 0,709 0,568 0,844 0,734 0,608

Fig. 5 Overall classification
accuracy of SVM kernels
according to dataset repositories
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Table 3 Wilcoxon signed-rank
test results (α � 0.05) Datasets SVM-AG vs. SVM-G SVM-AG vs. SVM-LIN SVM-AG vs. SVM-POL

Balance 9,5494E-01 8,5837E-01 9,0330E-01

Bands 1,7053E-03 1,2668E-02 6,0176E-03

Cleveland 1,1106E-08 1,6733E-01 1,6051E-03

Dermatology 8,6890E-39 4,2248E-01 4,0898E-01

German 3,3996E-28 9,5616E-01 8,0450E-09

Haberman 2,5674E-03 2,7668E-08 7,3006E-03

Heart 8,6235E-01 7,2824E-01 3,4231E-01

Hepatitis 1,7952E-04 8,3028E-01 1,5364E-01

Housevotes 6,5492E-08 7,8089E-01 7,1057E-01

Mammographic 2,3847E-01 1,1584E-01 4,0389E-01

Optdigits 4,4412E-70 1,7798E-04 1,9019E-04

Sonar 1,7086E-15 3,9571E-02 6,1070E-03

Spectfheart 7,7331E-02 9,0022E-01 3,0345E-02

Titanic 2,3082E-11 8,8289E-01 1,9252E-04

Vehicle 5,1134E-01 4,3810E-01 1,0213E-01

Wine 8,8594E-01 9,4834E-01 8,8605E-01

Wisconsin 3,4388E-01 9,3197E-02 3,2885E-02

Australian 5,1734E-01 5,9620E-02 4,4993E-01

Ionosphere 5,2137E-02 2,1802E-02 1,4533E-01

Monks 1 9,9355E-02 3,7363E-01 4,2648E-02

Monks 2 3,3249E-02 1,4945E-17 3,7074E-01

Monks 3 9,6810E-02 3,7151E-01 2,0171E-01

Transfusion 2,3025E-03 4,3223E-10 1,5965E-02

WDBC 9,5001E-03 3,7300E-03 1,8818E-02

WPBC 5,1695E-05 8,7931E-01 2,8521E-05

Table 4 Comparison of classification results of the proposed method and reported results of state-of-the-art SVM kernels

Datasets Padierna et al.
[29]

Moghaddam et al. [13] Tian et al. [12] Jafarzadeh et al.
[30]

Zhou et al.
[31]

Proposed
method

H-C H-G H-W Tri-Che Tri-Leg Che-G Che-W AG

German 0,769 – – – 0,734 0,743 – – 0,766 0,762

Haberman 0,751 0,728 0,759 0,743 – – – – – 0,748

Heart – 0,805 0,829 0,828 0,766 0,760 0,809 0,809 0,848 0,802

Sonar 0,923 0,838 0,868 0,848 0,927 0,929 0,895 0,885 – 0,865

Titanic – – – – – – – – 0,777 0,781

Vehicle 0,855 – – – – – – – – 0,861

Australian 0,865 – – – 0,838 0,828 – – – 0,854

Ionosphere 0,934 0,959 0,960 0,927 0,880 0,882 0,969 0,966 – 0,927

Monks 1 0,975 – – – 0,606 0,647 – – – 0,743

Monks 2 0,856 – – – 0,693 0,691 – – – 0,677

Monks 3 0,935 – – – 0,940 0,942 – – – 0,891

Transfusion – 0,689 0,695 0,696 – – – – – 0,774

WDBC 0,982 0,959 0,978 0,958 0,960 0,962 0,981 0,983 – 0,921
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kernel function provides 81.9% overall classification accu-
racy, the proposed method offers approximately 3% better
than Gaussian kernel. It has been shown that the proposed
method in the study can be used effectively in SVM classifi-
cation problems. According to the test results obtained from
the hypothesis test, it is seen that the proposed method is sig-
nificantly different from other SVM kernels. The proposed
kernel function can be applied in future studies in different
metric spaces.
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