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Abstract
Human–robot interaction tasks have seen an increased interest in recent years, leading to the need for new proposals both for
the design of new robotic systems and for their control and security schemes. In this regard, this work proposes a first approach
to impedance control for robot manipulators with bounded inputs which aims to achieve safe human–robot interaction. The
proposed scheme has a nonlinear proportional–derivative structurewith compensation (PD+) based on the robotmodel, makes
use of generalized saturation functions to generate bounded control actions, and includes an external torque compensation
term based on the user’s electromyographic information. One of the main advantages of this proposal is that the human–robot
interaction is defined in the joint space, which avoids singularities, since the robot works within its natural coordinates and
the torque applied by the user is estimated at a joint level. The advantage of the novel control scheme can be demonstrated by
the stability analysis of the closed-loop system equilibrium point, as well as by comparative analysis of the simulation results.

Keywords Bounded inputs · Impedance control · Lyapunov stability · Robot manipulator

1 Introduction

Robotic manipulation systems are very popular in differ-
ent types of applications [1,2], mainly in industry; however,
nowadays other areas such as medical services are taking
advantage of these systems in human–robot interaction tasks
[3]. Among the main medical applications are rehabilitation
and assistance due to the repetitive nature of the therapies,
and because the recovery progress of a patient is directly
related to the quality and quantity of the repetitions carried
out during the therapy process [4].

Furthermore, research into the design of control algo-
rithms for robot manipulators has been in constant develop-
ment during recent decades. However, many of these control
algorithms assume that robotic actuators can provide any
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force/torque value,which is impossible in practice since actu-
ators can only supply up to a maximum torque value and
generate movement up to a maximum speed [5]. In human–
robot interaction tasks, if the actuators operate outside such
limit values, the robot could harm the human user or itself.
Therefore, for reliable and safe human–robot interaction, it
is important to design control schemes that ensure closed-
loop stability and the generation of bounded control actions
considering the saturation effect of actuators.

In order to solve this problem, various control struc-
tures with bounded actions have been proposed, such as
output feedback proportional–integral–derivative (PID)-type
schemes for global position stabilization, saturating PD+
control schemes for trajectory tracking, saturating PD-type
controllers, among others [5–7]. These control schemes have
been efficiently used for unconstrained motion tasks; never-
theless, most of the robotic systems used in medicine are in
direct contact with a patient [8–10]; therefore, constrained
motion control techniques are required to regulate human–
robot interaction.

One of the main techniques to regulate the constrained
motion of robot manipulators is impedance control. This
methodology relates position and velocity errors to con-
tact forces to generate adequate interaction dynamics by
changing the mechanical impedance of the manipulator and
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its environment [11]. Recently, some advanced impedance-
based schemes such as hybrid position/impedance con-
trol, variable impedance control for physical human–robot
interaction, or inverse reinforcement learning controllers
have been proposed [12–14]. Similarly, various adaptive
impedance control schemes have been proposed for inter-
action tasks where there is parametric uncertainty [15], such
as reinforcement learning control [16], visual guidance con-
trol [17], discontinuous force-based control [18], iterative
control and kinesthetic teaching [19], and finite-time con-
trol [20,21]. However, despite its adequate performance,
these schemes do not address the actuator saturation effect
and some omit the stability analysis or do not guarantee
global closed-loop stability. Other proposals such as [22–
24] avoid actuator saturation and consider bounded velocity
and acceleration, respectively; however, the structure of such
control schemes does not guarantee the generation of directly
bounded actions, but rather limits the range of selection of
control gains to achieve it, and this may compromise or limit
the correct performance of the system. Early interaction con-
trol approaches that ensure the generation of bounded actions
have made use of generalized saturation functions but have
focused on addressing the problem of regulation (position
control) through stiffness control [25,26], while our proposal
addresses the tracking or motion control (position and veloc-
ity control) in constrained space by using impedance control.

Most of the force/impedance control schemes are task-
space (Cartesian) controllers and use force/torque sensors
to estimate external forces and torques due to the robot–
environment interaction; nevertheless, this entails a mapping
from joint space to Cartesian space and may cause singular-
ities. In order to work in joint space and avoid singularities
in human–robot interaction tasks, we can employ the elec-
tromyographic signal (EMG) to reflect the user’s muscle
activation and movement intention [27]. This signal has
been effectively used in impedance control schemes as in
[28] where the EMG is employed to estimate impedance
parameters and a force/torque sensor is needed for calibra-
tion purposes, while in [29] the EMG is used to estimate
human force, but a force sensor is also used to train an artifi-
cial neural network. Recently, in [30] the authors proposed a
sensor-less impedance controller by using extended Kalman
filters; however, these EMG-based controllers do not allow
the generation of bounded control actions.

As far as we know, and from the literature review carried
out, control schemes proposed for human–robot interaction
tasks do not consider the physical limits of the actuators and
a stability analysis is seldom included.Most controllers work
in Cartesian space, so they are sensitive to singularities and
require force/torque sensors or estimators that measure user
intent in a more natural way. To overcome these limitations,
we present a joint-space impedance controller with bounded
actions that makes use of EMG to estimate the user’s joint

torque during human–robot interaction. It should be noted
that the proposed scheme combines the main features of
the schemes presented in [7,31,32], including a nonlinear
PD+ structure based on generalized saturation functions for
impedance control and external torque compensation based
onEMGand theHill musclemodel. The correct performance
of the proposed control scheme is supported by a stability
analysis in the Lyapunov sense and numerical simulation
results in human–robot interaction tasks.

2 Preliminaries

2.1 Notation and Definitions

Let A ∈ R
n×m and y ∈ R

n , while Ai is the i th row vector of
matrix A, Ai j is the element of matrix A located in the i th
row and the j th column, and yi represents the i th element of
vector y. The origin of Rn is denoted by 0n , and the n × n
identity matrix is represented as In . The Euclidean norm of
vectors and the induced norm of matrices are denoted by
‖y‖ = yT y and ‖A‖ = λmax{AT A}, respectively, where
λmax{AT A} is the maximum eigenvalue of matrix AT A.

Let Ck(·) be the set of k-times continuously differentiable
functions. Now, let ζ : R �−→ R be a continuously differen-
tiable scalar function andϕ : R �−→ R be a locally Lipschitz,
continuous, scalar function, both vanishing at zero, i.e.,
ζ (0) = ϕ (0) = 0. In addition, ζ ′ represents the derivative
of ζ with respect to its argument, i.e., ζ ′ (ς) = ∂ζ (ς) /∂ς .
While the upper right-hand derivative of ϕ is given by
D+ϕ (ς) = lim suph→0+ [ϕ(ς + h) − ϕ(ς)]/h, ∀ς ∈ R,
thus ϕ (ς) = ∫ ς

0 D+ϕ (r) dr [33].

Definition 1 A nondecreasing Lipschitz continuous function
σ : R → R bounded by M > 0 is a generalized saturation
function (GSF) if

(a) ςσ(ς) > 0,∀ς �= 0.
(b) |σ(ς)| ≤ M,∀ς ∈ R.
(c) In addition, if σ(ς) = ς when |ς | ≤ L , for some 0 <

L ≤ M , then σ is a linear generalized saturation function
(L-GSF) for (L, M).

Furthermore, the function σ satisfies the following properties
for a constant k > 0 [34,35]:

1. lim|ς |→∞ D+σ(ς) = 0.
2. ∃σ ′

M ∈ (0,∞) : 0 ≤ D+σ(ς) ≤ σ ′
M ,∀ς ∈ R.

3. σ 2(kς)

2kσ ′
M

≤ ∫ ς

0 σ(kr)dr ≤ kσ ′
Mς2

2 ,∀ς ∈ R.

4.
∫ ς

0 σ(kr)dr > 0,∀ς �= 0.
5.

∫ ς

0 σ(kr)dr → ∞ as ς → ∞.
6. If σ is strictly increasing, then
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a. ς [σ(ς + η) − σ(η)] > 0,∀ς �= 0,∀η ∈ R.
b. σ̄ (ς) = σ(ς+a)−σ(a) is a strictly increasing gener-

alized saturation function (SI-GSF), for any constant
a ∈ R and bounded by M̄ = M + |σ(a)|.

7. If σ is a linear saturation for (L, M), then, for any contin-
uous function ν : R �→ R such that |ν(η)| < L,∀η ∈ R,
it holds that ς [σ(ς + ν(η)) − σ(ν(η))] > 0,∀ς �=
0,∀η ∈ R.

2.2 Dynamic Model of Robot Manipulators

The Euler–Lagrange dynamical equation in joint space for
robot manipulators, with n degrees of freedom, is given by

H(q)q̈ + C(q, q̇)q̇ + Fq̇ + g(q) = τ − τe (1)

where q ∈ R
n , q̇ ∈ R

n , and q̈ ∈ R
n are the joint posi-

tion, velocity, and acceleration vectors, respectively. H(q) ∈
R
n×n , C(q, q̇) ∈ R

n×n , and F ∈ R
n×n are matrices of iner-

tia, centripetal, and Coriolis and viscous friction torques,
respectively. Finally, g(q) ∈ R

n , τ ∈ R
n and τe ∈ R

m

are vectors of gravitational, control, and external interaction
torques, respectively.

The following properties of the dynamic model (1) are
useful for further analysis [36].

Property 1 H(q) and F are positive definite symmetric
matrices, even F is diagonal.

Property 2 For some constants μM ≥ μm > 0, H(q) satis-
fies μm In ≤ H(q) ≤ μM In , ∀q ∈ R

n .

Property 3 For robots with only revolute joints, H(q) is
bounded on R

n×n in such a way that ‖Hi (q)‖ ≤ μMi ,
∀q ∈ R

n and nonnegative constants μMi , i = 1, . . . , n.

Property 4 C(q, q̇) and Ḣ(q, q̇) � dH(q)
dt satisfy q̇T[

Ḣ(q, q̇) − 2C(q, q̇)
]
q̇ = 0 and actually Ḣ(q, q̇) =

C(q, q̇) + CT (q, q̇), ∀(q, q̇) ∈ R
n × R

n .

Property 5 The matrix C(q, q̇) satisfies C(w, x + y)z =
C(w, x)z +C(w, y)z and C(x, y)z = C(x, z)y, ∀w, x, y, z
∈ R

n .

Property 6 For some constant kc ≥ 0, C(q, q̇) satisfies
‖C(x, y)z‖ ≤ kc‖y‖‖z‖, ∀x, y, z ∈ R

n . In addition,
there are nonnegative constants kci such that |Ci (x, y)z| ≤
kci‖y‖‖z‖, i = 1, . . . , n, ∀x, y, z ∈ R

n

Property 7 For some constants fM ≥ fm > 0, F satisfies
fm‖x‖2 ≤ xT Fx ≤ fM‖x‖2, ∀x ∈ R

n . In addition, as F is
a diagonal matrix, there are nonnegative constants fMi such
that |Fi x | ≤ fMi‖x‖, i = 1, . . . , n, ∀x ∈ R

n .

Property 8 For robots with only revolute joints, g(q) is
bounded on R

n in such a way that |gi (q)| ≤ Bgi , ∀q ∈ R
n

and nonnegative constants Bgi , i = 1, . . . , n.

Property 9 The left-hand side of the dynamic model (1) is
linear with respect to its parameters; therefore, it can be
rewritten as

H(q, θ)q̈+C(q, q̇, θ)q̇+F(θ)q̇+g(q, θ)=Y (q, q̇, q̈)θ (2)

where Y (q, q̇, q̈) ∈ R
n×p is a regression matrix and θ ∈ R

p

is a constant vector of robot parameters. Now, let θMl > 0
be an upper bound of |θl |, i.e., |θl | ≤ θMl ∀l ∈ {1, ..., p},
θM � (θM1, ..., θMp)

T , and � � [−θM1, θM1] × · · · ×
[−θMp, θMp], also letX and Y be compact subsets ofRn ; by
Properties 2, 6, 7, and 8, there are constants BDi > 0 such
that |Yi (w, x, y)z| ≤ BDi , ∀ w ∈ R

n , (x, y) ∈ X × Y and
∀ z ∈ �.

Assumption 1 For robots with bounded inputs, each element
of vector τ is bounded by Ti > 0, i.e., |τi | ≤ Ti , i = 1, . . . , n.
Assume that

τi = Ti sat

(
ui
Ti

)

(3)

where sat(·) is the standard saturation function, i.e., sat(ς) =
sign(ς)min{|ς |, 1} and ui denotes the i th control signal.

2.3 External Interaction TorqueModel

In order to model the torques generated by human–robot
interaction, the Hill-type muscle model is considered. Hill’s
model allows us to relate the muscle activity represented
by the electromyographic signal (EMG) to the muscle
forces/torques generated in a certain joint.

The EMG must be processed and conditioned before use
within Hill’s model. First, the signal amplitude (aEMG)must
be obtained and at least the following elements are required:
a) high-pass filter with cutoff frequency between 10 and 30
Hz, b) rectifier, and c) low-pass filter with cutoff frequency
between 2 and 10 Hz. Next, the maximum voluntary con-
traction (MVC) of the user must be obtained and the aEMG
using the MVC value is normalized [32].

Assume that m muscles are involved in the generation of
the i th joint torque, then the aEMG of each of these muscles
(aEMGj ) is used to obtain the muscle activation given by

a j (t) = ekAj aEMGj (t) − 1

ekAj − 1
(4)

where j ∈ {1, ...,m}, −3 ≤ kA < 0 represents the nonlin-
earity between neuronal and muscular activation. According
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to Hill’s model, the muscle–tendon force is obtained as

fMT j = [ fM Aj + fMP j ] cos θ j (5)

where θ j is the pennation angle of j th muscle fibers and

fM Aj = f A j fV j fM0 j a j (t) (6)

fMP j = fP j fM0 j (7)

are the components of active and passive muscle force,
respectively, with fM0 j being the j th maximum (optimal)
isometric force and, according to [32],

f A j =
{
h0 j + h1 j l j + h2 j l2j , for 0.5 < l j ≤ 1.5
0, otherwise

(8)

fV j = 1 (9)

fP j = e10l j−15 (10)

where l j represents the j th normalized muscle length and
h0 j , h1 j , and h2 j are constant parameters that are chosen
according to the force–length curve adjustment algorithm
[37].

Finally, the joint torque is given by

uei =
m∑

j=1

fMT jr j (11)

where i ∈ {1, ..., n} and r j is the moment arm of j th muscle.

Assumption 2 The muscle torques are bounded and can be
modeled using GSFs in such a way that

τei = σei (uei ) (12)

where σei are linear SI-GSFs bounded by (Lei , Mei ), ∀i ∈
{1, ..., n}.

3 Impedance Control with Bounded Actions

3.1 Definition of the Control Problem

The impedance control approach presented in this paper cor-
responds to a generalization of motion control in joint space
by choosing a desired trajectory qd(t) ∈ R

n while respecting
the following dynamic relationship:

q − qd = F(s)τe (13)

where

F(s) = [HEs
2 + DEs + KE ]−1 (14)

with HE = diag[hE1, ..., hEn], DE = diag[dE1, ..., dEn],
and KE = diag[kE1, ..., kEn] being positive definitematrices
of inertia, damping, and stiffness, respectively, and s repre-
senting the Laplace complex variable. Then, the impedance
error in joint space can be defined as

ξ̄ � q̄ − qe (15)

where q̄ = q−qd ∈ R
n is the position error and qe = F(s)τe

represents an adjustment to the position or path to follow due
to robot–environment interaction.

Assumption 3 The reference trajectory to be tracked qd
belongs to Qd �

{
qd ∈ C2(R+;Rn) : ‖q̇d(t)‖ ≤ Bdv,

‖q̈d(t)‖ ≤ Bda,∀t ≥ 0}

Assumption 4 The vector qe and its time derivatives q̇e and
q̈e are bounded; then, there are nonnegative constants such
that |qei | ≤ Bepi , ‖qe‖ ≤ Bep, |q̇ei | ≤ Bevi , ‖q̇e‖ ≤ Bev ,
|q̈ei | ≤ Beai and ‖q̈e‖ ≤ Bea , respectively, and satisfying
that

kEi ≥ Mei/Bepi (16)

hEi ≥ Beai/Bevi (17)

dEi ≥ 1.25kEi hEi (18)

The control problem addressed in this paper is to achieve
an adequate robot–environment interaction while tracking
a time-varying trajectory without exceeding the maximum
torque limits of robot actuators. Therefore, the goal of our
impedance control approach consists of designing u in such
a way that

lim
t→∞ ξ̄ = 0 (19)

τi < Ti (20)

∀t ≥ 0, i = 1, ..., n.

3.2 Saturating Impedance Controller

In order to control the robot–environment interaction while
respecting the saturation limits of the robotic system and
operating directly in the joint space to avoid singularities,
the following impedance control scheme is proposed:

u = −sP (KP ξ̄ ) − sD(KD
˙̄ξ) + Y (q, q̇h, q̈h)θ + τe (21)

where, according to Property 9,

Y (q, q̇h, q̈h)θ = H(q, θ)q̈h + C(q, q̇h, θ)q̇h

+F(θ)q̇h + g(q, θ) (22)
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with q̇h = q̇d + q̇e and q̈h = q̈d + q̈e; KP = diag[kP1, ...,
kPn]; and KD = diag[kD1, ..., kDn] being positive definite
matrices of proportional and derivative gains, respectively,
while sP (x) = (σP1(x1), ..., σPn(xn))T and sD(x) =
(σD1(x1), ..., σDn(xn))T with σPi (·) and σDi (·) being
continuously differentiable GSFs bounded by MPi and MDi ,
respectively. In addition,

∥
∥
∥sD(KD

˙̄ξ)

∥
∥
∥ ≤ κ

∥
∥
∥ ˙̄ξ

∥
∥
∥ (23)

where κ = maxi {σ ′
DiMkDi }.

In addition, according to Property 9 andAssumptions 1–4,
and considering a robot manipulator with actuators to ensure
that |Yi (q, q̇h, q̈h)θ + τei | < Ti , the controller (21)–(22)
produces bounded actions if MPi and MDi satisfy

MPi + MDi < Ti − BDi − Mei (24)

∀i = 1, ..., n, where

BDi = μMi Bha + kci B
2
hv + fMi Bhv + Bgi (25)

with Bha = Bda + Bea and Bhv = Bdv + Bev .

3.3 Closed-Loop Analysis

By combining the robot model (1), the environment model
(12), and the control scheme (21)–(22), the closed-loop
dynamics (with abuse of notation) can be represented as

d

dt

[
ξ̄
˙̄ξ

]

=

⎡

⎢
⎢
⎣

˙̄ξ
H−1(q)

{
−sP (KP ξ̄ ) − sD(KD

˙̄ξ) − [C(q, q̇)

+C(q, q̇h)] ˙̄ξ − F ˙̄ξ
}

⎤

⎥
⎥
⎦

(26)

where Property 5 has been considered. Now, under stationary
conditions ˙̄ξ = ¨̄ξ = 0n we obtain that

− sP
(
KP ξ̄

) = 0n (27)

Then, ξ̄ = ˙̄ξ = 0n is the unique equilibrium vector.

3.4 Lyapunov Stability Analysis

In order to analyze the stability of closed-loop equilibrium
vector, consider the following scalar candidate function:

V (t, ξ̄ , ˙̄ξ) = 1

2
˙̄ξ T H(q) ˙̄ξ +

∫ ξ̄

0n
sTP (KPr) dr

+ ε ˙̄ξ T H(q)sP
(
KP ξ̄

)
(28)

where
∫ ξ̄

0n
sTP (KPr) dr = ∑n

i=1

∫ ξ̄i
0 σPi (kPiri ) dri . To

demonstrate that this candidate function is positive definite
and decreasing, the function (28) is rewritten as

V (t, ξ̄ , ˙̄ξ) = V0(t, ξ̄ , ˙̄ξ) + (1 − α)

∫ ξ̄

0n
sTP (KPr) dr (29)

where

V0(t, ξ̄ , ˙̄ξ) = 1

2
˙̄ξ T H(q) ˙̄ξ

+ α

∫ ξ̄

0n
sTP (KPr) dr + ε ˙̄ξ T H(q)sP

(
KP ξ̄

)

(30)

with 0 < α < 1. Then, according to Definition 1 and Prop-
erty 2, V0(t, ξ̄ , ˙̄ξ) is lower-bounded by

W0(ξ̄ , ˙̄ξ) = 1

2
μm‖ ˙̄ξ‖2 + α

2βP
‖sP

(
KP ξ̄

) ‖2

−εμM‖sP
(
KP ξ̄

) ‖‖ ˙̄ξ‖

= 1

2

[
‖sP

(
KP ξ̄

) ‖
‖ ˙̄ξ‖

]T [
α/βP −εμM

−εμM μm

]

×
[

‖sP
(
KP ξ̄

) ‖
‖ ˙̄ξ‖

]

(31)

where βP = maxi {σ ′
PiMkPi } and with

1 > α >
ε2

ε21
(32)

ε1 =
√

μm

μ2
MβP

(33)

if ε < ε1, W0(ξ̄ , ˙̄ξ) is positive definite. Also, note that
W0(0n, ˙̄ξ) → ∞ as ‖ ˙̄ξ‖ → ∞.

On the other hand, V (t, ξ̄ , ˙̄ξ) is upper-bounded by

W1(ξ̄ , ˙̄ξ) = 1

2
μM‖ ˙̄ξ‖2 + βP‖ξ̄‖2 + εμMβP‖ξ̄‖‖ ˙̄ξ‖

= 1

2

[
‖ξ̄‖
‖ ˙̄ξ‖

]T [
βP εμMβP

εμMβP μM

][
‖ξ̄‖
‖ ˙̄ξ‖

]

(34)
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where again Definition 1 and Property 2 have been used.
Now, W1(ξ̄ , ˙̄ξ) is positive definite if

ε2 <
1

μMβP
(35)

and as μM > μm , then it is enough that again ε < ε1.
Therefore,

W1(ξ̄ , ˙̄ξ) ≥ V (t, ξ̄ , ˙̄ξ) ≥ W0(ξ̄ , ˙̄ξ)

+ (1 − α)

∫ ξ̄

0n
sTP (KPr) dr (36)

and we can conclude that V (t, ξ̄ , ˙̄ξ) is a radially unbounded
positive definite and decreasing function.

Now, the upper right-hand derivative of (28) along the
trajectories of the closed-loop system (26) is

V̇ (t, ξ̄ , ˙̄ξ) = ˙̄ξ T H(q) ¨̄ξ + 1

2
˙̄ξ T Ḣ(q, q̇) ˙̄ξ

+sTP (KP ξ̄ ) ˙̄ξ + εsTP (KP ξ̄ )H(q) ¨̄ξ
+ε ˙̄ξ T Ḣ(q, q̇)sP (KP ξ̄ )

+ε ˙̄ξ T H(q)s′
P (KP ξ̄ )KP

˙̄ξ
= ˙̄ξ T

{
−sP (KP ξ̄ ) − sD(KD

˙̄ξ)

−[C(q, q̇) + C(q, q̇h)] ˙̄ξ − F ˙̄ξ
}

+1

2
˙̄ξ T Ḣ(q, q̇) ˙̄ξ + sTP (KP ξ̄ ) ˙̄ξ

+ε ˙̄ξ T Ḣ(q, q̇)sP (KP ξ̄ ) + εsTP (KP ξ̄ )

×
{
−sP (KP ξ̄ ) − sD(KD

˙̄ξ)

−[C(q, q̇) + C(q, q̇h)] ˙̄ξ − F ˙̄ξ
}

+ε ˙̄ξ T H(q)s′
P (KP ξ̄ )KP

˙̄ξ
= −˙̄ξ T sD(KD

˙̄ξ) − ˙̄ξ TC(q, q̇h)
˙̄ξ

−˙̄ξ T F ˙̄ξ − εsTP (KP ξ̄ )sP (KP ξ̄ )

−εsTP (KP ξ̄ )sD(KD
˙̄ξ)

−ε ˙̄ξ T [C(q, ˙̄ξ) + C(q, q̇h)]sP(KP ξ̄ ) (37)

−εsTP (KP ξ̄ )F ˙̄ξ − εsTP (KP ξ̄ )C(q, q̇h)
˙̄ξ

+ε ˙̄ξ T H(q)s′
P (KP ξ̄ )KP

˙̄ξ

where Property 4 was used. Then, by employing Properties
2, 5, 6, 7, and 8, Assumptions 3 and 4, and inequality (23),
V̇ (t, ξ̄ , ˙̄ξ) can be upper-bounded as

V̇ (t, ξ̄ , ˙̄ξ) ≤ −˙̄ξ T sD(KD
˙̄ξ) − W2(ξ̄ , ˙̄ξ) (38)

where

W2(ξ̄ , ˙̄ξ) = −kcBhv‖ ˙̄ξ‖2 + fm‖ ˙̄ξ‖2 + ε‖sP (KP ξ̄ )‖2
− εκ‖sP(KP ξ̄ )‖‖ ˙̄ξ‖ − εkcBP‖ ˙̄ξ‖2
− εkcBhv‖sP (KP ξ̄ )‖‖ ˙̄ξ‖
− ε fM‖sP (KP ξ̄ )‖‖ ˙̄ξ‖
− εkcBhv‖sP (KP ξ̄ )‖‖ ˙̄ξ‖ − εμMβP‖ ˙̄ξ‖2

=
[

‖sP
(
KP ξ̄

) ‖
‖ ˙̄ξ‖

]T

Q2

[
‖sP

(
KP ξ̄

) ‖
‖ ˙̄ξ‖

]

(39)

with BP =
√∑n

i=1 M
2
Pi and

Q2 =
⎡

⎣
ε −ε

(
κ+ fM

2 + kc Bhv

)

−ε
(

κ+ fM
2 + kc Bhv

)
fm − kc Bhv − ε(kc BP + μMβP )

⎤

⎦

(40)

which is positive definite if ε < ε2 for

ε2 = fm − kcBhv

kcBP + μMβP +
(

κ+ fM
2 + kcBhv

)2 , (41)

then, Bhv < fm/kc. Thus, by satisfying ε < min{ε1, ε2}, we
can conclude that V̇ (t, ξ̄ , ˙̄ξ) < 0 and the equilibrium point of
closed-loop (non-autonomous) system (26) is globally uni-
formly asymptotically stable.

4 Numerical Simulation

The validation of the proposed control scheme was carried
out by one numerical simulation test of a human–robot inter-
action task, where a comparative analysis of the performance
of our scheme and two controllers with a similar structure
was conducted. The interaction task implemented assumes
that the robotic system is coupled externally to a person’s
arm (simulating an exoskeleton) and the elbow rotation axes
of both are coincident. Initially, the robot has a predefined
desired trajectory and will have to adapt or modify its move-
ment depending on the active participation of the person, i.e.,
when the torque applied by the user is greater than zero.

For the implementation of controllers with bounded
actions, the following generalized saturation functions were
used:

σh(ς; M) = Msat(ς/M) (42)

σs(ς; L, M) =
{

ς, ∀|ς | ≤ L
ρs(ς), ∀|ς | > L

(43)

123



Arabian Journal for Science and Engineering (2022) 47:14989–15000 14995

where

ρs(ς) = sign(ς)L + (M − L) tanh

(
ς − sign(ς)L

M − L

)

(44)

4.1 Model of the Robotic Platform

The robotic platform used in simulation tests corresponds to
a two-degree-of-freedom robot manipulator whosemodeling
and dynamic parameterization were presented in [38]. The
robot actuators have as torque limit values T1 = 200 Nm and
T2 = 15 Nm, respectively, while the corresponding positive
constants that satisfy Properties 2, 6, 7, and 8 are: μm =
0.088 kg·m2, μM = 2.533 kg·m2, μM1 = 2.526 kg·m2,
μM2 = 0.213 kg·m2, kc = 0.146 kg·m2, kc1 = 0.136 kg·m2,
kc2 = 0.084 kg·m2, fm = fM2 = 0.175 kg·m2/s, fM =
fM1 = 2.288 kg·m2/s, Bg1 = 40.29 Nm, and Bg2 = 1.825
Nm, respectively. Besides, for this robot, we have that

Y (q, q̇, q̈)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q̈1 0
(2q̈1 + q̈2)c2 − q̇2(2q̇1 + q̇2)s2 q̈1c2 + q̇21 s2

q̈2 q̈1 + q̈2
q̇1 0
0 q̇2

sin q1 0
sin (q1 + q2) sin (q1 + q2)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(45)

θ = [
2.351 0.084 0.102 2.288 0.175 38.465 1.825

]T

(46)

to satisfy Property 9 and where c2 = cos q2 and s2 = sin q2.

4.2 Model of Human-Applied Torques

In order to simulate the torques applied by a human inter-
acting with the robot, EMG signals of biceps and triceps
muscles from the database [39] were used as inputs to the
model described inSect. 2.3. First, theEMGsignalswere pre-
processed using the cutoff frequency of 10 Hz for high-pass
and 400 Hz for low-pass filters. According to the database,
the MVC values for the biceps and triceps are 7527.5 and
1776.6, respectively. Therefore, it was only considered that
there is an external torque applied to the elbow joint and the
shoulder joint moves freely, i.e., τe1 = 0 Nm (Me1 = 0).

The values selected for the constants of theHillmodel (4)–
(11) were: kA1 = kA2 = −2, θ1 = 0o, θ2 = 10o, fM01 =
400 Nm, fM02 = 600 Nm, h01 = h02 = −2.06, h11 =
h12 = 6.16, h21 = h22 = −3.13, l1 = l2 = 0.8, r1 =
0.0153 m, and r2 = 0.01 m, where sub-index 1 refers to
biceps and sub-index 2 to triceps. In addition, to model the
bounded behavior of the interaction torque it was considered

0 5 10 15 20 25 30 35
-2

0

2

4

6

8

10

Fig. 1 Muscle torques obtained by the Hill model from EMG signals.
The segmented line represents the bound Me2 = 8.5

that

σe2(ς) = σs(ς; Le2, Me2) (47)

with Me2 = 8.5 and Le2 = 0.9Me2 satisfying (12). The
muscle torques obtained are shown in Fig. 1.

4.3 Configuration of the Impedance Controller

The trajectories to be followed by the robot’s joints were
chosen as

qd1(t) = π

2
+ sinωt (48)

qd2(t) = cosωt (49)

where, according to Assumptions 3 and 4, ω = Bdv <

fm/kc−Bev . Then, Bda = ω2 andwe can select Bep = 0.85,
Bev = 0.15, Bea = 0.3 obtaining that ω < 1.049 rad/s.
Therefore, we set ω = 1 rad/s and the impedance parameters
that characterize the dynamics of human–robot interaction
were tuned as kE2 = 10, hE2 = 2, and dE2 = 25 to satisfy
(16), (17), and (18), respectively.

The proportional and derivative actions of the impedance
controller (21) were implemented with

σPi (ς) = σs(ς; LPi , MPi ) (50)

σDi (ς) = σh(ς; MDi ) (51)

i = 1, 2. Therefore,σ ′
PiM = σ ′

DiM = 1 and κ = maxi {kDi }.
In order to obtain bounded control actions, MP1 = MD1 =
40, LP1 = 0.9MP1, MP2 = MD2 = 2, and LP2 = 0.9MP2

were chosen to satisfy (24) with BD1 = 46.385 and BD2 =
2.414 according to the values of the robot’s dynamic param-
eters, while the dynamic compensation term Y (q, q̇h, q̈h)θ
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was implemented by replacing q̇ with q̇h and q̈ with q̈h in
(45). In addition, for the external torque compensation term
τe, the estimated joint torque from theEMGsignals described
in Sect. 4.2 was used.

4.4 Results

For comparison purposes, the same human–robot interaction
task was implemented using the adaptive controllers pre-
sented in [7,15], and to distinguish each of the controllers, the
following nomenclature is used: JS-IC represents the joint-
space impedance controller proposed in this paper, JS-TC is
the joint-space tracking controller presented in [7], and TS-
IC denotes the task-space impedance controller presented in
[15]. The SP-SD+ adaptive tracking controller [7] is given
by

u = −sP (KPq̄) − sD(KD ˙̄q) + Y (q, q̇d , q̈d)θ̂ (52)

φ̇ = −Γ Y T (q, q̇d , q̈d)[ ˙̄q + εsP (KPq̄)] (53)

θ̂ = sa(φ) (54)

where Γ = diag[γ1, ..., γp] is a (constant) positive definite
matrix, while sa(x) = (σa1(x1), ..., σap(xp))T with σal(·)
being strictly increasing GSFs bounded by Mal , l = 1, ..., p.
The proportional and derivative actions were implemented as
(50)–(51) with MP1 = MD1 = 40, LP1 = 0.9MP1, MP2 =
MD2 = 4, and LP2 = 0.9MP2, while for the adaptive term

σal(ς) = σs(ς; Lal , Mal) (55)

with Ma = (2.939, 0.105, 0.127, 2.86, 0.219, 48.081,
2.281)T and Lal = 0.9Mal , l = 1, ..., 7.

On the other hand, the adaptive impedance controller [15]
is given by

τ = H0(q, θ̂d(0))J
−1(q, θ̂k)[−KP ξ̄ − KD ζ̂ − J̇ (q, q̇, θ̂k)

+C(q, q̇, θ̂d)q̇ + g(q, θ̂d)

+J T (q, θ̂k) fe + [H(q, θ̂d) − H0(q, θ̂d(0))]q̈ (56)
˙̂
θd = Γd J (q, θ̂k)H

−1
0 (q, θ̂d(0))Yd(q, q̇, q̈)HE [ξ̄ + ζ̂ ] (57)

˙̂
θk = Γk[J (q, θ̂k)H

−1
0 (q, θ̂d(0))Ye(q, fe)HE [ξ̄ + ζ̂ ]

−WT
k �k(Wk θ̂k − z)] (58)

where fe is the task-space interaction force, ξ̄ = x − xd − xe
is the task-space impedance error, and ζ̂ = ˆ̇x − ẋd − ẋe
is the estimate of ˙̄ξ , with x being the Cartesian position
of the robot’s end effector (forward kinematics), xd being
the desired trajectory in Cartesian space (obtained by for-
ward kinematics with qd as input), and xe = F(s) fe being
the trajectory adjustment vector in Cartesian space, whose
parameters are HE = diag[2, 2], DE = diag[50, 50] and

KE = diag[150, 150]. H0(q, θ̂d(0)) is a symmetric and pos-
itive definite matrix that represents the initial estimate of
H(q), θ̂d and θ̂k are the estimated dynamic and kinematic
parameter vectors, respectively, whose real values are

θd = [
2.351 0.084 0.102 38.465 1.825

]T

θk = [
0.45 0.45

]T
,

while J (q, θ̂k) represents the estimate of analytical Jacobian
matrix given by

J (q, θ̂k) =
[

θ̂k1 cos q1 + θ̂k2 cos (q1 + q2) θ̂k2 cos (q1 + q2)
θ̂k1 sin q1 + θ̂k2 sin (q1 + q2) θ̂k2 sin (q1 + q2)

]

(59)

In addition, Γd = diag[γd1, ..., γd5], Γk = diag[γk1, γk2],
and �k = diag[λk1, λk2] are (constant) positive definite
matrices, z = [λs/(λ + s)]x , Wk = [λ/(λ + s)]Yk(q, q̇) is a
low-pass filterwithλ = 10, and the corresponding regression
matrices are

Yk(q, q̇) =
[
q̇1 cos q1 [q̇1 + q̇2] cos (q1 + q2)
q̇1 sin q1 [q̇1 + q̇2] sin (q1 + q2)

]

Yd (q, q̇, q̈)

=

⎡

⎢
⎢
⎢
⎢
⎣

q̈1 0
(2q̈1 + q̈2)c2 − q̇2(2q̇1 + q̇2)s2 q̈1c2 + q̇21 s2

q̈2 q̈1 + q̈2
sin q1 0

sin (q1 + q2) sin (q1 + q2)

⎤

⎥
⎥
⎥
⎥
⎦

Ye(q, fe)

=
[
fe1 cos q1 + fe2 sin q1 fe1 cos (q1 + q2) + fe2 sin (q1 + q2)

0 fe1 cos (q1 + q2) + fe2 sin (q1 + q2)

]

In both cases, the authors’ tuning of the controllers was
respected, considered to be the best possible. Table 1 sum-
marizes the gain parameters used to implement the three
controllers.

The initial joint positions and velocities were taken as
q1(0) = 1 rad, q2(0) = 0.5 rad, q̇1(0) = q̇1(0) = 0
rad/s. While the auxiliary states were initiated at φ(0) =
(2.880.1030.1252.8030.21447.1192.235)T in the case of
controller [7], and θ̂d(0) = (2.00.150.1530.01.05)T and
θ̂k(0) = (0.50.6)T in the case of controller [15].

The results of the comparative analysis are presented in
Figs. 2 and 3 and Table 2. First, in Fig. 2 the impedance
or path tracking errors for each controller are depicted; it
is possible to observe that in all cases when the interaction
force/torque is small (during the first 8 seconds, see Fig. 1) all
error components tend to zero.However,when the interaction
torque begins to increase, only impedance controllers are able
to regulate suchhuman–robot interaction bykeeping the error
convergence to zero.

On the other hand, the torques generated by all controllers
are shown in Fig. 3, where the bounding feature of the pro-
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Table 1 Control parameter values

Parameter JS-IC JS-TC TS-IC

kP1 2500 1500 15000

kP2 500 300 15000

kD1 20 20 2000

kD2 5 5 2000

γ1 20

γ2 0.5

γ3 0.1

γ4 1.5

γ5 0.1

γ6 10

γ7 0.25

ε 1.0167 × 10−7

γk1 5

γk2 5

γd1 30,000

γd2 0.1

γd3 5

γd4 500

γd5 2.5

λk1 50

λk2 50
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Fig. 2 Components of error for the proposed joint-space impedance
controller (JS-IC), the joint-space tracking controller (JS-TC), and the
task-space impedance controller (TS-IC), respectively

posed impedance controller (JS-IC) is shown, while for the
tracking controller (JS-TC), the torque limit values (200 Nm
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20

0 0.5 1
-50
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Fig. 3 Applied control torques. The graphs on the right correspond to a
zoom-in that allows to appreciate the transient behavior. The segmented
lines represent the bounds ±T1 and ±T2, respectively

and 15 Nm, respectively) are not exceeded in both cases. In
the graphs on the right, a zoom-in of each torque component
is shown, and it can be seen that the Cartesian impedance
controller (TS-IC) exceeds the torque limits when starting
the movement.

Then, in order to quantify the performance of impedance
controllers, the error was normalized with respect to the
maximum absolute values of each component (to be able to
compare a joint controller with another Cartesian one) and
the root-mean-square (RMS) value of the normalized error
was calculated as

RMS =
√

1

T

∫ T

0
‖e(t)‖2dt (60)

where T = 36 seconds and

e(t) =
⎡

⎣
ξ̄1(t)/maxt {|ξ̄1(t)|}

ξ̄2(t)/maxt {|ξ̄2(t)|}

⎤

⎦ (61)

The RMS values of each impedance controller are presented
in Table 2, where it can be observed that the values obtained
are very similar; however, the performance of the proposed
joint-space impedance controller is slightly better and with
the advantage of generating bounded control actions (avoid-
ing possible damage to the robot actuators).

From the results obtained in the simulation test and the
performance evaluation of the control schemes, the following
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Table 2 RMS error values Index JS-IC TS-IC

RMS 0.1476 0.1486

can be stated: (1) the adaptive JS-TC motion control scheme
is not robust in the face of disturbances caused by human–
robot interaction, especiallywhen the external torque applied
by the user is greater than 10% of the maximum value of
the actuator, i.e., |τe(t)| > 1.5 Nm; (2) the impedance con-
troller TS-IC behaves appropriately when the initial position
of the robot is close to the desired trajectory, because it is
very sensitive to kinematic singularities. This causes high
accelerations which are reflected in the demand for high
torques above the actuators’ limits, i.e., max{|τ1(t)|} > 15
Nm and max{|τ2(t)|} > 200 Nm; (3) although the perfor-
mance of both impedance controllers (JS-IC and TS-IC) is
very similar, our proposal has the advantage of generating
bounded torques and because it operates in joint space and
is not affected by the kinematic singularities of the robot; (4)
our proposal had the best performance since it achieves the
convergence of the impedance error toward zero with lower
RMS value, respecting the torque limits of the actuators and
appropriately regulating the interaction forces exerted by the
user. Therefore, the results of this comparative study allow
us to conclude that the use of our control scheme in human–
robot interaction tasks guarantees a good performance and
an adequate level of safety for both the user and the robot.

Finally, another advantage of the proposed control scheme
is that the tuning of impedance parameters (KE , DE , HE )
allows for bounded modification of the trajectory to be fol-
lowed by the robot during interaction, i.e., the adjustment
vectors of position, velocity and acceleration are bounded if
the tuning criterion (16)–(18) is met. Figure 4 depicts the
behavior of the trajectory adjustment vectors and shows that
the position, velocity, and acceleration do not exceed the
bounds Bep = 0.85, Bev = 0.15, and Bea = 0.3, respec-
tively.

5 Conclusions

Closed-loop stability analysis, physical torque limits of actu-
ators, and sensitivity to singularities are often overlooked in
the design of control schemes for safe human–robot inter-
action tasks. This paper proposes a joint-space impedance
controller with bounded actions that makes use of EMG to
estimate the user’s joint torque during human–robot inter-
action. The proposed scheme has a nonlinear PD+ structure
based on generalized saturation functions and external torque
compensation based on EMG and the Hill muscle model.
These features respect the torque limits of the actuators and
measure the user intent in a more natural way. Moreover,
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Fig. 4 Torque filter (F(s)τe) outputs qe, q̇e, and q̈e, respectively. The
segmented lines represent the bounds ±Bep , ±Bev , and ±Bea , respec-
tively

through a Lyapunov stability analysis and numerical sim-
ulations, the correct performance of the proposed control
scheme was supported and validated. Due to these features,
our proposal can be considered as a primary approach to
impedance control for safe human–robot interaction with
bounded actions.

The results of the comparative tests presented make evi-
dent the advantages of the proposed control scheme over
other similar controllers to regulate human–robot interaction
tasks. This is due to the fact that it can deal with the torques
applied by the user at the same time that bounded control
actions are generated below the torque limits of the robot’s
actuators. In addition, the use of Hill’s muscle model and
EMG for user joint torque estimation allows human–robot
interaction to be defined in joint space, preventing the robot
from reaching singular configurations as commonly happens
with Cartesian controllers.
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