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Abstract
New technology is needed tomeet the latency andbandwidth issues present in cloud computing architecture specially to support
the currency of 5G networks. Accordingly, mobile edge computing (MEC) came into picture as novel emerging solutions to
overcome many cloud computing issues. In this contemporary technology, the computation server and processing units are
nearby edge servers to reduce latency, increase the network bandwidth and reduce energy consumption in user devices. These
features can integrate with several domains such as the internet of things, artificial intelligence (AI), federated learning (FL)
and fog computing, etc., to make the system more robust, elastic, efficient, and accurate. Regardless of the advantages, MEC
faces several challenges, including security and privacy, deployment protocols, and offloadingmanagement. Although, various
studies have been found tuningMEC to solve such challenges, the literature providemore ideas for smart developments toward
applications particularly using FL and AI. Most researches miss combining interesting aspects of MEC, such as machine
learning and deep learning approaches limiting works to only single aspect. Thus, a literature work is needed to focus on all the
aspects of MEC together. This study aims to present a comprehensive survey onMEC by providing all necessary information,
including network architecture, advantages, objectives, access technologies, deployment templates, characteristics, and many
more. The work is not limited to only MEC background but also covers the AI and FL approaches used within MEC, allowing
mobile phones to learn a shared predictive model collaboratively. This survey also provides information regarding security
and privacy challenges as well as attacks on MEC and their solutions. The applications of MEC illustrate different sectors
where MEC is applicable further highlighting open issues and challenges to be investigated.

Keywords Mobile edge computing (MEC) · Internet of things (IoT) · Mobile communications · Edge technology · AI and
FL technology · Security and privacy challenges

1 Introduction

Mobile terminals such as smartphones, tablets, and comput-
ers have become an integral part of our lives. Increasing
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the number of smartphones is directly proportional to the
increase of network traffic. The exponential growth of
devices and data traffic creates issues in terms of high
latency, high bandwidth, and lack of data storage capabil-
ities. The smart technological evolutions in mobile, laptops,
and tablets give rise to the highly demanding applications
and services based on mobile technology. With the short-
age of timing, most of the users required processed data
or outcomes in a very short period. The high demanding
applications provide real-time services by the processing of
real-time data. The size of the real-time data is huge because,
over time, new data is generated accumulatively. Thus, han-
dling huge amount of real-time data by mobile phones is
very difficult in short time period and limited capability,
i.e., serving applications containing high processing tasks,
as also increase battery consumption restricting users from
enjoying demanding applications. Until now, mobile cellular
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has limited capabilities, including memory, bandwidth, and
infrastructure. These constrain increase energy consumption
and service latency issues. The problem present in the current
systems may be assisted by including the concept of emerg-
ing technologies such as Edge networks [1], EdgeIoT [2], and
mobile edge computing. In this work, the problem present in
the current system is addressed thoroughly by including the
concept of mobile and edge computing (MEC).

Mobile Cloud Computing (MCC) integrates cloud com-
puting concepts with the mobile environment [3]. MCC
provides many capabilities to the mobile devices in which
a user can access computing and storage resources from a
powerful centralized cloud through the Internet [4]. MCC
brings advantages such as increased battery life by offload-
ing extensive computation applications, using sophisticated
applications, and providing higher data storage capabili-
ties [5]. However, MCC also faced several challenges such
as high latency, low coverage, lag in data transmission,
and security vulnerability. These challenges made the sys-
tem inconvenient and less suitable needing novel concept
or architecture to be adopted, especially handling real-time
cases providing fast responses enjoying high Quality of Ser-
vice (QoS) [6].

In 2009, the concept of edge computing was introduced
[7] with main aim to address MCC’s challenges. This con-
cept brings computational devices near to users similar to
WiFi hotspot scenarios, i.e., instead of Internet connection,
the approach/setup provides computational other services.
MEC offers MCC capabilities by deploying cloud resources
such as storage and processing capacity on the edge server
or edge of any network. The basic idea behind MEC is that
all the applications and services are hosted near the cellular
network to reduce transmission time and latency. This can
support end-users in accessing swift and powerful computing
resources, flexible and rapid deployment of new applications,
energy efficiency environment, high storage capacity, high
mobility, location, and context awareness applications.

In the MEC environment, several computing nodes (node
servers) are deployed in a distributed manner. Any user can
connect with the MEC nodes according to the proximity of
the two devices. The node server takes care of the heavy
computational tasks that users submit and sends back to them.
This is faster than cloud services, because computing nodes
are closer to the user devices. European Telecommunications
Standards Institute (ETSI) is the organization that provides
standardMECnetwork architecture and definition, supported
by mobile network operators such as Docomo, Vodafone,
IBM and manufacturer’s such as Nokia and Huawei [8].

MEC plays a significant role in supporting high communi-
cation, better computing capabilities, controlled information
sharing, and better content delivery in 5G networks. The
use of small mobile base stations and wireless access points
deployed with computational capacity makes ubiquitous

mobile computing [9] environment. The MEC provides sev-
eral low cost and efficient solutions for the Internet of
Things (IoT) [10]. These IoT solutions contain interrelated
internet-connected objects capable of sharing information
over wireless media without human intervention [11]. The
MEC solution brings the cloud services close to the IoT
device [12].

Additionally, artificial intelligence (AI) in deep learning
networks is a powerful tool and technique that addresses
the problems and empowers real-time resource manage-
ment [13–16] for efficient IoT-MEC environment [17–19].
The inclusion of AI techniques in MEC improve the qual-
ity and accuracy of the system to take decisions faster
than humans. Higher-latency and lower-throughput prob-
lems present in traditional machine learning systems are
needed to make a new robust machine learning model. The
AI-based Federated Learning (collaborative learning) [20]
works in distributed manner in which machine learning algo-
rithms are performed over the edge node without sharing
the data [21], different than counting-based secret-sharing
[22]. This AI-MEC approach has overcome many algorith-
mic and technical challenges present in the machine learning
model. FL deployment in IoT-enabled technology givesmore
robust and fault-tolerant frameworks.This emergingmachine
learning approaches provide better privacy solutions and
progressive application deployment templates. The key char-
acteristics of this efficient approach are all the information
to be locally processed [23], as the training data reside on
the local device. The FL approach separates the learning
models’ needs from the necessity to store the data. The
main advantages of AI-based FL include high data secu-
rity/privacy, lower service latency, data diversity, hardware
efficiency, real-time data analysis, and many more. The FL-
based MEC approach gives solution for deploying real-time
online gaming, ultra-high definition video stream, and Vir-
tual Reality (VR) applications [24]. Regardless of AI-based
federated learning advantages in several fields, it has some
limitations. In this approach, the data is distributed on mul-
tiple servers increasing the attack surface. Various devices
are integrated to build a model in federated learning such
that device-specific characteristics may reduce the perfor-
mance, i.e., of the federated learning model. Orchestrator
can be counted as another challenge in federated learning
approach too [25].

Recent advancement such as Network Function Virtu-
alization (NFV) [26–28], Information-Centric Cloud (ICN)
[29–31], and SoftwareDefinedNetwork (SDN) in the field of
computer networks also helped in the deployment of efficient
MEC environments. These discussions demonstrated that the
AI-based FL approach for the MEC-IoT environment is an
important research area that needs more attention. In the lit-
erature, some of the survey papers are identified, which helps
develop such systems comprehensively, unlike specific open-
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service confidentiality reviews such as twitter privacy studies
[32]. In other words, a systematic review paper covering all
the aspects of this AI-MEC area is not identified appropri-
ately. In this regard, some of the important research work
(survey papers) are listed out in Table 1. In this table, three
symbols are used. “–” symbol signifies less discussion of the
topic. The “✓” and “× ” symbols denote that the particular
topic is covered and the topic is not covered, respectively.
This table (Table 1) compared all the existing research work
(survey papers) to help identify gaps and limitations.

This survey paper tried to overcome the existing lim-
itations present in the previous related study papers. The
structure of this survey paper is shown in Fig. 1, contributing
the following summarized points, as will be discussed later.

• This survey paper reviewed and compared the existing
study papers related to AI- and FL-based MEC for IoT
highlighting their limitations.
•MEC background is discussed including deployment and
technical developments, network architecture, and spe-
cific MEC advantages. This review paper also included
FL-based AI approaches applicable to MEC for IoT envi-
ronments.
• The security and privacy challenges with countermea-
sures are discussed. This section is based on the discussed
background and AI/FL approaches, i.e., linked to MEC.
This discussion also facilitated different attacks possible
in AI-based MEC environment as well as development of
many online/offline applications.
• Based on the complete literature survey and phenomena
of AI-basedMEC, some open issues and urgent upcoming
challenges have been discussed as needed to be addressed
in the future.

The paper’s remaining sections are organized as fol-
lows. Section 2 discusses the existing solutions for AI- and
FL-based MEC environment. The background of the MEC
is deliberated in Sect. 3. Section 4 presents the different
FL-based AI approaches for MEC. Security and privacy
challenges of AI- and FL-based MEC, including counter-
measures, are elaborated in Sect. 5. Several specific security
attacks are listed out in Sect. 6. The applications of MEC
appropriate to different sectors are discussed in Sect. 7. Open
issues and challenges for the future are discussed in Sect. 8.
The conclusion of the paper is presented in Sect. 9.

2 Existing Solutions for AI- and FL-Based
MEC

The AI-based MEC environment provides an intelligent sys-
tem in which mobile or IoT devices are communicated
to provide efficient services. The AI-based distributed FL

approach is considered as additional machine learning tech-
nology that will be helpful for development of security and
privacy applications, i.e., serving learning models deployed
in MEC for IoT systems. Several works are identified aim-
ing to provide numerous solutions for security and privacy
in AI- and FL-basedMEC environment [47–55], as critically
summarized in Table 2.

Unique potential privacy issues present in MEC wireless
networks are discussed in paper [60]. They present usage
pattern privacy problems and location privacy matters cop-
ing current technology involvement in public systems [86].
Therefore, author of [60] also proposed a scheduling algo-
rithm that can effectively perform task offloading along with
maintaining privacy. This procedure is proposed based on the
Constrained Markov Decision Process (CMDP) framework
that achieves low latency and efficient energy consumption,
i.e., in devices that maintain their performance and privacy.

FedMec model in the MEC environment is proposed by
Zhang et al. in paper [87], which allows maintaining the
privacy of the training data and an efficient FL protocol.
Physical-layer assisted privacy-preserving scheme [88] pro-
vides both efficiency and privacy. In this [88] structure, edge
server is responsible for offloading the task and proactively
sends out jamming signals to stop eavesdroppers fromobtain-
ing valuable information.

In [89], researchers show that combining blockchain in
multi-domain networks enables secure topology in MEC,
as secure collaboration is possible in multiple domains. In
[90], authors illustrate the inference attack with the help of
Wald’s sequential hypothesis testing. This experiment con-
cludes existence of privacy risk in the current MEC system.
Similarly, an offloading scheme is proposed to deal with this
issue, which also preserves the system’s privacy and per-
forms cost-effective offloading operations. Xu et al. [71]
propose the BeCome method in IoT-based MEC, which uses
Blockchain to reduce the time needed during offloading and
provide efficient consumption of energy.

In [2] the author proposes an architecture called edgeIoT.
This architecture effectively handles the huge amount of traf-
fic generated by IoT devices. This would reduce the traffic
load in the network and provide lower latency. The compu-
tational resource comparison of edgeIoT with the traditional
IoT architecture shows better service provisioning. Rela-
tively, the paper [91] shows proliferation of using AI/ML
techniques which improve the edge computing paradigms,
i.e., with greater efficiency of network bandwidth usage,
reduced latency, and ultra-reliability for the future 6G net-
works. The dynamic environment demands high mobility
and low latency. AI-driven Heterogeneous MEC architec-
ture has been discussed in paper [92] to achieve such superior
demands.

In [93] highlights, the critical role of AI ensuring network
security in 5G and beyond raised the possibility of security
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risk associated with the AI benefits envisioned. Relatively,
paper [94] provided comprehensive review of IoT, includ-
ing IoT-based MEC architecture, enabling technologies, and
security and privacy issues. Moreover, it also includes inte-
grating fog/edge computing with IoT. Interestingly, work
[72] focused on privacy-preserving problems in the smart
grid network. The approach can lead to better data pro-
tection along with acceptable performance. It proposed the
use of blockchain as system to join all the entities in the
grid network. The approach also introduced a special type
of Node (SNs), which validates the participating nodes. In
research [73] the focused investigation was on offloading
problems presenting strategy designed to create proper bal-
ance between effective use and privacy, which divides the
process into two phases in a smart way. Furthermore, to
manage the huge amount of finely grained complex sensing
data, the authors [66] proposed using crowdsensing system.
Similarly, the Internet of Vehicles (IoV) applications need to
have higher bandwidth, lower latency, and higher reliability,
and MEC that can meet the needs, i.e., of such applications.
The authors of [74] proposed collaborative scheduling strat-
egy to help allocate intended computing resources in case of
IoT-based MEC. This approach dealt with offloading MEC
problems when dealing with user tasks and better computa-
tional resource allocation in MEC.

Paper [75] studies the time consumption issue in MEC,
and it also focuses on maintaining the system’s privacy. The
research proposes offloadingmethod with better security and
lower time consumption. Exploration [95] presented an intel-
ligentGame-theoretic privacy-aware task allocation solution.
This solution is applicable for the Social Sensing-based Edge
Computing system, which optimized QoS to ensure that the
privacy requirements of end-users are met. In study [96]
model, a three-layer privacy protection architecture has been
worked out as Edge Computing Architecture (ECA), at the
edge of the network framework, i.e., based on ontology of
system behavior to be highly dynamic. Differently, work [97]
presented Privacy-aware Edge Computing for providing pri-
vacy in Social Sensing-based Edge Computing systemwhich
did not show much applicability.

Survey papers [33, 98–100] presented comprehensive
overview andMEC research outlook. MEC deployment con-
cerns, cache-enabled problems,MECmobility management,
green MEC, and security challenges have all been listed as
potential research directions in addition to smart IoT works
[101]. In the paper [76], the author dealt with the issue
of resource allocation when deploying the MEC-intrusion
detection system. Mathematical modeling is used in the pro-
posed allocation mechanism. Likewise, the author [102] pro-
posed security solution that uses reinforcement learning to
deal with the privacy issueswithin the intendedMEC system.
The author presented caching collaboration scheme that can
also perform lightweight authentication to deal with smart

attacks when performing mobile offloading, theoretically
comparable to semi-authentication of multimedia strategy
[103]. Work [104] presented Honeypots which deal with
harmful define-to-define communication. The responsibility
of Honeypots is to detect, track and isolate malicious activ-
ity in the device-to-device network. Accordingly, paper [105]
discussed security issues due to third-party MEC providers.
Similarly, paper [67] proposed security architecture ofVehic-
ular Ad-hoc Networks to ensure VANET data’s authenticity
utilizing combining blockchain and MEC. This VANET
architecture used three layers, namely perception, edge
computing, and service layer, with the perception responsi-
bility ensuring data security during transmission through the
blockchain. This work [67] compared the encryption-based
securitywith the physical layer security trying to solveMEC-
based IoT challenges via encryption physical layer security
approaches. The solution includes secure wiretap coding,
resource allocation, signal processing, secure key genera-
tion, authentication, and multi-node cooperation. To ensure
maximum security and solve decision-making problems in
fog and MEC, other paper [106] proposed use of hesitant
fuzzy which added unpractical complexity.

Syamkumar et al. [68] considered the problem presented
in geographic distributed MEC micro data centers. They
proposed incremental deployment model which composed
of Voronoi Cell-based analysis. They also discovered that
tower deployment in rural areas is consistent when com-
pared to urban areas. Likewise, Li et al. [69] proposed the
middlebox approach to deal with the low latency issues dur-
ing MEC deployment. Proxy ARP, GTP (GPRS Tunneling
Protocol), Repackaging, Traffic Redirection via DNS, and
Stateful Tracking of GTP Tunnel are some of the approaches
used in the proposed model [69]. Martin et al. [107] pro-
jected amathematical model for determining the deployment
locality of the base station and MEC point. The deploy-
ment focused on making the distance between population
and base station minimum. To solve transmission security
issues in IoT devices, Gyamfi et al. [77] discussed using
ECC-based scheme, which is considered lightweight solu-
tion. This proposed solution reduced the complexity and
running time of traditional encryption algorithms, follow-
ing philosophy of former ECC efficiency [108]. The paper
[109] presented using identity-based anonymous authenti-
cation scheme for MEC anonymity and non-traceability. It
also allows users whom already registered to access multi-
ple MEC servers. Zhou et al. [110] investigated the security
of MEC system in Unmanned Aerial Vehicle (UAV), which
has multiple ground users. The paper also attempted to max-
imize the user’s secrecy, minimize latency, efficient energy
consumption, and minimize offloading requirements.

He et al. [111] analyzed the security issues presented in
the IoT applications, which supports the MEC concepts. The
IoT-MECapplications are perception systems and networked
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Table 2 Comparative analysis of existing solutions for AI and FL based MEC

Paper Year Aim of the work Proposed approach

Lillicrap et al. [56] 2015 Efficient management of high dimensional action
space

Deep Deterministic Policy Gradient (DDPG) based
agent can learn competitive policies

Sun et al. r-[57] 2016 Reduce traffic load in IoT devices Edge-IoT architecture efficiently handles raw data
streams and reduces traffic load

He et al. [58] 2017 Study cache-enabled opportunistic under
time-varying channel coefficient and optimize the
cache-enabled wireless network

Applying Data Deep Reinforcement Learning
(DDRL) to obtain the optimal Interference
Alignment (IA)

Guo et al. [59] 2017 To improve the local caching system performances Applying Q-learning to dynamically replace the files
in the cache of the Base Stations

He et al. [60] 2017 To investigate address location and usage pattern
privacy in wireless offloading of MEC

Scheduling algorithm which also performs task
offloading securely based on CMDP framework

Huang et al. [61] 2018 The optimize Quality of Experience(QoE) for
multimedia traffic control based on SDN

Data Deep Reinforcement Learning (DDRL) based
network traffic control architecture

Zhang et al. [62] 2018 To create an efficient private FL scheme and
Maximize the total cache utility

To group linear model to accelerate reinforcement
learning and create a mechanism that perturbs the
client-side’s Laplacian random noises

Bhagoji et al. [63] 2018 Demonstrate the vulnerability of FL Models with
respect to poisoning attacks

Sophisticated detection strategies at the server

Bhowmick et al. [64] 2018 Investigate Model fitting under local privacy and
difficulties associated with local differential privacy

Mini-max optimal privatization mechanisms

Fung et al. [65] 2018 Investigate Vulnerability of FL to Sybil attacks Fools-Gold adapts to the the learning rate of clients,
which is based on contribution similarity

Ma et al. [66] 2018 To manage increasingly fine-grained and complicated
sensing data

Basic Privacy-Preserving Reputation Management
(B-PPRM) and Advanced Privacy-Preserving
Reputation Management (A-PPRM) schemes
simultaneously

Zhang et al. [67] 2018 Provide the security to MEC architechture Secure architecture called Vehicular Ad-hoc
NETwork (VANET) that combines blockchain and
MEC

Syamkumar et al. [68] 2018 Identification of Geographic Location for cell tower
and data centers

Incremental deployment model based on results from
Voronoi cell-based analysis

Li et al. [69] 2018 Design a MEC platform that can be easily deployed
in 4G LTE and reference for 5G network

Middlebox approach is adopted to develop the MEC
platform

Nasr et al. [70] 2019 Investigate privacy vulnerabilities of the stochastic
gradient descent algorithms

Prove vulnerability to white-box membership
inference attacks

Xu et al. [71] 2019 Perform load balancing and maintaining data
integrity along with reducing offloading time and
energy consumption

Designed BeCome model for dealing with data
integrity and offloading

Gai et al. [72] 2019 Detecting Privacy-preserving problems in Smart Grid
Networks (SGN)

Permissioned blockchain system to join all entities in
Smart Grid Network (SGN)

Xu et al. [73] 2019 Investigating offloading problem considering the
implementation utility

NSGA-III is used to create an offloading strategy
followed by two primary metrics to be optimized
simultaneously

Pang et al. [74] 2020 Investigate issues regarding user task offloading
decision and resource allocation

Collaborative scheduling strategy

Xu et al. [75] 2019 To investigate the time consumption problem Preserve user privacy with the time-efficient
offloading method

Hui et al. [76] 2019 To investigate the resource allocation problem of
deploying MEC-IDS in MEC environment

Proposes an allocation mechanism by using
mathematical modelling
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Table 2 continued

Paper Year Aim of the work Proposed approach

Gyamfi et al. [77] 2019 Investigate transmission security in IoT devices Novel lightweight Elliptic Curve Cryptographic
(ECC) based solution

Huang et al. [78] 2019 To quantify security overhead experienced by a task
in heterogeneous edge servers

Using a Scheduling Strategy named SEECO, which
ensures security and efficient energy consumption

Ranaweera et al. [79] 2019 To identify several threat vectors of MEC Intrusion Detection System (IDS), data encryption,
Trusted Platform Manager (TPM), and Hypervisor
self-examination methods are used for MEC
security

Huang et al. [78] 2019 Investigate security and cost-aware offloading
problem

Security and cost-aware computing offloading
(SCACO) strategy based on a deep Q-network
(DQN)

Truex et al. [80] 2019 Investigate extraction attacks and collusion threats Combines Differential privacy (DP) and secure
multiparty computation (SMC) to improve the
accuracy and security of the system

Lu et al. [81] 2020 To stop data leakage in Vehicular Cyber-Physical
Systems (VCPS) during the learning process

A two-phase Random Sub Gossip updating Scheme

Bagdasaryan et al. [82] 2020 Vulnerability identification in FL Model which can
lead to Backdoor installation

Novel model replacement technology has been
created to perform backdoor installation which also
demonstrate it’s efficiency

Yu and Li [83] 2021 To achieve better elasticity and resource utilization Neural-structure-aware resource management
technique

Feng et al. [48] 2021 A tradeoff between accuracy and training efficiency A joint optimization algorithm

Liu et al. [84] 2021 Secure the machine learning model during data
collection

Asynchronous convergence model considered
staleness coefficient and a blockchain network for
aggregation of global model

Ali et al. [85] 2021 Distribution of capabilities and offloading tasks of
MEC

Deep reinforcement learning based multi-user
context-aware offloading scheme

drones. They suggested a novel method for taking control of
an autonomous non-cooperative Drone. In the MEC envi-
ronment, due to several heterogeneous edge servers, security
overhead may rise. To quantify security overhead with work-
flow scheduling problems, a secure and energy-efficient
scheduling strategy has been projected in [78]. Similarly,
Truex et al. [80] proposed a Privacy-Preserving framework
in the FL environment. The aimed approach used hybrid
modeling which combined differential privacy and secure
multiparty computation to protect the system against infer-
ence attacks and collusion threats. Ranaweera et al. [79]
have presented the current status and several threat vectors
of the MEC paradigm from a security point of view. They
discussed the use of Trusted Platform Manager and Virtual
Machine Inspection for countering the virtualization-based
attack. Relatively, a bio-surveillance framework for detecting
multiple health security threats with the support of MEC has
been proposed in [112] as framework, presented innovative
techniques for collecting and representing monitoring infor-
mation. A novel security architecture for Integrated Clinical
Environments has been introduced as Integrated Clinical
Environments that manages security, privacy, QoS, resources
allocation, low latency, and high availability solutions in con-
siderable manner.

Nilsson et al. [113] evaluated the FL algorithms such
as Federated Averaging, Cooperative, Federated Stochas-
tic Variance Reduced Gradient on the MNIST dataset using
Bayesian correlated t-tests.Ahmadet al. [114] pointed out the
main security issues in 5G, which, if not properly addressed,
can become threatening. Moreover, the paper also presented
potential security mechanisms and solutions for the dis-
cussed threats. Lu et al. [81] propose a sub gossip updating
scheme based on FL to alleviate data leaks in the VCPS
system. Cheng et al. [115] proposed a novel lossless privacy-
preserving algorithm. They also used Secure-Boost to train a
high-quality tree boosting model. In this approach, training
data remains secret over multiple parties, similar in prin-
ciple to increasing participants using counting-based secret
sharing via involving matrices and practical steganography
[116]. Bissmeyer et al. [117] conferred optimal secure mech-
anism in 5G-MEC architecture to deal with decentralization,
security, location awareness, and minimal rejection. Hou
et al. [118] proposed Access Control Mechanism with bet-
ter protection for data in MEC architecture. The deliberated
Fine-Grained Access Control mechanism considered user
grouping to deal with the problems in access control poli-
cies. Huang et al. [78] examined the security and effective
offloading issue framework as based onMarkov decision pro-
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cess. They suggested security and cost-effective offloading
strategy based on deep Q-network process, i.e., to find the
best offloading policy. The paper’s primary goal is to reduce
total costs while adhering to the risk rate constraint in MEC.
Belli et al. [119] proposed the use ofMobile crowd-sensing in
scenarios where it’s required to have massive sensing. They
also analyzed real-world datasets. Mohri et al. [120] planned
novel framework for FL based on principle learning objec-
tives in which they presented a detailed analysis and learning
algorithm.

Wang et al. [121] studied the allocation problem in MEC
servers via two approaches, namely flat and hierarchical
deployment. The paper presented hierarchical deployment
as one of the approaches that can reduce response time than
flat deployment. Elgendy et al. [122] proposed an offloading
model which performed resource allocation and computation
offloading efficiently in a multiuser MEC system. The model
also used Advanced Encryption Standard to prevent leakage
of sensitive information.

In work [123], edge computing-assisted FL framework is
anticipated inwhich both the training efficiency and accuracy
are computed. In many realistic applications, AI algorithms
are computationally expensive task requiring large-scale
training samples. The huge amount of node deployment
needed another concept that improves the efficiency of the
system. Relatively, Machine Edge Learning (MEL) has been
proposed in [124]. In this MEL concept, computationally
expensive algorithms are carried out in the nodes or edges.
Each node performs its own training iteration to train its local
training model. After that, the local node sends the results
to the higher-level nodes, aggregating the local features and
sending updates to the lower-level nodes. A more intelli-
gent AI-based edge system has been given in [125]. In-Edge
AI framework Deep Reinforcement Learning techniques and
FL concept is introduced with the mobile edge devices. This
approach reduced the computing and communication load
from the edge networks. To address the corresponding prob-
lems, research [126] suggested framework that combines FL
and MEC. The work used open-source dataset CIFAR10
[127–129] for experimentation purposes compared with cen-
tralized learning.

Paper [130] presented FL as a Service (FLaaS) arrange-
ment, which enabled 3rd-party applications to create ML
models which are cooperative, decentralized, and preserve
the privacy of data. An FL chain model deployed on a
blockchain network composed of edge devices has been
proposed in [21] to improve the security in FL. The paper pro-
jected the use of separate channel for learning global models
in the blockchain network in a smart way.

A black-box- and white-box-based resource optimization
approaches in federated learning have been discussed in [83].
After that, a neural-structure-aware resource management
technique was proposed for better elasticity and resource

utilization. In this approach, each mobile client is assigned
different working subnet based on the status of their local
resources. A joint optimization algorithm has been briefed
based on designed optimization problem [48] in federated
learning-based MEC systems. This algorithm provides a
tradeoff between the accuracy and training efficiency of the
model. In an edge computing environment, data collection for
machine learning algorithms raised many security and pri-
vacy issues. To solve this problem, Liu et al. [84] proposed an
asynchronous convergence model in federated learning. This
technique considered the staleness coefficient on blockchain
network for aggregation of the global model. A multi-user
context aware offloading scheme has been developed in [85].
They also use deep reinforcement learning (an FL based
model) for the capability distribution of MEC devices. A
privacy-preserving framework has been planned in [131] to
protect the system from data leaking and privacy issues. The
framework considered both federated learning and edge com-
puting environment with deep learning model, so that data
can reside locally on edge devices and end users. Inference
attacks are considered for privacy analysis of edge-FL-based
environments. In the federated learning model, malicious
nodes can upload fake/unreal learning parameters, giving
high error rate. A Federated learning parameter aggregating
algorithm has been briefed in [132] to resolve such problems.
The mutual information will be used to calculate the simi-
larity of the gradient trend between local training model and
overall model. Asynchronous federated learning approach
has been developed in [133] to manage the synchroniza-
tion optimization. This model allows the edging node to
select some part of the model, which will reduce the amount
of calculation and communication. Resulting from this, the
model efficiency has increased in heterogeneous edge envi-
ronments.

3 Background of MEC

In this section, the background of the MEC for IoT is dis-
cussed. The technical development, characteristics of MEC,
MEC technologies, MEC actors and their roles, MEC access
technologies, the objective of MEC, network architecture,
and advantages are some points onwhich the section is devel-
oped.

3.1 Deployment and Technical Development

The first concept for the development of Mobile Edge Tech-
nology is introduced in [7]. In this concept, Cloudlets is to
be used as computing “hotspots” similar to WiFi hotspots.
AnotherWiCloud architecture is discussed in [134] onwhich
the MEC has been developed. These are the foundation
blocks for improving technology. European Telecommuni-
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Fig. 2 Mobile edge computing
development architecture

cations Standards Institute (ETSI) is the first organization
that standardizes the MEC network architecture by integrat-
ing cloud computing and IT-enabled services [8].

Nowadays, it is combined with other technology such as
5th generation 5G networks. MEC infrastructure elements
can be deployed in multiple places in the network depending
on the use. The MEC servers are located at multiple loca-
tions. For instance, in an LTE cellular network, Marco Base
Station (ENodeB) is used to deploy the application server.
In a 3G cellular network, Radio Network Controller (RNC)
[135, 136] can be used to deploy the MEC server. The pre-
existing 4G network system is divided into four parts: access
network, pre-aggregation network, IP-aggregation network,
and core network [137]. The access network is further divided
into enterprise site. The pre-aggregation network deals with
processes that have low computational requirements. The IP-
aggregationnetworkdifferentiates trafficbasedon the service
which is requested. Finally, the core network deals with the
high computational service and analytic. A network system
for the development of MEC is shown in Fig. 2. The new
5G technologies are composed of virtualization [138, 139],
the programmability of networks and services that is under
developmentwith 3rdGenerationPartnershipProject (3GPP)
[140, 141]. 5G is a revolutionary technology that may solve
many problems faced by 4G technology problems, such as
higher bandwidth and lower service latency [142].

3.2 Characteristic of MEC

MECtechnology composed several computingplatforms like
fog computing, cloud computing, mobile computing, IoT,
wireless technologies, and many more. Due to this, it con-
tains numerous characteristics. ETSI white paper states the
following as the main characteristics of MEC.

• On Premises: MEC platforms are not dependent on the
underlying network architecture. During accessing local
resources, they have separated from the other networks.
This property ofMECmakes it less vulnerable as theMEC
network is not centralized and not dependent on any other
networks.

• Proximity: Most of the time, MEC servers are being
deployed closed to the accessing points so that the com-
putation and transmission time may reduce. This feature
makes the systemmore capable of handling big data appli-
cations with large data size and low computation time.

• Low Latency: MEC servers are deployed at closed prox-
imity of the user devices, and data movement is separated
from the core network. Due to this, the service latency and
communication delay may reduce. This leads to higher
bandwidth and better QoE.

• Location Awareness: The MEC technologies are mainly
based on the machine-to-machine concept. In such a
scenario, devices use low-level signals for information
sharing.MEC uses low-level signals to discover the device
location identification.

• Network Context Information: The MEC provides real-
time network information for the implementation of real-
time business applications. Based on RAN [143, 144]
information, people can estimate future behavior and con-
gestion of the network. This will also help to make smart
decisions for better QoS delivery.

• Dense Geographical Distribution: The MEC components
are distributing among multiple geographical locations.
Each movable user can access the services at the edge of
the network in which the edge network is fixed, and the
user is located at multiple locations [145].
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3.3 MEC technologies

MEC technologies and modeling components can be briefed
as follows:

3.3.1 Local Cloud

To ensure data privacy and lower latency, the local cloud is
used in the local network connection with the remote cloud
server. In most cases, the software is installed on the local
cloud and integrated with the remote cloud. This will make
the system fast and reduce the communication delay. But, the
local cloud has limited capabilities [146].

3.3.2 Cloudlets

It is a small-scale database that is generally located at the
edge of wireless hop. This is located near to end mobile
users or devices. The Cloudlet [147, 148] is connected with
the remotely located cloud server to provide the services effi-
ciently. Theprimary focus of cloudlet is to reduce the distance
between end mobile users and installed service locations.
This will reduce the service latency and energy consumption
for latency-sensitive applications.

3.3.3 Fog Computing

Fog computing [149–151] or Edge Computing was created
by CISCO that ubiquitous connected devices at the edge
network. This computing technology carried out network ser-
vice and computing resources in LAN near IoT gateway or
fog node. This provides lower latency when compared to
cloud computing.

3.3.4 Virtualization

Virtualization is a converting technology in which physical
IT resources are converted into vitalized resources. Virtual
servers can create a virtual disk image that contains the
backup file of the virtual server as virtual logical resources
in the same physical hardware. All the MEC services and
resources such as memory, storage, network infrastructure,
power, operating systems are accessed through the virtual-
ization concept. The MEC provider creates multiple virtual
resources at the edge layer.

3.3.5 High Volume Servers

The MEC contains several high-volume servers deployed on
the edge network. The responsibility of the server is to per-
form network traffic forwarding and filtering task. It is also
responsible for executing the offloading task.

3.3.6 Network Technologies

The MEC is composed of several small–small computing
devices and network technologies. Multiple mobile nodes,
sensors, wireless stations, edge servers, computing devices
are the key components of MEC.

3.3.7 Mobile Devices

Mobile devices are the main component of any MEC infras-
tructure. Its main feature is portability. It can perform low
computationally intensive and hardware related tasks which
relieves some load from the edge server. Portable devices also
perform P2P computing within the edge network through
D2D communication.

3.3.8 Software Development Kit

With the help of standard Application Programming Inter-
face (API) [152] and software development kit, anyone can
develop new edge applications which are easily adaptable
and integrated with the current MEC applications.

3.4 MEC Actors and Their Roles

The following are the main actors of MEC, along with their
roles.

• Application Developer: Applications developers design
MEC applications that are used for accessing the MEC
services. They may create custom MEC software for a
specific MEC customer or commercial software sold to
the general public.

• Content Provider: A content provider takes material and
prepares it for distribution in the network. Its main respon-
sibility is to collect all the local and real-time information
about the network and distribute it among the participating
nodes.

• Mobile Subscriber: Mobile subscriber is the actual users
who are subscribed to the MEC services. They have
accessed all the MEC services through portable mobile
phones.

• OTT Players:Over-the-top (OTT) players share or receive
the television or video materials as a standalone product
via the Internet. Instead of using traditional methods like
cables, OTT providers deliver video content over the inter-
net.

• MEC service provider:MEC service providers can utilize
their network resources and introducing new innovative
applications and services in front ofMECusers that require
low latency.

• Software Vendors: An independent software vendor, also
known as a software publisher, is an organization respon-
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sible for making specialized MEC software and sell it to
other customers. They have not concerning about com-
puter hardware components required in MEC.

• Network Equipment Providers: Network equipment
providers (NEPs), sometimes called telecommunications
equipment manufacturers, are companies that sell prod-
ucts and services. The product and pieces of equipment
are required for network communication.

3.5 MEC Access Technologies

TheMEC network’s deployment at themobile network’s end
allows currentmobile infrastructure services to be optimized.
In the LTE downlink, Mobile Edge Scheduler reduces the
average latency of general traffic flows [153, 154]. MEC
aims to deploy multiple servers in proximity to deal with
latency issues. However, deploying physical servers will be
very expensive. To deal with this situation, several virtual-
ized servers can be deployed on multiple mobile networks.
Some deployment locations considered by the MEC ISG
are LTE/5G base stations (eNodeB) [155, 156], 3G Radio
Network Controllers (RNC), or multi-Radio Access Tech-
nology (3G/LTE/WLAN) [157, 158] cell aggregation sites.
The MEC ISG has suggested that this virtualization infras-
tructure should not only limit itself toMEC services. Related
services such asNFV [57, 159] and SDN [160, 161] shall also
be hosted in the virtualization infrastructure.Moreover,Blue-
tooth is another access technology to communicate between
devices.

3.6 Objective of MEC

The following are the objectives of MEC:

• Minimizing Latency: With the servers being placed close
to the user end devices, the communication time is reduced
drastically.

• Minimize Energy: By offloading high computational work
to the nearest edge server relieves the user devices from
intensive work. This also helps in reducing the energy con-
sumption in the user device.

• Minimize cost: The cost of hardware and software compo-
nents can be reduced by deployingMEC on the virtualized
servers.

• Maximize Throughput: In the MEC architecture, every-
thing is processed near the edge gateway. A short com-
munication distance between the server and end-user can
maximize the throughput of the MEC network.

• Minimize Radio Utilization: Using MEC, a chunk of net-
work tasks will be pre-processed at the node server and
solve some of the network requests at the edge server. This
would reduce the traffic reaching the cloud server. This can
produce good results in terms of fast communication.

• Optimize Computational Resources: By offloading the
resource-intensive work to the edge server and performing
low resource-oriented works in the user devices, the MEC
network optimizes the computational resources.

3.7 Network Architecture

The firstMEC reference architecture was developed by ETSI
MEC ISG in 2016 [162]. The network architecture of MEC
contains cellular network communication system infras-
tructure known as RAN provides communication between
wireless controlled devices (mobile phones, sensors, cellu-
lar radio system). Some of the network architecture of MEC
under different scenarios are found in [35] and [134]. The
base concept of each MEC network architecture uses IT and
cloud computing capabilities at the edge of the mobile net-
work. This feature supports low latency, high bandwidth and
enhances the performance of the system. It mostly resides
between mobile users and the cloud. The network architec-
ture of MEC is shown in Fig. 3. It contains a three-layer
network architecture–User/system, Mobile edge, and Enter-
prise/core. It also contains several Base Stations (BS) that
provides high radio coverage. The various wireless inter-
faces enable distributedBS to collect data frommultiple edge
devices, whether moving or stationary. The first user/system
layer consists of edge computing devices and edge device
management services. Themanagement service will help run
edge applications inside the mobile device under an opera-
tor network. This layer provides an interface to mobile edge
hosts for accessing the edge computing service via mobile
edge application.

The second layer is the mobile edge layer which receives
all the edge traffics generated by edge devices. It con-
tains an edge platform and virtualization infrastructure that
handles the management of edge specific computing tasks.
All the computing tasks are performed with the help of
geo-distributed physical or virtual servers with built-in IT
and cloud computing services. The servers and comput-
ing devices are deployed near to the mobile users and use
cellular network capabilities. It also performs less resource
extensive analytics and store frequently accessed data in the
cache. At the enterprise/core layer, the user can store their
data in cloud and database servers. The user can perform
high computation resource-intensive analytics and optimiz-
ing operations. When the edge nodes do not have adequate
computational resources to handle their local data, they can
offload their computing task to the cloud by adding more
network resources and higher service latency. The addition
of this layer makes the system resource-rich and increase the
battery lifetime of user devices.
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Fig. 3 MEC network architecture

3.8 Advantages of MEC

There are several advantages of MEC. Their advantages are
just not limited to the user end but also benefited to Mobile
Network Operators (MNOs) [163, 164], Application Service
Providers (ASPs) [165–167], Over-the-top (OTT) Players,
and many more entities. Some of the advantages are stated
below [168].

• Reduced communication delay: Edge Computing aims at
storing information at the close of the mobile edge server.
This kind of data localization reduces computational com-
plexity. It also reduces access delaywith respect to latency.
Also, the network bandwidth increases as lesser resources
are needed to transfer data. Frequently requested data are
stored at the node database, which reduces the communi-
cation overhead on the network.

• Aggregation: MEC Servers are capable of aggregating
similar or related traffic. These results lead to less network
traffic and a positive impact on bandwidth utilization, scal-
ability, and power consumption. Aggregation also helps in
monitoring similar types of data from various devices that
are aggregated together.

• Augmentation: With the augmentation concept, more
information is available at the base station. This data can be
analyzed statistically and shared with the ASPs to provide
betterQoE.MEC-based augmentation comeswith lownet-
work delay because ASPs can adapt service parameters in
real-time.

• Deploying application: MNOs can enable Radio Access
Network (RAN) in a distributed computing environment

to deploy applications and services. The exposer of RAN
elements and information makes the deployment of appli-
cations and servicesmore accessible andflexible. Enabling
these services could help generate more revenue. Services
like excess storage, speed, computational resources can be
charged.

• Infrastructure as a Service (IaaS) Platform: By enabling
MEC enabled IaaS Platform [169–171] at the Network
Edge, ASP services can be scaled along with higher band-
width and lower latency. IfASPs could get real-time access
to radio activities, it can lead to better application devel-
opment.

• Computation offloading: By offloading resource-intensive
processes to the nearest edge node provides better QoS.
High resource-intensive works cannot be performed on
the user side due to limited hardware capabilities. This
type of Offloading is performed if the power consumed
for computing is more than for wireless transmission.

• Balancing workload allocation: Geo-distributed local
authorities can work together to process healthcare data
synchronously. Adding a load balancer in the Edge Layer
gives more control and a balanced workload of the global
information at the edge nodes.

• Security: MEC can perform the new level of surveillance
and monitoring using video analysis. This analysis can
be performed on the edge nodes. Also, the data can be
received by the decision-makers very fast. The edge nodes
are generally close to the users. The proximity of encrypted
and signed traffic makes it more secure.

• Easier management: The nodes are managed from the
management hub. This makes it easier to implement secu-
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rity patch updates, changing functionalities, and many
more. Moreover, it also makes it to find out the node that
is not functioning properly.

4 FL Approaches for MEC

This section discusses the basic conceptual architecture of
federated learning and the FL approaches/technologies used
in MEC environment.

4.1 Overview of FL

FL allows mobile devices to learn from a prediction model
cooperatively without sharing their local data, differently
than secret sharing of [172]. It is also known as collabo-
rative learning. This machine learning approach trains an
algorithmwith local data samples stored on the decentralized
edge devices or servers. There are several open-source FL
frameworks are identified [173–176]. Traditional machine
learning approaches required a centralized local training
dataset stored on one machine or one server. The difference
between FL and other distributed learning schemes is that the
local data are not exchanged between edge devices in FL.
In contrast, in other learning approaches, the data are dis-
tributed in the environment. FL is considered a local dataset
that resides on a single user’s end device and does not repre-
sent the overall population distribution.

The local datasets generated across federated learnersmay
differ greatly in terms of size because they are independent of
one learner device to another learner device. This can lead to
an imbalanced distribution of the data across multiple nodes.

4.2 Formulation of AI and FLModels

In real-time MEC environment, there are multiple mobile
edge nodes denoted as:

M � {m1;m2;m3; ……;mn}, where n is the number
mobile edge nodes. Each of mobile edge nodes are partic-
ipated in training a local model and sharing of that model
with the help of their own database D � {d1;d2;d3;…..;dn}.
In the learning scenario, no edge devices can directly access
the data from other devices. In every communication round,
each edge devices train a localmodel and compute an updated
wnwith the local data dn. In this process, the edge device mn
does not require to share their data to other devices. The total
learning sample size is

∑N
n−1 � nk ; where nk is the number

of samples. The federated learning problem can be defined
as minimizing the risk from the learning model. The math-

ematical formulation of federated learning is represented by
using Eq. 1.

(1)

min
w∈Rd

LF(w) �
N∑

n�1

nk
n
LFk (w) ; where LFk (w)

� 1

nk

∑

xi∈dn
l f i (w)

Note that w is the model learning parameter. The function
lfi(w) is computed with the help of loss function. The value
of loss function should be minimum for a good result. It is
dependent on input–output data pair {pi, qi}. Where pi∈Rd

and qi∈R or qi∈{−1, 1}. The mathematical representation
of loss function varies from algorithm to algorithm [45, 177].
Mathematically, the loss function is represented by Eq. 2, as
detailed in [53]. The loss function of few standard learning
models is represented by Eq. 3 (Linear regression), Eq. 4
(Logistic regression), and Eq. 5 (Support vector machines).

W ∗
n � argminLF(wn) (2)

Linear regression : l f i (w) � 1

2
(pTi w − qi )

2, qi ∈ R (3)

(4)

Logistic regression : l f i (w)

� −log
(
1 + exp

(
−qi p

T
i w

))
, qi

∈ {−1, 1}

Support vector machines : l f i (w)� −max{0, 1−qi p
T
i w, qi

∈ {−1, 1}
(5)

After training of localmodels, all themodels are uploaded
to the server. The server aggregates all the received local
modelsw1,w2,….wn to make a global modelWg. The global
model is updated or downloaded in each of the edge node and
then replaced the local model. Now, the new global model is
used for training purpose in next round until the global learn-
ing process is completed. A diagrammatical representation
of federated learning is shown in Fig. 4.

4.3 FL Approaches/Technologies used in MEC
Environment

This subsection summarizes the FL approaches/technologies
used in MEC environment. The following aspects are con-
sidered to realize its underlying technology [178, 179].

Data partition in FL is helpful to buildML applications in
which data are kept private throughout the training process.
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Fig. 4 An architecture of federated learning in MEC environment

There are three different approaches in FL for the data par-
tition. These are horizontal partition, vertical partition, and
federated transfer learning.

Horizontal FL is also known as sample-based FL, is
applicable when the dataset samples share the common user
attributes or features, but the sample belongs to different users
or datasets. This dataset is divided horizontally by consider-
ation of user dimension and user characteristics. It does not
consider the same userswhile data are split. Themost famous
example is Gboard which is Google’s keyboard on Android.

Another example of the medical sector in which medi-
cal researchers uses machine learning models to determine
the possible occurrence of cancel cells. In such applications,
each participant will get a new model by sending a gradi-
ent to the server. The server aggregates all the local gradient
to make the global model that will be helpful to train the
individual device. During the process, the private node infor-

mation may leak. The standard solution to protect the data
leaking is secure aggregation, homomorphic encryption, and
differential privacy [180].

Vertical FL is often used when the two datasets share the
same sample ID (user ID), but the feature of the dataset over-
lap little. The data is divided vertically based on the user ID
and take the part of the data in which users are common,
but features of the dataset are different. In this technique, the
number of features for the training may increase. There are
many machine learning models which use vertical federated
learning. Some of the models are logical regression, classi-
fication, safe linear regression, statistical analysis, and data
mining. It is an excellent exciting AI technology that can
provide better personalized MEC services without compro-
mising user’s privacy.

Federated transfer learning is a classical learning process
in which both users and user features of two datasets rarely

123



9816 Arabian Journal for Science and Engineering (2022) 47:9801–9831

overlap and data is not segmented. In this technique, the
process used a pre-trained model that is already trained on
similar datasets to train a new model. The pre-trained model
is an already trained model for solving of an entirely differ-
ent problem. The assumption is a pre-trained model gives
much accuracy compared to a trained fresh model built from
scratch.

Privacy mechanism presented in 2017, as Google was
the first organization that supports a federated learning
approach for privacy-preserving in machine-learning mod-
els. The most important feature of Fl includes the raw data
of each edge node is stored locally without exchanging or
transferring to other nodes.

Model aggregation is a federated learning method that
provides privacy solutions. This process trained the global
model by the combination of multiple local model parame-
ters received frommultiple nodes. Shashi et al. [181] defined
an incentive system that allowed numerous devices to partic-
ipate in training the model.

Thiswill achieve effective outcomes and improve commu-
nication efficiency. Yu et al. [182] showed a local adaptability
model based on fine-tuning, multi-task learning, and knowl-
edge extraction. In this model, individual participant privacy
and the benefits of federated learning both can be achieved.

Homomorphic encryption is the traditional encryption
techniques are the most widely used data security solution.
Users without a key cannot extract plain text information
from the encrypted data in these data encryption techniques.
It means the security strength entirely depends on the key
and without the key, the decryption is failed. The homomor-
phic encryption mechanism resolves the key’s computation
issue by focusing on data processing security rather than
the key. It enables arithmetic operations on encrypted data.
This is also known as secure multi-party computation. The
feature also allows users to encrypt their information in
such a manner without opening the original data or with-
out decryption users can calculate and process the encrypted
data. Partially Homomorphic Encryption (PHE), Somewhat
Homomorphic Encryption (SHE), and Fully Homomorphic
Encryption (FHE) are the three categories of homomorphic
encryption. PHE schemes support only one single arithmetic
operation on ciphertexts. It is categorized into two different
techniques: additive and multiplicative. Paillier cryptosys-
tem is an example of additive PHE. RSA and ElGamal is an
example of multiplicative PHE, which are proven not pre-
ferred compared to ECC [183]. Hardy et al. [184] presented
a federated logical regression model that employs an addi-
tive homomorphism method to protect the system. Liu et al.
[185] developed a federated learning framework for trans-
fer learning in which the privacy mechanism additionally
employs using additive homomorphic encryption to encrypt
model parameters.

Differential Privacy is a possible privacy concept sug-
gested by Dwork in 2006 to address the issue of privacy
exposure in statistics datasets. According to this definition,
the database’s calculation results are unaffected by changes
to a single or specific record. Even the dataset has minimal
influence on the calculation results. As a result, the risk of
privacy disclosure by looking at or modifying a record into
the dataset is minimum. The attacker is also unable to acquire
precise individual information by looking at the calculated
results. The training process of machine learning and deep
learning includes noise in the output to apply differential pri-
vacy in gradient iteration.

Data availability is the process of ensuring that data is
available to end-users and applications when they need it is
known as data availability. It refers to the accessibility and
continuity of information. The FL approach is divided into
two categories based on the availability of the data and the
number of edge nodes.

Cross-silo FL affects Edge nodes in this scenario which
are often small-scale with a cluster of 2 to 100 devices. Train-
ing data are classified into horizontal learning and vertical
learning. Cross-silo FL is more versatile and easier com-
pared to cross-device FL. It is used within organizations or
groups of organizations to train the ML model with their
sensitive data. The encryption scheme is used to secure the
information from the client as well as from the attackers.

Cross-device FL is the technique that contains a large
number of edge nodes that belongs to a similar domain
with similar interests from the global model. Due to the
high number of users, it is tough to keep track of all
nodes and preserve the transaction history of the records.
Clients frequently connect across untrusted networks where
node selection/participation in training rounds is totally ran-
dom [186].

Aggregation run on the algorithms that help FL reach the
goal global ML model by binding updates from multiple
nodes. This logic must be configured the node heterogeneity,
variable weights of each local model, and communication
problems. FedAvg, SMC-Avg, FedMA, FedProx, Scaffold,
Tensor Factorization, and FedAttOpt are some of the aggre-
gation algorithms. The general federated learning aggrega-
tion scheme always uses at least two layers of aggregation:
Local on-device aggregation and cross-device (or federated)
aggregation.

Learning models are federated learning is facilitated with
popular machine learning models whose main aim is to
ensure the model’s privacy, accuracy and efficiency. Linear
model, Decision tree model, and Neural network models are
three popular ML model supported by FL.

Du et al. [187] proposed a security solution that addresses
the security challenges of entity parsing. The security solu-
tion is developed in the federated environment to train a
linear model. They achieve the same accuracy as the non-FL
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approach. Nikolaenko et al. [188] created a ridge regression
system using homomorphic encryption. The linear model is
simple to apply in comparison to other models. Thus, it is an
excellent model for adopting federated learning.

Decision trees such as Gradient Boosting Decision Trees
(GBDT) and random forests can be trained via federated
learning. The GBDT method has received a lot of attention
in recent years because it performs very well in the case of
classification and regression. Zhao et al. [189] use the GBDT
privacy protection system in regression and binary classifi-
cation tasks. The system securely aggregates regression trees
built by multiple data nodes to prevent the exposure of user
data privacy. Cheng et al. [190] introduced SecureBoost. This
framework allows users to create a federated learning system
by training the gradient lifting decision tree model for hori-
zontal and vertical division data.

Neural network models provide smart AI solutions with
data privacy and security. It trains neural networks to improve
the efficiency of the application, maintain privacy within
the system, and complete complicated tasks. Deep neural
network-based Drones application can help to build trajec-
tory planning, target recognition, and target placement. The
Unmanned Aerial Vehicle (UAV) group usually trains the
model through deep learning to provide efficient services.
The centralized training method cannot play the UAV’s real-
time performance due to the absence of a constant connection
between the UAV group and the ground base station. Zeng
et al. [191] discussed a distributed federated learning algo-
rithm applied to the UAV group for optimization of federated
learning convergence speed and perform joint power alloca-
tion and scheduling. Liu et al. [192] propose a clustering
FedGRU method that achieves the best global model and
captures the Spatio-temporal correlation of traffic flow data.
Themodel performsmore accurately by combining theGated
RecurrentUnit neural network for traffic flowpredictionwith
federated learning. Experiments on real data sets demonstrate
that it outperforms non-federated learning approaches signif-
icantly.

Network topology is the arrangement of the edge nodes
that link of communication network as a topology. Network
topology is a term that may be used to describe or define the
layout of many types of telecommunication networks such as
command and control radio networks, industrial field buses,
and computer networks.

Centralized and clustered FL is the base concept of FL
built to serve decentralized data as strategy. But, still, it
relies on a centralized server to manage the duty of gath-
ering trained models from different FL edge nodes, building
a global model, and sharing it with all edge nodes. This is
mostly used to construct a third-party system to increase
edge nodes confidence. The traditional centralized server
hosts data and trains a given model on shared data. But, the
centralized server in the FL environment works on a shared

model via synchronous or asynchronous edge nodes updates.
Gboard, an Android keyboard created using Tensorflow and
federated from Google, is an example of a centralized FL
method [83].

Fully decentralized FL are related to edge nodes in
decentralized FL towork together as trainingmodel in a peer-
to-peer way without the use of a server. Any edge node can
start the training process by defining themodel, loss function,
and algorithm. After that, interested edge nodes can register
and take part in the training. In decentralized FL, themodel is
split into many partitions replicated on different edge nodes.
But, in centralized FL, only the server can store, modify, and
broadcast the model to the participating edge nodes. Pappas
et al. [193] implements a functional prototype for Interplan-
etary File System (IPLS) to measure its performance. For the
simulation of the connectivity between the edge nodes, they
use mininet. Each mininet node is an edge node that uses
IPLS to participate in the training of a model.

Federated learningparameters are adoptedonce the learn-
ing network has been established, i.e., any edge node can
choose different learning parameters to optimize the model.
The number of federated learning round (K), the total number
of participating edge nodes during the learning process (E),
set of privileges used at each iteration for each edge node (P),
and local batch size used at each learning iteration (B) are
some essential learning parameters which can be changed
over the time and changing of network scenario. Number
of iterations for local training before pooling (L) and local
learning rate (k) are model-dependent parameters.

Federated learning heterogeneity is a scenario for effi-
ciency rating of the entire training process as affected due to
the presence of heterogeneous communication devices.

In a traditional data-centric network, two popular commu-
nication techniques are available: synchronous communica-
tion and asynchronous communication. The consideration of
multiple heterogeneous communication devices may easily
disturb the synchronous communication method. The asyn-
chronous communication strategy may better address the
situation of multiple heterogeneous communication devices
in the federated learning multi-device environment.

Fault-tolerant method can protect the system from col-
lapsing in an unstable network environment, especially in
a distributed environment. When many devices operate
together, a device failurewill have an impact onother devices.
Federated learning is a promising solution that helps in
such cases with maintaining of device security. Some of the
research works [194, 195] not considered the device failure
cases during the implementation. Thus, the system efficiency
is not affected by the failure of any device.

Model heterogeneity is base foundation of any learning
model as the sample data. The gathering of dispersed data
from multi-party devices to train the federated model may
affect the overall efficiency of the model. Thus, processing
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the heterogeneous data collected from different devices is
important for maintaining global model efficiency. Multi-
ple modeling solutions are available to handle the problem
present in heterogeneous data. Some of the solutions are:
If the device is single, their own model is the final model,
develop a common global model that will apply to all the
nodes, and train only specific models required for the tasks.

Communication efficiency is a federated learning
approach assuming the complete learning process is dis-
tributed overmultiple edge nodes. The entire communication
load is figured as the summation of the total number of bits
transferred from edge node to server or server to edge nodes
by each client (C). The overall communication efficiency
is computed with the help of Eq. 6. In this Eq. 6, U is
the entire updates done by edge noes, |S| is the model size,
E(�Supload/download) is the entropy of the weight updates, and
U is the difference between true andminimal update size. The
complete update size is defined as: |S| * E(�Supload/download)
+ U

αupload/download ∈ ∂
(
U ∗ |S| ∗

(
E

(
�Supload/download

)
+ ϒ

))

(6)

5 Security & Privacy Challenges
with Countermeasures in AI-BasedMEC

Security and privacy challenges include protection of inter-
connected systems and network devices from data theft,
damage to hardware or software, loss of important data, mis-
direction of the service provided and many more. Any secu-
rity mechanism aims to stop such kinds of issues/threats and
maintain Confidentiality, Integrity, and Availability (CIA)
[196–198] into the system. The discussion of security and
privacy challengeswith their countermeasures is summarized
as discussed next.

The AI-based MEC is an emerging technology that has
been rapidly growing in the last few years. Thus, it is required
to study how much it is vulnerable to security threats from
bad actors. AI is an intelligent programming technique to
determine the pattern, predicting the values and outliers in the
given datasets [199]. For this, the quality of the data should be
maintained. The quality of datasets improves the accuracy of
theAImodel.However, in the case ofAI-basedMECproduce
a high volumeof data. Themaintains and extraction of quality
data is a challenging issue in theAI technique. Bad actors can
feed polluted training datasets, which reduces AI accuracy,
which is known as poisoning threats. The bad actors can pro-
vide some new inputs to change the output of the model. This
can suffer from evasion threats. They can also customize the
AI software component with public API, which is not much
secure. The security of AI models and software components

itself is a challenging issue. There need some solutions before
deploying it to provide IoT security. Machine Learning tech-
niques are also exposed to security vulnerabilities. In [200]
inspects security concerns of outsourcing training ofmachine
learning models and acquisition of these models from online
model zoos. They identified several points of entry that can
be used to introduce backdoor threats. They also identified
several cases where maintaining the integrity of shared pre-
trained models is very difficult.

The main issue with AI-based MEC is that it is difficult to
detect flaws in the system [201]. AI systems have a dynamic,
networked, and adaptive nature. From the user’s perspective,
it is not easy to understand their internal process and behav-
ior. The user also does not identify the resultant outcome as
accurate or may change due to unwanted activities/threats.
For instance, backdoor threats in the neural network may
change the system’s behavior if some malicious trigger has
been activated, and identifying these threats/triggers is chal-
lenging.

MEC with AI also faces many security and privacy chal-
lenges [202]. The edge servers are vulnerable to Denial of
Service attacks in which the attacker sends many false net-
work packets to the edge server. This can cause unnecessary
heavy traffic on the edge server. This attack may reduce the
network performance or create a service availability issue.
When sensitive data is offloaded to edge nodes, direct or
physical control over the data may be lost. This can lead the
data breaches and privacy issues of the data. Data storage can
be audited using appropriate auditing procedures to ensure
that data is stored correctly. Before storing the data to the
MEC server, it must be encrypted. Secondly, 5G network
providers should undergo external audits and security certi-
fication. Sharing of internal policies creates a loophole that
may hamper the security of the system. A user’s physical
data’s precise location is less transparent, confusing specific
jurisdictions and commitments to local privacy requirements.

As data will be stored in a shared space, each user’s
data should be separated using encryption methods and a
data-sharing mechanism. This also needs a proper multi-
user fine-grained access control mechanism in which each
user has different access privileges. Secure data encryption
techniques may overcome the sharing issue because only
authorize party knows the decryption key.

The MEC technology is leveraged several virtualized
deployment models such as NFV, ICN and SDN. This vir-
tualization infrastructure provides shared network resources
among multiple users. The leaking of one resource informa-
tion can affect the whole network infrastructure. The loss of
data could completely deplete the resources used to perform
computationally, storage, and network tasks and deny request
services. Bad actors can misuse virtual resources. The VM
sprawl threats happen when the resources administrator can-
not control or manage the virtual network resources. It is also
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known as virtualization sprawl. In this case, bad actors can
use some exploit running on the old OS, which has not been
patched due toVMsprawl [203, 204]. Another security threat
is design flaws. This is the error produced while configuring
the system or due to insufficient security training. Hypervisor
hardening [205–207], network abstractions [161, 208], and
isolation policies are some security solutions that may over-
come the security flaws and protect the virtual and physical
server from different types of threats. An important security
challenge arises while data are moved from the edge to the
cloud servers or vice-versa. During the transmission, data
may be intercepted or changed.

MEC also needs to offer proper recovery mechanisms in
case of data loss. One solution is to create multiple backup
files of the same data. In MEC, users’ data are kept in a
shared location. This makes investigating or searching data
is a time-consuming process. The authenticity and privacy-
preserving of the hardware and software components should
be ensured. The encryption mechanism such as homomor-
phic encryption [209–211] can maintain the user privacy
computation that has been performed without decryption
of the original data. Secure authentication in a local MEC
ad-hoc wireless network can help with Authentication and
Identification problems [212]. For authentication purposes,
the connected device uses authenticated key protocols and
a Stand-alone authentication mechanism. It also has to be
checked that wrong information does not result in wrong
actions, resulting in loss of money, information, and user
privacy. A secure transmission medium must be needed for
exchanging information through a wireless medium. Intru-
sion detection systems (IDSs) [213] and Intrusion Prevention
System (IPS) [214, 215] are some mechanism that will mon-
itor the network packets and analyze the system traffics logs.
This system will restrict any unauthorized access and gener-
ates alerts for malicious packets. This system feature protects
the MEC network from different types of attacks and threats.
A list of security and privacy challenges with their counter-
measures is summarized in Table 3.

6 Security Attacks in MEC

The MEC provides a better structure for processing the data
with low latency and low transmission delay. Due to the
nature of distributed computing, several vulnerabilities and
attacks are identified, which hamper the MEC network’s
security. Some of the attacks are discussed as follows:

• Denial of Service Attacks: In a DoS attack, the attack-
ers’ main aim is to disrupt the MEC services and block
the resources provided by any applications. Distributed
Denial of Service or DDoS attacks is the extension of DoS
attacks inwhich attackers continuously send streams of the

packet to the victim using distributed electronic devices,
also known as botnets. This exhausts the hardware and
resources of the victim. Resultant of this, the application
is not able to process legitimate requests. Edge servers of
the MEC network are more vulnerable to these attacks as
they are computationally less powerful. Flood attacks are
a type of DoS attack where the victim’s system is flooded
with malicious packets. UDP flooding [258, 259], ICMP
flooding [260, 261], SYN flooding [262, 263], Ping of
Death (PoD) [264] are some examples of flood attacks.

• Zero-Day Attacks: A zero-day attack is possible when an
attacker determines the vulnerabilities in the software pro-
grams. The software developers and vendors are unaware
of these unintentional flaws or holes in software programs.
Attackers can exploit this undocumented vulnerability to
achieve access to MEC servers and resources, which can
lead to more issues [265, 266]. When the vendor discovers
this issue, they begin to write a patch and tests it to resolve
the software programs’ weaknesses.

• Poisoning attack:Many types of AI applications use large
datasets and intelligent algorithms to determine the pat-
terns in the datasets. The software programs also learn the
feature andpatterns of the datasets.Basedon these learning
capabilities, they provide appropriate responses and pre-
dict future behavior. Attackers can provide the AI-based
MEC system with wrong information, which decreases
the AI model’s accuracy. Manipulating data sets can also
subtly change the design parameters to ignore suspicious
activities [267, 268]. The poisoning attack includes data
poisoning, model poisoning, and data modification.

• Evasion attacks: An evasion attack [269, 270] happens
when the intruder is fed some perturbed input in the net-
work. This input looks similar to the original one, and the
original receiver does not identify the perturbed input. The
inputs look the same to humans but throw the model off.
For example, changing a few pixels in a photo will fail the
image recognition system [271], but can seem normal to a
human eye [272].

• Exploiting Communication Channels: A communication
channel contains a lot of sensitive information about the
communication entities. Thus, it is an attractive point for
the attacker to exploit the communication network. These
attacks may exploit packet streams or exploit wave sig-
nals [273, 274]. In this attack, an attacker continuously
monitors network traffic to determine the communication
entities sensitive information.

• Malicious packet injections: The attacker can inject the
malicious packets either on the server-side or device
side. SQL Injection [275], Cross-Site Scripting (XSS)
[276, 277], Cross-Site Request Forgery (CSRF) [278] and
Server-Side Request Forgery (SSRF) [279] are few attacks
which target the edge servers. Bad actors try to inject the
malicious packets into IoT-Edge servers to disturb the IoT
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Table 3 Security challenges with their countermeasures

Challenge Security Countermeasures adopted

Data poisoning Auto encoder model diversity [216], gradient based optimization [217], Combining digital signatures and OTP
based on hash chains [218], Data sanitization [219], and Anomaly detection [220]

Denial of services Firewalls, Geo-blocking [221], Intrusion prevention, CAPTCHA [222], Account locking, Access control List [223],
Filtering [224], and V-Guard prioritization integrated in VNF [225]

Data loss/data theft Auditing methods [226], Data loss prevention system [227], Backup [228], OS baselining [229], and Anomaly
detection [220]

Virtual machine sprawl Policy implementation which automatically monitors and updates VM’s [230], Storage optimization [231], and VM
archiving

Virtual machine escape Hypervisor patching [232], VM traffic monitoring [233], Administrative control [234], and VM segregation [235]

Weak authentication Implement multi-factor authentication [236], Strong passwords [237], and light-weight-cryptographic algorithm
[238, 239]

Data manipulation Encrypted transmission [240], Integrity-checking [241], File integrity monitoring [242], and Logging activity [243]

Malicious code injection Input validation [244], Parse tree validation [245], Query tokenization [246], and Context sensitive string evaluation
[247]

Brute force CAPTCHA [248], Account locking [223], Progressive delay, and Multi-factor authentication [236, 249]

Port scanning Firewall [250], TCP wrapper [251], Intrusion prevention system [222], Using honeypots and honeynets [252]

Privacy preservation Aggregation schemes such as homomorphic encryption [211], Monitor access logs, and Conduct employee security
awareness training, Personal privacy evaluation, [253], and FL [131]

Data recovery Implementing redundant array of inexpensive disks (RAID) [254], Manage access and control, and Backup at
regular intervals

Data leakage Hardware control, Data loss prevention System [255], Monitor access logs, Captcha Crypto Hash Functions [256],
secure access control [257], and Encryption [183]

device functionality. Remotely injected malware can lead
to remote code execution. These attacks can lead to data
loss and theft, breach data integrity, and leak the password.

• Dictionary attacks: Authentication-based password pro-
tectionmechanisms can protect the system from this attack
[280, 281]. A dictionary attack is a type of brute force
attack where all the possible combinations of passwords
are tested to find the correct password. The difference
between a brute force and dictionary attack is that dic-
tionaries are commonly used passwords and are easily
available and downloadable from open-source communi-
ties. This type of attack in the MEC server can degrade the
strength of the authentication mechanism.

• Weak authentication & Authorization Protocol: Authenti-
cation is the process of uniquely identifying a person by
using passwords. Weak passwords or weak authentication
can lead the data loss or theft and identity theft. Bad actors
target this weak authentication by using brute force or dic-
tionary attacks. These vulnerabilities are also identified in
WPA/WPA2 protocols [282, 283] in 4G and 5G networks.
OAuth 1.0 [284, 285] authorizationmechanism is vulnera-
ble to fixation attacks [286, 287] in which service provider
requests token is approved by some other relying party
[288].

• Sybil attack: In Sybil attacks, the attacker show multiple
pseudonymous identities to gain all the MEC privileges.

This attack can lead to data loss or theft, breach the sys-
tem’s privacy, or hamper the reputation of the system [65].

• Collusion attack: It is a type of attack where an edge
server or node has been compromised by making a secret
agreement with bad actors [289]. There are two types of
collusion—internal and external. In the MEC environ-
ment, the edge serves are automated, but it is possible
with the collusion attack, the server is compromised. In
this case, the server handling and maintenance activities
are performed by a human.

• Man in the Middle (MitM) attack: In MitM, the attack-
ers are come in between the communicating parties and
impersonate the other party to receive data [150]. This
can lead to data loss, privacy loss, replay attack, and data
manipulation.

7 Applications of AI- and Fl-BasedMEC

TheMEC is considered a newly emerging technology. Due to
its flexible and adaptable nature. It can be used inmany appli-
cations where quick service response and high transmission
rate are required. Some of the current notable applications of
MEC can be summarized as follows:

123



Arabian Journal for Science and Engineering (2022) 47:9801–9831 9821

7.1 Augmented Reality

This type of applications provides us with a reciprocal expe-
rience where the real-world environment is enhanced by
computer-generated intuitive information. Augmented Real-
ity uses information from the camera or location of the user,
analyzes the data, and provides additional information about
the things they are experiencing. The information is needed
to be refreshed if there is movement. Once the data is gener-
ated, it is sent to the cloud server for analysis purposes, and
the results are sent back to the user. However, this increases
traffic a lot. MEC would answer this problem as information
about the place would be stored locally on the node. This
reduces the communication delay and also relieves the cloud
server from additional traffic.

7.2 Internet of Things (IoT)

IoT devices generate lots of messages on telecom networks.
A real-time capability and low-latency aggregation mecha-
nisms are needed to handle the messages, protocols, message
routing, and big data processing. MEC enables aggregation
and distributes IoT services into base stations or Edge nodes
which handles real-time responses. It also reduces the round-
trip time of data.

7.3 Connected Cars

The architecture of connected cars is used to send vehicle-
related data to the cloud servers so that users can get a better
navigation system, reduce chances for road accidents, etc.
MEC can join the connected car cloud with theMEC servers,
enabling data and applications to be stored closer to cars.
This would reduce the latency of data and provide real-time
analysis.

7.4 Video Acceleration

Video acceleration applications can boost the QoE as well as
improve resource utilization. All the web information can be
accessed through Hypertext Transmission Protocol (HTTP)
over the TCP protocol. In this situation, MEC can provide a
better answer in terms of a fast response.

7.5 Smart City

Tomake the smart city, several wireless nodes, actuators, and
sensors are placed in different locations in the city tomeasure
the air, humidity, temperature, noise level, etc. All the sensors
are interconnected with the help of the internet that provides
a constant stream of information. This information can be
analyzed to create a detailed report about the city and make
technological improvements wherever necessary.

7.6 Smart Buildings

Smart buildings contain multiple MEC devices which can
be placed at different levels in a building. It will also act as
a Nano data center to collect information based on several
factors. Emergency responses on fire can also be triggered
using sensors. The MEC provides a solution to handle such
emergency responses. Before allowing someone in the build-
ing, unique identification and authorization must be needed
to improve the security of the building.

7.7 Connected Scenery Park

This type of application includes a network of MEC nodes
to attend to local tourists’ needs. The MEC nodes or servers
should be installed in appropriate areas in the park. The nodes
contain pre-loaded information with a map of the area and a
tourist guide. They can also provide useful information about
environmental monitoring, road conditions, and other safety
information.

7.8 Big Data Analytics

MEC can provide a solution for handling big data problems.
Latency is one of the important issues in the big data cloud.
MEC processing units considered reliable data sources and
proximity approach so that the latency issues cannot occur.
A MEC server could handle the data accession, processing,
minimize data movement, storage, and balancing computa-
tional abilities.

7.9 Blockchain

Integrating the current blockchain technology leverages
computing power in the MEC environment. This makes
incorporating more miners easier, which can increase the
robustness of the blockchain-based mobile network. Addi-
tionally, the mobile users have an incentive from the reward
obtained in the consensus process.

7.10 Smart Grid

The smart-grid-based applications contain multi-levelled
architecture, including grid sensors and devices capable of
handling time-sensitive and real-time data processing. These
capabilities also extend machine-to-machine connectivity in
which latency-sensitive data are processed very effectively.

7.11 Computational Offloading

This application transfer high computational tasks that need
many resources to an external platform like an edge node,
grid, or cloud. Offloading at the edge node reduces network
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communication load. It also reduces the access delay with
respect to response time.

7.12 Content Delivery

Content delivery applications based on a content distribution
network (CDN) are composed of proxy servers, edge nodes,
and base stations geographically dispersed. The network goal
is to provide services and data to its end users whenever
needed in a high performance and efficient manner.

7.13 Collaborative Computing

Collaborative computing includes modern technological
resources to promote and improve group work. It is a type of
distributed technologywhere individuals work together from
different locations. Combining MEC and 5G could result in
a real-time context-aware ad-hoc collaboration framework.
This framework effectively addresses the low latency cases
as well as provides low-cost working platforms.

7.14 Healthcare

Edge computing technology has made telehealth and remote
patient monitoring more accessible. This is possible because
it takes low computation power, and the response is rapid.
Internet of Medical Things (IoMT) [290] enables such med-
ical systems in connected devices to give a fast response and
take low time for the diagnosis of patients [291], as essential
urgent service in some critical situations [292].

8 Discussion, Open Issues, and Future Scope

The prime objective ofMEC is to deal with the issues present
in the cloud computing model. Such issues are high band-
width, high computation power, high service latency, and
many more. The paper gives a brief introduction of the tech-
nologies currently used and points out the issues with the
technology. The issues present in the current technology
motivate us to investigate a new solution that overcomes
such issues. This motivation leads to the invention of MEC,
where the computation and processing units are near the
user location. This will reduce the transmission distance as
well as improve service efficiency. Several literature works
are investigated to overcome the cloud computing issues by
introducing the concept of MEC. Some of the works tried
to improve the network efficiency of MEC. This work also
considers the machine learning and deep learning-based AI
approaches because they make the system more effective,
faster, and intelligent.

The MEC background is thoroughly investigated, which
will help other researchers understand the concept of MEC.

This survey is not limited to MEC but also introduced the FL
and IoT solutions used in MEC. Several works are presented
in the literature to solve the Security and privacy threats and
attacks. But, still, some of the threats and attacks are present.
This works tried to provides some countermeasures to those
threats and attacks. MEC can be used in many applications,
including augmented reality, healthcare, IoT, Big data ana-
lytics, and many more.

MEC received much attention from the past few years,
and people are more focused on this area. New researchers
try to solve the problem present in the MEC. The literature
identified several open issues that are still not solved and
waiting for an effective solution. Some of the important open
issues are as follows:

• Efficient Deployment andManagement: MEC depends on
the use of Edge nodes. All the MEC nodes need to be
appropriately distributed in the network area. The prop-
erly distributed edge nodes give a guarantee of efficient
MECservices for all users. Some algorithmand techniques
need to be instigated that provides efficient deployment
and management of MEC servers. This would make effec-
tive computational ability usage in terms of QoS and QoE.
An efficient control procedure is also required to ensure
proper management of MEC resources.

• OffloadingManagement:Offloading the jobs from the core
network is one of the primary functions of MEC. It deter-
mines where the computation will be done—locally, edge
node, or jointly. Most of the offloading research is based
on hypothetical assumptions like users are not moving and
focus mainly on power consumption. There is a lack of
available research on the dynamic or moving user equip-
ment. There is also a need for research on the effect of
channel quality on offloading.

• Allocation of Computational Resources: In MEC, some
techniques are needed for the efficient allocation of com-
putational resources. During the process, if some resources
are free, then immediately assign those resources to
another process. This type of resource allocation system
is missing in the literature.

• Standard Protocol:MEC is still in the developmental stage.
There is a need to standardize the technology through a
collaborative effort of different companies and researchers.

• Availability and Security: The resources should always be
available to the user devices. This depends on the edge
node capacity and the medium through which it is being
accessed. The security of the data and applications from
attackers should be considered shortly.

• Simulation Platform: Simulation platform creates a real-
world system model using the programming language.
This comes with many advantages, but some defects in
the platform can create lots of software issues during the
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developmental stage. Techniques of handling such issues
are still open issues.

• Mobility Management: Continuously connection is one
of the major problems while implementing a mobility
management technique. The system needed a continuous
connection with the edge server in both types of horizontal
and vertical mobility.

• Pricing Model: A suitable pricing model should be estab-
lished for consumers consuming edge networks from local
or roaming-based stations. The pricing model should also
keep the basic network parameters such as service cost,
service response time, turnaround time, access bandwidth,
and availability information in mind while creating the
model.

• Transparent Application Migration: User applications
send data to edge servers for execution. There needs a
transparent migration system that migrates delay-sensitive
and real-time applications to other platforms.

• Openness of Network: In the current architecture system,
the network providers have complete control over the net-
work. But, in MEC, the network is completely open in
which different types of third-party vendors have come.
They perform a different type of operation aswell as access
different data. This will increase the security risks in the
system. A standard authentication mechanism and proper
validation are needed before performing any action in the
system.

9 Conclusion

Nowadays,MEChas emerged as novel technology integrated
with other approaches to provide efficient practical services
and decisions. Smart services and decisions take low com-
putation power, fast response, required low bandwidth and
offloading resource-intensive work. It also shifts the network
architecture from centralized arrangement to decentralized
effective architecture. This phenomenon improved the secu-
rity of the architecture and protected the system from a single
point failure. However, several challenges came to picture as
obstacles to the deployment ofMEC applications in different
sectors. The challenges are not limited to security and privacy
issues but also cover the creation of a standard deployment
model, typical protocol, and offloading algorithms that are
easily utilized in any IT system.

This paper tries to cover an updated review of such
MEC challenges studying design standard platforms that are
efficiently easily adaptable. The introduction of MEC pro-
vides standard architecture and deployment templates for the
development of new applications. The FL and AI approaches
involve theMEC systemmore flexible and smarter, such that
they can be used attractively in many applications. Thus, the
survey discussion also covers the new technological aspects

like IoT and ML approaches used within MEC strategies.
Due to the integration of innovative MEC technologies, sev-
eral security and privacy challenges are coming vital into the
system. Thus, the countermeasures of challenges foundmak-
ing all effort to overcome these tests issues. Due to the MEC
dynamic and attractive nature, several attacks may hamper
the network’s functionality as covered differently within the
paper presentation. The paper work highlights most related
intellectual open issues and challenges that are still unsolved
and need to be more focused on for future sophisticated
research studies to come.
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