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Abstract

Zeolites are porous aluminosilicate materials and are commonly used as adsorbents for various pollutants. Geopolymers
made from industrial waste materials have an aluminosilicate structure similar to zeolites and can be converted to crystalline
zeolites under high temperature and pressure conditions (hydrothermal conditions). The present study investigated the effects
of fly ash substitution by calcium aluminate cement (CAC) in hydrothermally-treated geopolymer binders (often referred to
as geopolymer-zeolite composites or geopolymer-supported zeolites). The substitution levels of fly ash by CAC were varied
from 0 to 50% (0, 10%, 20%, 40%, or 50%). A mixture of waterglass and NaOH solutions was used for alkali activation of
raw materials. The test results revealed that the CAC significantly affected the strength development and reaction products.
All the CAC-substituted specimens showed significantly higher strength than fly ash-based control specimens. It was noted
that the rise in compressive strength was mainly due to the formation of C—A—S-H gel in CAC-substituted specimens. The
control specimens showed Na—-P1 type zeolite while chabazite, faujasite, and hydroxysodalite phases were identified with
incorporation of CAC. Hence, it was found that the CAC addition resulted in different Ca/Si molar ratios, which promoted
the formation of different types of zeolites, thus these specimens can potentially be used for specific target applications.

Keywords Alkali-activated material (AAM) - Calcium aluminate cement (CAC) - Geopolymer—supported zeolite -
Geopolymer-zeolite composite - Hydrothermal treatment - Fly ash

1 Introduction

Ordinary Portland cement (OPC) produces a large amount
of carbon dioxide during its manufacturing process, while
alkali-activated materials (AAMs) have advantages of recy-
cling industrial by-products which mainly contain Ca, Al,
and Si species [1, 2]. AAMs are known to possess com-
parable (sometime even better) strength and durability to
OPC [1, 3]. Therefore, studies on the synthesis and applica-
tions of various types of AAMs are continuously increasing
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[4-7]. Geopolymers, classified as low-Ca AAMs, mainly
consist of highly cross-linked zeolite-like amorphous alu-
minosilicate gel (N-A-S-H type) [3, 8]. This gel is the
main strengthening constituent in geopolymers which has
the tendency of converting to crystalline zeolites, specifi-
cally in high temperature conditions [9, 10]. Zeolites have
a large porous structure and are frequently used as adsor-
bents for various pollutants. Conversion of geopolymeric
gel into crystalline zeolites can open the possibility of their
use for different applications (e.g., self-supported adsor-
bents or pervaporation membranes). Since geopolymeric gel
acts as a supporting phase for zeolite crystals, they are
often referred as geopolymer-supported zeolites or geopoly-
mer—zeolite composites [8, 11, 12].

Since formation of zeolites can give a self-supporting
system, this has attracted the attention of a number of
researchers. Zeolite Na—P1, chabazite, faujasite, zeolite X,
ZSM-20, and zeolite-like hydroxysodalite are some of the
common crystalline phases that appear after hydrothermal
treatment of gropolymeric binders [12]. Zeolite Na—P1 can
effectively adsorb environmental pollutants such as SO,
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NOy, Pb, and Hg [13-15]. Chabazite has high affinity to
adsorb uranium radioactive ions and carbon monoxide [16,
17], while faujasite can effectively adsorb Pb, Co, and Cr,
and also have ability to separate the hydrocarbon mixtures
[18, 19]. Hydroxysodalite can absorb inorganic as well as
organic pollutants with hydrophilic properties [20, 21]. This
suggests that the formation of these phases in geopolymers
can provide multifunctional materials. For instance, they can
be potentially used as a construction material on sewage or
for the removal of hazardous contaminants such as radionu-
clides or heavy metals. [22, 23].

Recently, Khalid et al. [8, 11] and Lee et al. [24] have
reported works on typical two-step and robust one-step
hydrothermal treatment methods for increasing the zeolites
formation in geopolymeric binders. Their adsorption capac-
ities were tested for lead and cesium removal, and promising
results were obtained [8, 22]. It was highlighted that the ele-
mental composition (mainly Si, Al, Na, and Ca content) and
physical characteristics of raw materials play vital role in the
reactions kinetics and resulting products. Specifically, Ca/Si
and Al/Simolar ratios were found to affect the strength devel-
opment as well as formation of different crystalline phases
[11, 24]. Similar findings were also reported by Simao et al.
[25]. Moreover, the Ca/Si ratio is also reported to affect the
degree of silicate polymerization, which contributes to the
production of main cement hydrates such as C—S-H and
C—A-S-H [26]. Specimens with higher Si content generally
showed increase in strength, while variation of Ca content
resulted in formation of different zeolitic phases in addi-
tion to its effects on strength. Hence, this study focused on
systematically investigating the effects of varying elemen-
tal composition on the reaction products. Calcium aluminate
cement (CAC), which has higher CaO and Al,O3 content,
was added at increasing percentages to vary the starting
Ca/Si, Al/Si, and Si/Namolar ratios. Their effects on develop-
ing crystalline phases and mechanical strength were analyzed
and discussed.

2 Materials and Methods

The calcium aluminate cement (CAC) and class F fly ash
(FA), used in this study, were procured from Union cements
and Hadong coal-fired power plant, South Korea, respec-
tively. The chemical compositions of raw materials were
measured by XRF and are given in Table 1. A mixture of
waterglass and 6 M NaOH solution was used as activator.
The waterglass had 1.38 g/mL specific gravity, 29 wt.% SiO3,
10 wt.% Nay O, and 61 wt.% H,O. The NaOH/waterglass and
activator/binder weight ratios of 0.5 and 1.0 were used for
all the specimens, respectively. In the starting mixture, up
to 50% of FA (0, 10%, 20%, 40%, or 50%) was replaced
by CAC. Table 2 shows the specimens mix proportions and
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Table 1 Chemical composition of raw fly ash and calcium aluminate
cement

(Qt.%)Si02 Al,03Ca0 Fe,O3MgO NayO SO3 TiOy P05 K0

Fly 57.0 21.0 438
ash

CAC 4.83 50.77 38.39

100 13 - 1.0 15 15 14

1.82 040 0.63 0.24 2.04 - -

Table 2 Mix proportion of the specimens

Control (F)  CI10 C20 C40 C50

Sample name

Fly ash 100 90 80 60 50
CAC 0 10 20 40 50
Ca/Si 0.077 0.142 0.219 0.427 0.570
Al/Si 0.371 0.460 0.565 0.847 1.042
Si/Na 2.612 2.396 2.182 1.761 1.553

their starting compositions in terms Ca/Si, Si/Al, and Si/Na
molar ratios. The one-step method, proposed by Khalid et al.
[8], was used for synthesis of self-supported zeolites as fol-
lows: (1) the mixture was homogeneously mixed for 15 min
at ambient temperature, (2) the mixed slurry was poured into
25 x 25 x 25 mm Teflon molds, and (3) the Teflon molds
were placed into autoclave for the hydrothermal treatment for
48 h. The hydrothermal treatment system consists of 60 °C
temperature for 6 h and 150 °C temperature for next 42 h.
Specimens were demolded after hydrothermal treatment and
were put at 25 °C for further curing up to 7 and 28 days.

To investigate the physicochemical characteristics of
synthesized specimens with CAC substitutions, compres-
sive strength and X-ray diffractometry (XRD) tests were
conducted. The compressive strength was measured in accor-
dance with ASTM C109, using a 50 kN universal testing
machine. The XRD analysis was conducted by using a
high-resolution X-ray diffractometer manufactured by PAN-
alytical with CuK at 40 kV and 30 mA within a scan range
of 5°-60° 26. Phase identification was done using the Inter-
national Center for Diffraction Data (ICDD) PDF database.

3 Results and Discussion
3.1 Crystalline Phases

The XRD results of 7-day and 28-day cured specimens are
shown in Fig. 1. The zeolite Na—-P1, PDF#01-074-1787 was
observed in all the specimens. This is the most common
zeolitic phase synthesized by activation of fly ash, mainly
due to the favored Si/Al molar ratio of fly ash as observed
in many studies [27-29]. The control sample showed the
highest quartz, PDF #01-086-1629 and mullite, PDF #01-
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Fig.1 XRD patterns of calcium aluminate cement incorporated
geopolymer-supported zeolites a 7-day and b 28-day cured specimens

074-4145 peaks than other specimens. Quartz and mullite
are the inherited phases of raw fly ash, and their reactivity
during alkali activation is reported to be low, hence mostly
present in alkali-activated fly ash-based binders [30]. After
the substitution of fly ash with CAC, a decrease in relevant
peaks was evident as the fly ash content was decreasing.
With substitution of CAC, sample C10 showed small
peaks of faujasite (PDF # 00-038-0232, 01-074-2761) and
chabazite (PDF #00-002-0062, 00-019-1178, 01-086-1567)
phases, in addition to zeolite Na—P1 which could be mainly
attributed to the increase in Ca/Si molar ratio [31, 32]. The
C20 specimens showed the highest intensity of chabazite
peaks which further verified the effect of increased Ca/Si
molar ratio. The C—A—S—H gel (PDF #04-017-1483, 00-033-
0306) peaks became more evident in C40 and C50 specimens.
Furthermore, instead of zeolitic phases, the zeolite-like
hydroxysodalite (PDF #00-039-0219, 01-071-5356) and cal-
cium aluminate hydrate C3AHg (PDF # 01-072-1109) were
observed in C40 and C50 specimens. The higher calcium

content has been reported to hinder the formation of zeolites.
Sugano et al. [33] synthesized zeolites using low-Ca slags,
while Ca-rich slag resulted in formation of tobermorite and
hydrogarnet. Wajima et al. [34] reported that the high Ca con-
tent ash cannot be converted to zeolites, instead it results in
formation of hydroxysodalite. Similar results were observed
by the authors in the previous studies [8, 11, 24]. Moreover,
C3AHg is a high density hydrogarnet which form through
conversion of metastable hydrates of Ca-rich CAC (CAHjg
and C>AHg), especially in high temperature and humidity
conditions [35]. The direct appearance of C3AHg hydrate
peaks can be attributed to the hydrothermal conditions used
in this study.

Zeolite Na—P1, faujasite, chabazite, and hydroxysodalite
all have three-dimensional network with different crystalline
structures. Zeolite Na—P1 has gismondine (GIS) structure
with single four- and eight-membered rings, while hydrox-
ysodalite (sodalite hydrate) has SOD structure with single
four- and six-membered rings [31]. Faujasite (FAU) contains
SOD-cages which are linked with the double six-membered
rings (D6R), and chabazite has CHA structure containing
D6R members [12, 36]. Moreover, chabazite and hydrox-
ysodalite belong to ABC-6 family, whose formation has been
reported in concentrated NaOH solutions [1, 10, 36].

Several studies have reported that faujasite and chabazite
have shown high adsorption capacities for cations [12, 37,
38]. On the other hand, hydroxysodalite is geometrically
more flexible because of the lack of hydrogen bonding in the
structure so that ion exchange can occur more actively com-
pared to sodalite [39]. In addition, high Al/Si molar ratio in
hydroxysodalite might lead to high cation exchange capacity
due to the presence of more negative charges in the structure
[40, 41]. Hence, the formation of different crystalline phases
in the synthesized specimens can potentially open the pos-
sibility of their use for capture of different species. In light
of the literature, potential uses of synthesized specimens are
categorized in Table 3.

3.2 Mechanical Strength

The 7- and 28-day compressive strength values of synthe-
sized specimens, along with the effects of Ca/Si and Al/Si
molar ratios, are shown in Fig. 2. The 7-day compressive
strength of control, C10, C20, C40, C50 specimens were
3.64, 4.38, 15.22, 16.03, and 10.03 MPa, respectively. All
the CAC-substituted specimens showed higher strength than
the control specimen. Recently, Lach et al. [42] studied
the effects of CAC addition on fly ash-based geopolymers.
Similar behavior was observed by the authors i.e., com-
pressive strength increased with CAC content [42]. Another
study by Temuujin et al. [43] reported the effects of adding
different calcium compounds (i.e., calcium oxide and cal-
cium hydroxide) on the mechanical strength of fly ash-based
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Table 3 Types of zeolite and possible applications of the specimens

Cl10 C20 C40 C50

Types of Control

zeolite

Applications

Zeolite Na-P1 ~ Adsorption of v v v v v
environmen-
tal pollutants
(SOx, NOy,
Pb, Hg, etc.)

[13-15]
Adsorption of v v
Heavy metal
ion (Pb, Co,
and Cr) [16,
17]

Adsorption of v v
radioactive
ions, carbon
monoxide
[16, 17]

Hydroxysodalite Adsorption of v v
inorganic and
organic
pollutants
[20,21]

*Zeolites found in each sample were marked (v) in table
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Fig.2 Compressive strength of the specimens a and its correlation with
Ca/Si b and Al/Si ¢ molar ratios

geopolymers. It was found that the addition of calcium oxide
and calcium hydroxide, both resulted in increased compres-
sive strength [43].

@ Springer

As discussed in the previous section, Ca plays vital role
in the formation of different reaction products and develop-
ment of microstructure. It is known that the precursor with
higher Ca content (such as slag) promotes the formation of
C-A-S—H type gel, resulting in higher mechanical strength
[44—46]. As the incorporation of CAC increased, the Ca/Si
molar ratios increased (from 0.077 to 0.570) and so does
the compressive strength. This was possibly the main rea-
son of higher strength of CAC-substituted specimens, despite
the fact that Al/Si molar ratio was also increasing. Nor-
mally, higher silica content (low Al/Si molar ratio) is desired
for high strength geopolymers, but this is the case when
N-A-S-H-type gel is the main strengthening phase [11].
Since CAC-substitution formed more C—A-S—-H-type gel,
hence higher strength was achieved in these specimens. The
C40 specimens with 40% CAC substitution showed the high-
est compressive strength. However, strength decreased with
further addition of CAC in C50 specimens. The Si content
became too low in C50 (Si/Al < 1) which possibly resulted in
weaker C—A—S—H matrix, or the strength contribution from
N-A-S-H gel possibly decreased as well due to formation
of weaker Si—~O—Al bonds [47]. The measured compressive
strength values of the specimens might seem lower compared
to a typical cementitious binder used for structural applica-
tions; however, these values are more than enough for their
potential utilization as self-supported bulk-type adsorbents
for adsorption of different contaminants as tabulated in Table
3.

4 Conclusions

The effects of CAC substitution on physicochemical prop-
erties of geopolymer-supported zeolite composites were
investigated in this study. The results of this study suggest that
an increase in CAC content results in enhanced compressive
strength owing to the formation of C—A—-S-H gel. Sample
C40 with 40% CAC content showed the highest compres-
sive strength, while further increased to 50% CAC resulted
in strength decrease. The crystalline phases also evolved with
increase in Ca/Si and Al/Si molar ratios. In addition to zeo-
lite Na—P1, faujasite and chabazite appeared in C10 and C20
specimens, which changed to hydroxysodalite and calcium
aluminate hydrate C3AHg in C40 and C50 specimens. Since
all these crystalline phases have distinct structures and poten-
tial for different applications as summarized, the specimens
synthesized in this study can be used for a number of appli-
cations. This study provided an insight that how starting
composition can be varied to synthesize different crystalline
products. Further studies should follow the detailed charac-
terization and demonstration of potential applications.
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