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Abstract
The interconnected power system is exposed to a wide range of disturbances that may induce electromechanical oscillations
of small magnitude and often persist for long periods. Such oscillations may sustain and grow, causing system separation
if no adequate damping is provided. Conventional Power System Stabilizers (PSSs) are often used to provide the necessary
damping torque to suppress the oscillation through the excitation system. The design of PSS in the previous work is either
nonlinear or entirely linear based on a linearized model around an equilibrium point. Nonlinear controllers provide very robust
performance. However, their complexity limits their deployment. On the other hand, linear-based PSSs are simple, but their
performance degrades as the operating conditions move away from the region of attraction. Unlike previously published work,
the design of the PSS in this paper explicitly uses the nonlinear model of the power system and linear control theory. This paper
presents a nonlinear PSS based on feedback linearization. The Riccati equation is used to construct the new coordinate’s linear
controller. The efficacy of the presented study is demonstrated through a comparison with nonlinear-based and linear-based
PSSs. Performing an in-depth analysis of inertia’s impact on the system’s stability concludes the proposed study.

Keywords Feedback linearization · Nonlinear control · Nonlinear power system stabilizers · Synergy control · Inertia
reduction

List of Symbols

EFD Field voltage
E

′
q Quadrature internal voltage

K A Exciter gain
i d Direct axis current [A]
i q Quadrature axis current
K i Linearizing constants ∀i � {1 − 6}
Pe Electrical power in [MW]
Pm Mechanical power [MW]
T A Exciter time constant
T

′
do Transient time constant [s]

Te Electrical torque [N/m]

B Ibrahim M. Alotaibi
alotaibi.ib@gmail.com

1 Electrical Engineering Department, King Fahd University of
Petroleum and Minerals, Dhahran 31261, Saudi Arabia

2 Researcher at K.A.CARE Energy Research and Innovation
Center (ERIC), Dhahran 31261, Saudi Arabia

3 Interdisciplinary Research Center in Renewable Energy and
Power Systems (IRC-REPS), KFUPM, Dhahran 31261,
Saudi Arabia

T j Time constants ∀ j � {1 − 4}
U pss Power system stabilizer signal
V R Regulated voltage [Volt]
V ref Reference voltage
V t Terminal voltage
vd Direct axis voltage
vq Quadrature voltage
ws Synchronous speed [Rad/Sec]
ẋ System dynamics ∀ẋ ∈ R

n

xd Direct axis reactance
x

′
d Transient reactance of the machine

ż Dynamics in the new coordinate ∀ż ∈ R
n

δ Angular displacement of the rotor [Elec Rad /Sec]
ω Actual rotor speed [rad/s]
φ Suggested manifold
ζ Damping ratio
ωn Undamped frequency [rad/s]
ωd Damped frequency [rad/s]
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1 Introduction

Generally, power systems are inherently nonlinear and
exhibit a wide range of transients during the operation,
resulting in low-frequency oscillations and underdamped
low-frequency speed that are complex to control. Currently,
most generators have Automatic Voltage Regulators (AVRs)
that negatively impact the power system’s dynamic stability.
The ultimate goal of AVR is to regulate the terminal voltage
once it deviates from the reference voltage. AVR helps to
maintain a reliable operation during steady-state operation
conditions. However, the power system is also exposed
to significant disturbances such as electrical faults, which
reduce the terminal voltage, thereby affecting its ability to
transfer a synchronizing power. In addition, poorly damped
oscillations are undesirable in power systems due to their
ability to alter the security and reliability of the network.
Although the low frequency-oscillations are small in magni-
tude, they can decrease the machines’ lifetime expectancy.
Under such conditions, even with minor disturbances, if
not taken care of, large generators may lose synchronism.
Over the years, the methods to improve transient and small
signal stability have evolved rapidly. However, their appli-
cation needs to be carefully assessed. For instance, one or
a combination of two methods can be applied to enhance
the stability of any given system. High-speed fault clearing,
reduction in transmission lines reactance, shunt compensa-
tion, dynamic braking, and Power System Stabilizers (PSS)
are well-known methodologies to enhance power system
stability. However, the fast excitation system supplemented
with a PSS is the most economical and effective technique
for suppressing low-frequency oscillations and improving
overall stability [1]. Therefore, large-scale generators are
equipped with Power System Stabilizers (PSS) to provide
the damping through the supplementary excitation system.
The basic principle of PSSs is to compensate for the phase
lag caused by such disturbances.

A wide range of Power System Stabilizers has been pro-
posed in the literature known as conventional PSSs. In the
early days, fixed PSSs were used due to their simple structure
and implementation. However, the power system undergoes
different operating conditions and exhibits different char-
acteristics, which requires a more sophisticated design to
yield satisfactory results. Most of which are linear-based
controllers that require linear approximation to the nonlin-
ear system to be implemented. For instance, the proposed
PSSs include, but are not limited to, classical-based con-
trollers [2], optimal controllers [3], adaptive controllers [4],
robust controllers [5–7], intelligent power system stabilizers
[8–15], and limited research effort devoted to nonlinear con-
trollers [16–21]. Although linear-based controllers have been
widely used in the industry, the expectation to fail in provid-
ing satisfactory performance is relatively high due to the high

nonlinearity of the power system. Therefore, it is essential to
adapt nonlinear controllers that are robust and immunized
against large deviations given different operation scenarios.

Feedback linearizing control is a nonlinear state feedback
technique in which the complete set or some set of states are
linearized using nonlinear feedback control and a suitable
state coordinate transformation [22, 23]. Most feedback lin-
earization techniques are either Input-to-State linearization
or input–output linearization. In the former, the entire set
of system states is linearized, whereas, in the latter, a com-
plete linearization or a partial linearization can be achieved
by careful selection of the new coordinate. The goal of the
input–output linearization approach is to linearize the map
between the actual output and the transformed input.While in
input-to-state linearization, an artificial output is intelligently
chosen to yield a total transformation where the relative
degree matches the number of states. The relative degree
refers to the total number required to differentiate the output
until the control input appears in its expression. A linear con-
troller can then be proposed to perform the required tasks.
There are stringent conditions that should bemet to have full-
state linearization. Practically, input–output linearization is
more common and can be sought for a large number of sys-
tems if they are minimum phase type. It is worthwhile to note
that Input-to-State linearization coincides with input–output
linearization if the resultant relative degree strictly matches
the total number of state variables.

Synergetic control theory can be regarded as a new
approach to solving nonlinear differential equations intro-
duced by [24]. The synergetic algorithm maps the original
set of differential equations to a new dynamical system in
a way that it ensures the following: any trajectory in the
state space ends in an attracting point; the attracting point
is located at the solution of the original system; the rate at
which the dynamical system approaches the attracting point
is controllable [18, 25]. Generally, the author of [16, 17, 24]
provides different methods for designing optimal controllers
for dynamical systems, in which the coordination between
the controllers and the expectation is sought. The synergetic
control approach attempts to find an area of attraction for the
new dynamical system with its conceived controllers [25].
Conceptually, creating an area of attraction or attractors char-
acterizes the Synergetic Control Theory. Furthermore, the
attractors are developed at the roots of the nonlinear differ-
ential equations. That is, this allows the proposed approach
to converge rapidly.

An attractor can be points, contours, torus, or regions
of fractal dimensionality. It is defined as the region in the
dynamical system’s state space that attracts all nearby tra-
jectories. It may also represent the internal wishes of the
dynamical system. Irrespective of the initial conditions, the
system should move toward one of the attractors and remain
there infinitely. If, for instance, the controllers fail to ful-
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fill the system’s requirements, the system becomes unstable.
Stability analysis should then be carried out to identify such
situations. Also, the system is considered unstable. If no
attractors are present, the convergence in such cases is not
permissible. Lyapunov stability theory can be applied to
examine stability.

In this paper, the PSS is synthesized using three
approaches: linear-based PSS, nonlinear feedback
linearization-based PSS (FBL-based PSS), and nonlin-
ear synergy control-based PSS. The linear-based controller
uses a linear approximation of the dynamical system around
the operating points. We propose a full-order nonlinear
feedback linearization for the dynamical system in the pre-
sented paper. An exact linearization is performed using state
transformation with nonlinear feedback control. A linear
controller in the new coordinate is proposed to achieve
the desired performance based on the Riccati equation’s
solution. The paper also addresses the impact of inertia
reduction on the synchronous machine’s angular displace-
ment and velocity. An eigenvalue analysis is performed to
quantify the effect of inertia on the system’s stability. In
the case of synergy control, a nonlinear controller is pro-
posed to attract the system’s trajectories into the suggested
manifold. A comparative analysis is conducted on a typical
single-machine-infinite-bus system (SMIB).

The rest of the paper is structured as follows: Sect. 2
reports the recent publications in the field. Section 3 formal-
izes the problem. The mathematical framework is developed
in Sect. 4, while Sect. 5 discusses the solution methodology.
The findings and the results obtained are delivered in Sect. 6.
Highlighting the concluding remarks ends this study.

2 RelatedWork

Linear-based Power System Stabilizers have been widely
deployed and proposed in the literature [7–15, 25–28]. For
example, a robust Power System Stabilizer based on sim-
ulated annealing was proposed in [7]. The authors utilized
a simulated annealing optimization technique to tune the
parameters. The study showed a robust performance against
different initial parameter settings. An eigenvalue analysis
was also performed to investigate the feasibility of the pro-
posed study. The tuning process of the PSS in [8–10] was
inspired by the whale optimization algorithm. In [8], the PSS
was tuned byminimizing amulti-objective function compris-
ing the damping factor and damping ratio of lightly damped
modes of the generators. The performance was tested on a
standard benchmark consisting of thirty-nine buses and ten
generators, while in [9], the authors used an eigenvalue-based
objective function to tune the PSS. The proposed study was
tested on a single-machine-infinite-bus and a multi-machine
system with different operating conditions. Similarly, an

enhanced version of the whale optimization algorithm for
tuning the PSS was proposed in [10]. A reduced-order model
was derived for the high order model of the system to min-
imize the Integral Square Error (ISE). The effectiveness of
the proposed work was demonstrated and compared with
renowned algorithms such as Particle Swarm Optimization
(PSO), Differential Evolution (DE), and classical Whale
Optimization Algorithm (WOA). In [11], the optimal design
of the PSS was inspired by the BAT search algorithm based
on the echolocation behavior of bats. The proposed BAT-
based PSS’s performancewas demonstrated by a comparison
withGeneticAlgorithm-based PSSs andConventional-based
PSSs.

On the other hand, the authors of [26] and [27] used a
fuzzy-based Power System Stabilizer to tune the parame-
ters of the PSS in a typical power system layout. In [27],
the proposed model was implemented on a single-machine-
infinite-bus system. Moreover, the authors of [26] extended
the work and applied a fuzzified-based PSS in a multima-
chine system. The proposed approach was validated through
a simulation of a multimachine system. An indirect adap-
tive neural-based Power System Stabilizer was proposed in
[29]. The proposed technique consisted of a neuro-controller
used to generate a supplementary control signal to the exci-
tation system, a neuro-identifier to model the power system
dynamics, and adapts the neuro-controller parameters.

Limited research has been proposed in the area of
nonlinear-based Power System Stabilizers [18–21, 29–31].
For instance, the authors of [17] presented a nonlinear PSS
based on synergetic control theory. The design synthesis of
the proposed PSS was based entirely on a simplified non-
linear model of the power system. The proposed model was
implemented in a single-machine-infinite-bus system. The
results showed superior performance when compared with
Conventional-based PSS. A fuzzy-based sliding mode con-
trol to damp out the low-frequency oscillations was used in
[19]. The adaptive low was derived using the Lyapunov sta-
bility theory, where the stability of the closed-loop system
was guaranteed. The effectiveness of the proposed technique
was tested in an area with an inter-area oscillation, while in
[20] and [30], a second-order sliding mode control was pro-
posed to offset an inter-area oscillation mode. Sliding Mode
Control (SMC) has been known as a very powerful and robust
control technique. However, SMC-based controllers suffer
from chattering phenomena. Therefore, the authors of [20]
have used second-order sliding mode (SOSMC) control to
overcome SMC shortcomings. Similarly, SOSMC was used
in [30] to damp out the low-frequency oscillations. The pro-
posed method showed an outstanding performance against
modeling uncertainties, which is not the case in conventional
PSS. A typical IEEE 10 bus system and a 39-bus system
were used to demonstrate the effectiveness of the proposed
study. A sliding mode control using quadratic minimization
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was also proposed in [32] for a single-machine-infinite-bus
system. The method was validated and compared with the
case of Linear-based PSS, whereas in [31], a nonlinear back-
stepping PSS was proposed to suppress the oscillations and
improve the transient stability. The proposed controller was
based on the fourth-ordermodel of the synchronousmachine.
A three-machine power system model was used to demon-
strate the effectiveness of the proposed technique.

The design of PSS in the previous work is either a non-
linear reduced-order model or entirely linear based on a
linearizedmodel around an equilibriumpoint.Nonlinear con-
trollers provide very robust and outstanding performance.
However, their complexity limits their deployment. On the
other hand, linear-based PSSs are simple to implement, but
their performance degrades as the operating conditions move
away from the region of attraction. Unlike previously pub-
lishedwork, the design of the PSS in this paper explicitly uses
the nonlinear model of the power system and linear control
theory. In that regard, the contribution of this paper can be
summarized as follows:

• Designing a nonlinear Power System Stabilizer using
Feedback Linearization considering full order model.

• Linearizing the dynamical system and providing a linear
controller to stabilize the system.

• Implementing the nonlinear controller proposed by [24]
and [18].

• Performing an extensive comparative analysis for the
behavior of the system under different controller designs.

• Investigating the impact of inertia reduction on the trajec-
tories of the system.

3 ProblemDefinition

In this paper, a simplified dynamic power system model
known as a single-machine infinite bus power system (SMIB)
is considered, as shown in Fig. 1, [7, 33, 34]. This system is
composed of a synchronous generator that is driven by a tur-
bine with a governor. The excitation system is controlled by
an Automatic Voltage regulator (AVR) and a Power System
Stabilizer (PSS). The single-axis dynamic model shown in
Fig. 1 can be described by the following forth order model
and a set of algebraic equations as provided in the sequel.

3.1 Power SystemModel

3.1.1 The swing equation

Describes the mechanical dynamics of the generator, which
can be written as a set of first-order differential equations.

ω̇ � ωs

2H
[Pm − Pe − D(ω − ωs)] (1)

Fig. 1 Layout of a single-machine infinite-bus (SMIB) power system

Fig. 2 IEEE type-1 simplified exciter

δ̇ � ω − ωs (2)

δ is the angular displacement (i.e., rotor angle). Pe and
Pm are the electrical power and mechanical power, respec-
tively. ω and ωs are the rotational speed and the synchronous
speed, respectively. H is the inertia constant. D represents
the damping coefficient.

3.1.2 Electrical dynamics of the generator

The mechanical power Pm is deemed constant throughout
the analysis since the dynamics of the mechanical system
are much slower than the dynamics of the electrical part.
Therefore, the governor’s action is not considered, and hence,
it has no significant impact on the machine dynamics.

Eq̇
′ � 1

T
′
do

[
EFD − Eq ′ −

(
xd − x

′
d

)
id

]
(3)

3.1.3 Exciter dynamics

Equation (4) describes the internal dynamics of the simplified
IEEE type 1 model shown in Fig. 2.

EFD � 1

TA

[
KA

(
Vre f − vt + u pss

) − EFD
]

(4)
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3.1.4 Algebraic equations

The following equations, which depend on the system states,
are used to perform algebraic computations during the anal-
ysis.

Te � Pe � E
′
qVt

x
′
d

sin(δ) (5)

id � E
′
q − Vt cos(δ)

x
′
d

�
E

′
q − vq

x
′
d

(6)

iq � Vt sin(δ)

xq
(7)

Vt �
√

v2d + v2q (8)

vq � E
′
q − x

′
d id (9)

vd � iq Xq � Vt sin(δ) (10)

The dynamical equations of the generator can be written
in the form ẋ � f (x, u) as follows:

⎡
⎢⎢⎣

δ̇

ω

Ė
′
q

ĖFD

⎤
⎥⎥⎦ �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω − ωs

ws
2H

[
Pm − E

′
q Vt

x
′
d

sin(δ) − D(w − ws )

]

1
T

′
do

[(
EFD − E

′
q − E

′
q−Vt cos(δ)

x
′
d

(
xd − x

′
d

)]

1
TA

[
K A

(
u pss + Vre f − Vt

) − EFD
]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

Writing the above system in the compact form ẋ � f
(x) + g(x)u yields:

⎡
⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4

⎤
⎥⎥⎦ �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2 − ωs

ωs
2H

[
Pm − x3Vt

x
′
d

sin(x1) − D(x2 − ωs )

]

1
T

′
do

[

(
x4 − x3 − x3−Vt cos(x1)

x
′
d

(
xd − x

′
d

)]

1
TA

[
K A

(
Vre f − Vt

) − x4
]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎣

0
0
0
KA
TA

⎤
⎥⎥⎥⎦u pss

(12)

4 Mathematical Modeling

4.1 LinearizedModel

Considering the third-order model of the machine, and the
simplified IEEE type-1 excitermodel as depicted inFig. 2, the
complete nonlinear model of the machine can be described
by (13) through (16).

ω̇ � ωs

2H

[
Pm − E

′
qVt

x
′
d

sin(δ) − D(ω − ωs)

]
(13)

δ̇ � w − ws (14)

Eq̇
′ � 1

T
′
do

[
EFD − Eq ′ −

(
xd − x

′
d

)
id

]
(15)

EFD � 1

TA

[
KA

(
Vre f − vt + u pss

) − EFD
]

(16)

Given the above nonlinear dynamical system and the alge-
braic equations given by (5) through (10), the linearization in
terms of the initial conditions can be carried out as follows:

4.2 Derivation of the Linearization Constants

The complete derivation of the linearization process can be
found in detail in [1, 23]. Linearizing around an operating
point a and neglecting the higher-order terms, the electrical
torque can be given by:

�Te � eq
′
0 × �iq + iq0�eq ′ +

(
xd − x

′
d

)(
ido�iq + iqo�id

)
(17)

� �Te � K1�δ + K2�eq ′

where

[
K1

K2

]
�

[
0
iqo

]
+

[
Fd Fq
Yd Yq

]⎡
⎣

(
xq − x

′
d

)
iqo

eq
′
0 +

(
xq − x

′
d

)
ido

⎤
⎦ (18)

Fd , Fq ,Yd and Yq are provided in ’appendix’. Similarly,
K3 and K4 can be derived from the field voltage (i.e.,
Eq. (17)). After the linearization and neglecting the higher-
order terms, we have the following:

K3 � 1

1 +
(
xd − x

′
d

)
Yd

(19)

K4 �
(
xd − x

′
d

)
Fd (20)

The terminal voltage of the machine has a major role
in deriving the linearization constants K5, K6 which are
described by (20) and (21).

�vt � K5�δ + K6�eq ′ (21)

[
K5

K6

]
�

[
0
Vq0
vt0

]
+

[
Fd Fq
Yd Yq

][
− x

′
dvq0
vto

xqvdo/vto

]
(22)

4.3 Supplementary Excitation Control

The basic idea of the power system stabilizer is to apply a
signal through the excitation system to increase the damping
torque of the generator according to (23), as shown in Fig. 3.
The PSS output signal is applied through the blocks that
represent the electrical power of the synchronous machine
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Fig. 3 Layout of SMIB

(i.e.,TA, T
′
do and K2 blocks) to provide the necessary damp-

ing torque.

�̇ω � (�Tm − �Te − DTd) (23)

�Te � �Te + �Te−new � K1�δ + DE�ω (24)

4.4 Power System Stabilizer Structure and Input
Signals

Awide range of Power System Stabilizers has been proposed
in the literature known as conventional controllers such as
lead–lead PSS, proportional–integral–derivative controllers,
and others that are sophisticated such as optimal, adaptive,
and intelligent-based controllers. The most commonly used
controller nowadays is the Lead–LagController (CPSS). The
input signals to the Power System Stabilizers may include
one or a combination of the following:

• Speed deviation �ω

• Frequency deviation � f
• Electrical power deviation �Pe
• Accelerating torque �Pa

4.4.1 Lead–Lag Power System Stabilizers

The Lead–Lag PSS may comprise one or multiple com-
pensation blocks preceded by a washout block for resetting
purposes, as shown below:

u pss � sTw

1 + sTw

(
1 + sT1
1 + sT2

)p

× Y

u pss � sTw

1 + sTw

(
1 + sT1
1 + sT2

)(
1 + sT3
1 + sT4

)
× Y

(25)

where Y denotes the input signal to the PSS.

Fig. 4 Structure of Lead-Lag PSS

4.4.2 Proportional–Integral–Derivative (PID) Controller

u pss � sTw

1 + sTw

(
Kp +

Ki

s
+ KDs

)
× Y (26)

4.5 State Space Equations
of Single-Machine-Infinite-Bus System

The state-space model of the single-machine-infinite-bus
system can be derived from the block diagram provided in
Fig. 3. In the standard form of first-order differential equa-
tions, the equivalent state-space model is as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�δ̇

�ω̇

�Eq
′

�EFD

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 wb 0 0

− K1
M − D

M − K2
M 0

− K4
T

′
do

0 − K3
T

′
do

1

T
′
do

− KAK5
TA

0 − KAK6
TA

− 1
TA

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�δ

�ω

�Eq
′

�EFD

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

KA
TA

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
u pss

(27)

Equation (27) is in the compact form of Ẋ � Ax + Bu.
Where The state vector X is

[
�δ;�ω;�Eq ′;�EFD

]
. The

open-loop eigenvalues of the system (26) can be obtained for
u pss � 0.

Considering the structure of the Lead-Lag PSS shown in
Fig. 4 and augmenting the new states, namely the u pss and x5,
we thus have the new closed-loop state matrix in the compact
form:

Ż � AcZ (28)

Ac is the controlled system matrix having its closed-loop
eigenvalues. It is clear that from the following matrix that the
controller u pss can stabilize the system.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�δ̇

�ω̇

�Eq
′

�EFD

ẋ5

u̇ pss

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 wb 0 0 0 0

− K1
M − D

M − K2
M 0 0 0

− K4
T

′
do

0 − K3
T

′
do

1

T
′
do

0 0

− KAK5
TA

0 − KAK6
TA

− 1
TA

0
KA
TA

− K1
M − D

M − K2
M 0 − 1

Tw
0

−K1λ −Dλ −K2λ 0 η −1/T2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�δ

�ω

�Eq
′

�EFD

x5

u pss

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29)

where

λ � T1Kc

T2M
(30)
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η � KC

T2

(
1 − T1

Tw

)
(31)

or in compact form as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 wb 0 0 0 0

− K1
M − D

M − K2
M 0 0 0

− K4

T
′
do

0 − K3

T
′
do

1
T

′
do

0 0

− KAK5
TA

0 − KAK6
TA

− 1
TA

0 KA
TA

− K1
M − D

M − K2
M 0 − 1

Tw
0

−K1λ −Dλ −K2λ 0 η −1/T2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

u pss

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32)

4.6 Nonlinear Control

4.6.1 Feedback Linearization

Feedback linearization is an efficient approach for nonlin-
ear control design, which has attracted significant attention
in recent years. The main idea is to algebraically transform
the nonlinear dynamics into fully or partially linear systems,
and thereby, linear control techniques can be proposed. Also,
it is noteworthy that this approach precisely transforms the
nonlinear system into a linear system, which is not the case
in Jacobian linearization. Feedback linearization is achieved
by exact state transformation to the system and a nonlinear
controller that cancels the nonlinearity and injects a linear
controller to stabilize the system. In input-state lineariza-
tion, a new output is chosen, such that the relative degree
of the system matches the number of states. By doing so,
the Input-State Linearization coincides with the input–out-
put linearization technique. The principle of such techniques
is to differentiate the output until the control input u appears
in the i th derivative of y.

Consider the following system

ẋ � f (x) + g(x)u

y � h(x)
(33)

where ẋ is the state and u, y are the input and output of the
system, respectively, which are both scalars.

ẏ � ∂h

∂x
( f (x) + g(x)u)

ẏ � L f h(x) + Lgh(x)u
(34)

where L f h(x) is the lie derivative of h along the vector field f
(i.e., the dynamics of the given system). Lgh represents the lie

Fig. 5 Control layout using Feedback Linearization FBL

derivative of the h along the vector field g. Full linearization
is permissible if the following holds true:

yn � Ln
f h(x) + LgL

n−1
f h(x)u;

LgL
n−1
f h(x)u �� 0

(35)

yn is the nth derivative of the dynamical systemof n states.
The state transformation can be performed as follows:

z �

⎡
⎢⎢⎢⎢⎣

h(x)
L f h(x)

.

.

Ln−1
f h(x)

⎤
⎥⎥⎥⎥⎦

(36)

ż �

⎡
⎢⎢⎢⎢⎣

z2
z3
.

.

Ln
f h(x) + LgL

n−1
f h(x)u

⎤
⎥⎥⎥⎥⎦

(37)

The nonlinear controller is chosen as follows:

u � v

LgL
n−1
f h(x)

− Ln
f h(x)

LgL
n−1
f h(x)

(38)

where v represents the linear controller in the form (39),
which can be designed using any control architecture such
as the Optimal Control, Pole Placement, and the solution to
Riccati equation:

v � −K1z1 − Knzn (39)

The overall scheme of feedback linearization techniques
is summarized in Fig. 5.

4.7 Synergetic Control

As pointed out in the preamble of the paper, the synergetic
algorithm is somewhatmotivated by the slidingmode control
where a manifold or (i.e., a sliding surface) is suggested at
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the roots of the dynamical system to attract all trajectories to
operate along this manifold. Also, the manifold can be cre-
ated based on the control objectives as a set ofmacrovariables
φi that needs to be zeroed. The aggregated macrovariables
are dependent on the state variables xi and the control signals
ui (i.e., φi � φi (x, u). The founder of this approach suggests
the following constraint to be met with the surface φi � 0.

T φ̇ + φ � 0 (40)

where T is the time that determines the convergence to reach
the manifold φ � 0. The solution to the above differential
equation is:

φ(t) � φ0e
−t
T (41)

Obviously, global stability is guaranteed by the suggested
differential equation. However, the surface should be well
defined and designed to guarantee that φ � 0. If we now
consider ẋ � f (x, u, t). Considering the chain rule of dif-
ferentiation as follows:

dφ(x, t)

dt
� ∂φ(x, t)

∂x

dx(t)

dt
(42)

If we plug the system dynamics and the suggested differ-
ential equation given by 39, we have:

T ∂φ

∂x
ẋ + φ � 0 � T ∂φ

∂x
f (x, u, t) + φ (43)

Solving Eq. (40) for u yields:

u � ψ(x, t, φ, T ) (44)

It is clear from the previous equation that the control input
does not depend on the state variables only but also depends
on the suggested manifold and the time T . Upon developing
the controller, each surface introduces a new constraint on
the system, and the designer can choose as many surfaces
as control purposes. Throughout the development, it is clear
that the synergetic approach operates on the natural nonlinear
systemwithout any linearizationwhatsoever. It is noteworthy
that the synergized control law guarantees global stability on
the surface. That is, once the trajectories are pulled into the
surface, they are not supposed to leave the surface even if
significant disturbances to the operating points take place.

5 SolutionMethodology

5.1 Linearized Approach

The mathematical framework of the linearized approach has
been extensively elaborated in the previous section, precisely
in section A.

5.2 Nonlinear—Feedback Linearization Approach

Based on the introductory part elaborated earlier, along with
the dynamical system described by (11), δ which is the rotor
angle (i.e., the angular displacement) of the synchronous gen-
erator, has been selected as the new output in order to have a
full linearization. The following development has been car-
ried out using Maple, as provided in ’appendix’.

y1 � z1 � x1 � δ

z2 � x2 − ws

z3 � ws

2H

{
Pm − x3V∞ sin(x1)

XT
− D(x2 − ws)

}

z4 � −1

2

wsV∞x3 cos(x1)(x2 − ws)

2HXT
− γ − ρ

(45)

where γ and ρ and are as follows:

γ � w2
s D[Pm − x3V∞sin(x1)/XT − D(x2 − ws)]

2H
(46)

ρ � ws V∞ sin(x1)

2HXT Tdo

⎡
⎣x4 − x3 −

x3 − V∞ cos(x1)
(
xd − x

′
d

)

XT

⎤
⎦ (47)

and LgL
n−1
f h(x) is given by (45):

LgL
n−1
f h(x) � −wsV∞ sin(x1)KA

2 × TATdoXT H
(48)

The dynamics in the new coordinate are:

⎡
⎢⎢⎣

ż1
ż2
ż3
ż4

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣

z2
z3
z4

Ln
f h(x) + LgL

n−1
f h(x)u pss

⎤
⎥⎥⎦ (49)

L4
f h(x) is provided in ’appendix’. The linear controller is

suggested as the chain of integrators as follows:

v � −K1z1, . . . − Knzn

z1 �
t∫

0

ωdt
(50)
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Furthermore, the controller gains are derived from the
solution of the Riccati equation:

AT P + PA − PBBT P + Q � 0 (51)

5.3 Nonlinear—Synergy Control Synthesis

The main goal of the PSS design is to stabilize the rotational
speed through a controlling signal that is injected through the
exciter. Therefore, the deviation in the rotor speed from the
nominal value (i.e., 377 rad/s) is selected as a stabilizing sig-
nal on the surface. The deviation in the electrical power from
the reference operating point is also added in the manifold.
Defining the surface as:

φ � k1
(
ω − ωre f

) − (
Pe − Pref

)
(52)

where k1 < 1 is a positive coefficient. ωre f and Pref are
the reference speed and reference power, respectively. The
ultimate goal of the synergized controller is the force the
trajectories of the system to operate on the surface φ � 0.
Using the previous development, we will develop the control
law that derives the system along the manifold. Given the
suggested ODE (50), and substituting (49) into (50), it yields
(50)

T φ̇ + φ � 0 (53)

K1ω̇ − Pe � − 1

T

[
K1

(
ω − ωre f

) − (
Pe − Pre f

)]
(54)

Pe � V∞
XT

sin(x1)ẋ3 +
x3V∞cos(x1)

XT
ẋ1 (55)

where

ẋ3 � 1

Tdo

[
Ke

(
x4 + u pss

) − x3

−
x3 − V∞ cos(x1)

(
xd − x

′
d

)

XT

⎤
⎦ (56)

Solving for u pss yields:

u pss � 1

Ke
x3 − x4 +

x3 − V∞ cos(x1)

KeXT

(
xd − x

′
d

)
+ σ + β

(57)

σ � −�XT x3 cos(x1)(ω − ωs ) +
�K1

V∞ × 2H
[Pm − Pe − D(ω − ωs )]

(58)

β � �

V∞T1

[
K1

(
ω − ωre f

) − (
Pe − Pre f

)]
(59)

� � TdoXT /Ke sin(x1) (60)

5.4 Inertia reduction impact on the stability

This section addresses the impact of inertia variation on
the behavior of the system due to the increased penetration
of renewables. It has been pointed out that the large dis-
placement of the conventional generating units results in a
decreased inertia constant, which mainly affects the angu-
lar velocity of the committed machines (i.e., the frequency
of the system) [35]. Such determinantal impact needs to be
addressed. Therefore, we dedicate the following section to
emphasize the impact of inertia variation on the trajectory of
the system.

The state-space model shown in (29) is sufficient to inves-
tigate the system’s performance near the equilibrium points
for different values of H by conducting eigenvalue analysis.
Using appropriate modal decomposition, (29) can be decom-
posed into a canonical form, which simplifies predicting the
system’s trajectories. However, such processes are beyond
the proposed study’s scope, and we shall limit ourselves to
the model (29).

Once the dynamical system is linearized, the superposition
technique can be applied to decouple the mechanical modes
of the system as follows:

d2�δ

dt2
+
2ζωnd�δ

dt
+ ω2

n�δ � 0 (61)

The characteristic equation becomes:

s2 + 2ζωn + ω2
n � 0 (62)

which gives complex roots as:

s1,2 � −ζωn ± jωn

√
1 − ζ 2

ωn �
√(

π f Pmax cos(δ0)

H

)

ωd � ωn

√
1 − ζ 2

ζ � D

2

√
π f0

HPmaxcos(δ0)

(63)

The trajectories of δ and ω due to a small perturbation in
δ yield:

δ � δ0 +
�δ0√
1 − ζ 2

e−ζωn t sin(ωdt + θ)

θ � cos−1(ζ )

(64)

ω � ω0 − ωn�δ0√
1 − ζ 2

e−ζωn t sin(ωdt) (65)
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Fig. 6 Speed deviation due to a 0.05 step in Pm

6 Results and Discussion

6.1 Rotor Angle Stability Analysis

The following illustrative figures investigate the proposed
nonlinear PSS performance for a step change in the mechan-
ical power. Different control strategies were analyzed using
the linear control approach, the proposed Feedback Lin-
earization (FBL)-based PSS, and the nonlinear synergized
PSS. Figure 6 depicts the rotor speed’s behavior due to a dis-
turbance with no control action taken whatsoever. It is clear
that the oscillation lasted for a longer time but eventually
settled to the nominal value.

Figure 7 shows the behavior of the speed once a step
change in the mechanical power took place. The figure also
shows the effectiveness of the proposed FBL controller in
stabilizing the disturbance. It is expected for nonlinear PSSs
to perform better than linear PSSs if the system experiences
large disturbances. However, the proposed FBL-based PSS
overcomesbothnonlinear and linear PSS [12, 18], as depicted
in Figs. 7 and 8. It is clear that the response of the speed under
linear-based PSS [12] and nonlinear synergy-based PSS [18]
suffered from long settling time and undesirable overshoot.
On the other hand, the proposed FBL-based PSS successfully
provided sufficient damping, which was clearly impacted on
the level of overshoot and settling time.

The behavior of the rotor angle under different scenarios
is depicted in Fig. 8. Clearly, the overshoot and the set-
tling time under the FBL-based PSS structure were much
smaller compared to the response of the system when using
synergy-based PSS [18] and linear-based PSS [12]. Such
reduction was also impacted on the rotor angular displace-
ment, as shown in Fig. 8. The performance of the nonlinear
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Fig. 7 Speed deviation under different scenarios
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Fig. 8 Rotor angle behavior in different scenarios

controllers outperformed the linear controller design in all
cases.

Figure 8 depicts the rotor angle response due to the
disturbance under the FBL structure outperforming both
the linear-based and the nonlinear synergic-based designs.
The rotor angle under FBL was stabilized rapidly to a
new operating point compared with linear and nonlinear
synergetic-based controllers. The percentage of overshoot
for the FBL-PSS and synergy-based PSS was reduced to
25% and 10%, respectively. Also, the settling time was much
shorter in both cases compared with the conventional PSS.
There was a significant reduction in the settling time for both
cases, 51% and 37%, respectively. The system’s response
clearly shows that the overall performance under the FBL
scheme is superior to both linear and nonlinear synergetic
control structures.

Figure 9 shows the behavior of the manifold during the
simulation. The manifold succeeded in attracting all the tra-
jectories for the entire period once the disturbance took place
at t � 5s.

123



Arabian Journal for Science and Engineering (2022) 47:13893–13905 13903

Table 1 Impact of inertia
variation on the eigenvalues of
the system

State H � 9.26 H � 2 H � 4 H � 12

δ − 18.9648 + 0.0000i − 25.2376 + 0.0000i − 22.0106 + 0.0000i − 17.7417 + 0.0000i

ω − 5.2762 + 7.9481i − 1.9434 + 13.3550i − 3.6298 + 10.5460i − 5.9514 + 6.9419i

E ′
q − 5.2762− 7.9481i − 1.9434− 13.3550i − 3.6298− 10.5460i − 5.9514− 6.9419i

E f d − 0.8680 + 0.0000i − 1.2443 + 0.0000i − 1.1042 + 0.0000i − 0.7475 + 0.0000i

xwashout − 0.0164 + 0.1294i − 0.0247 + 0.1416i − 0.0219 + 0.1380i − 0.0131 + 0.1227i

u pss − 0.0164− 0.1294i − 0.0247− 0.1416i − 0.0219− 0.1380i − 0.0131− 0.1227i
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Fig. 9 Manifold behavior during the simulation under the synergized
control scenario

6.2 The Impact of Inertia Reduction on System’s
Stability

6.2.1 Eigenvalues Analysis

This section investigates the performance of the dynamical
system for different values of H . Table 1 summarizes the
findings for different values of H . It is very clear that once
the inertia constant is reduced, the amount of oscillations
rapidly increases, which in turn affects the overall stability
of the system. Furthermore, as the inertia increases, the real
part of the eigenvalues moves away from the imaginary axis,
allowing the system to sustain the disturbances more safely.
Table 1 also shows that the variation in H is heavily impacted
on the dynamics of the rotor’s angular velocity ω.

6.2.2 Rotor’s Trajectories for Different Values of H

Figures 10 and 11 show the behavior of the rotor dynamics
for different values of H . Figure 10 shows that the more
the H values the lesser is the minimum frequency after a
disturbance. It is also noteworthy to point out that greater
values of H shift the location of the minimum point, thus
allowing more room for primary control action to take place.

On the other hand, the impact of H on the rotor angle is
not direct. However, increasing the values of H results in a
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Fig. 10 Impact of different H values on the frequency
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Fig. 11 Impact of different H values on the torque angle

slightly more significant deviation and more settling time, as
shown in Fig. 11.

7 Conclusion

This paper presented a PSS design for a single-machine-
infinite-bus system using a feedback linearization algorithm.
The synthesized FBL-based PSS overcomes the shortcom-
ings of liner-based controllers by exploiting the exact model
of the power system. The proposed methodology exploited
the linear control theory to reconstruct the PSS. For achiev-
ing satisfactory performance, the parameters of the PSSwere
tuned based on the Riccati equation. The proposed control
technique showed a robust and superior performance against
unpredicted significant disturbances. Also, the controllers
were insensitive to the variation in the operating conditions
and the disturbance’s size. The efficacy of the proposed

123



13904 Arabian Journal for Science and Engineering (2022) 47:13893–13905

technique was demonstrated through a comparison with a
nonlinear synergetic PSS and a conventional linear PSS. It is
worth pointing out that the PSS synthesis for a multimachine
system will be addressed in future work.

In addition, in the presented study, an in-depth analysis
was carried out to investigate the impact of inertia on the
system’s response using eigenvalue analysis and the general
solution of the dynamical system under a disturbance. The
proposed study showed that different values of H play a
vital role in determining the minimum frequency after the
disturbances. It was also seen that the greater the values of
H , the more room for the generators to maneuver during the
disturbances (i.e., Primary control actions). The proposed
study concluded that the impact of H on the rotor’s angle
was minimal. It, however, resulted in a longer settling time
and higher overshoots.
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Appendix

System Parameters

See Table 2.

Lie Derivative

L f4h � L1 + L2 + L3 + L4 + L5

where Li ′s are defined as follows:

Table 2 System parameters used in the simulation

System Parameters

δo 37.16 Eq
′
o 1.327

K1 0.544 T1 1.31

K2 1.2 T2 10

K3 0.658 T3 1.31

K4 0.69 k1 0.1

K5 − 0.0955 Tdo 4

K6 0.822 Ka 50

Ta 0.01 Ke 1

Tw 5 H 4

Pm 1 XT 0.8

D 4 x
′
d 0.6

L1 �
1
2ωs x3V∞ sin(x1)(x2 − ωo)

Hx
′
d

+
1
4ω

2
s x3DV∞ cos(x1)

H2

L2 � −
1
2ωsV∞ cos(x1)

(
x4 − x3 − (x3−V∞ cos(x1))

(
xd−x

′
d

)

x
′
d

)

Hx
′
dT

′
do

L3 �
1
2ωsV 2∞ sin2(x1)

(
xd − x

′
d

)

Hx
′2
d T

′
do

(x2 − ωo)

L4 � 1

2H

[
1
2ωsV∞ cos (x1) (x2 − ωo)

Hx
′
d

+
ω2
s D

2

4

]
(Pm−Pe−D (x2−ωo))

−
1
2ωsV∞ cos (x1) (x2 − ωo)

Hx
′
d

+
1
4ω2

s DV∞ sin (x1)

H2x
′
d

−
1
2ωsV∞ sin (x1)

(
−1 − xd−x

′
d

x
′
d

)

Hx
′
d T

′
do

×
x4 − x3 − (x3−V∞ cos(x1)

(
xd−x

′
d

)

x
′
d

T
′
do

L5�−
1
2ωsV∞ sin(x1)

[
KA

(
Vref −Vt

)−x4
]

Hx
′
dT

′
doTA
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