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Abstract
This paper proposes a new variant of the genetic algorithm (GA), called the oriented genetic algorithm (OGA), for optimum
seismic design of steel special moment resisting frames. Since GA is mainly based on random operators, its computational
burden is usually high. To overcome this issue, OGA takes advantage of the violation values of design constraints of the
problem, such as elements’ demand-to-capacity ratios, strong column-weak beam requirements, and story drift ratios, to
direct the search procedure. OGA is applied to a set of steel frames with different geometrical properties to demonstrate, and
the results are compared to those of GA. The numerical results indicate that OGA significantly reduces the total number of
function evaluations (NFE) required to obtain the optimum solutions. Also, the convergence history of OGA is compared
with Particle Swarm Optimization and Ant Colony Optimization algorithms. It is shown that for a specified NFE limit, OGA
gives better-optimized results.

Keywords Genetic algorithm · Optimization · Orienting operator · Steel special moment resisting frames · Seismic

1 Introduction

With every new idea, there is always an optimization prob-
lem, and engineers are constantly seeking approaches to
optimize their work efficiency. Optimization is basically
defined as changing the initial concept and improving it using
available information. Optimum seismic design of structures
having minimum weight while satisfying the required con-
straints is one of themajor concerns in structural engineering.

The traditional gradient-based optimization methods pos-
sess some disadvantages, such as getting trapped in local
optima, high computational complexity, and sensitivity to
the initial design point when solving the most practical opti-
mization problems [1–3]. To cope with these issues, different
meta-heuristic algorithms have been developed by inspir-
ing natural phenomena and physical laws in recent decades.
Meta-heuristic algorithms are simple to implement and do
not rely on any gradient computations. Genetic algorithm
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(GA) [4], particle swarm optimization (PSO) [5], ant colony
optimization (ACO) [6], bat algorithm (BA) [7], gray wolf
algorithm (GWA) [8], and charged system search (CSS) [9]
are some of the well-known meta-heuristic algorithms.

The application of meta-heuristic algorithms in dealing
with the optimum seismic design of structures has received
considerable attention in recent years. De Castro utilized
GA to obtain the minimum weight design of frame struc-
tures [10]. Camp et al. [11, 12] solved the optimization
problem of steel frame and low-weight steel frames using
ACO. Morsali and Behnamfar [13] developed a method
for seismic damaged-based optimized design of SMRF’s
using PSO. Kaveh and Bakhshpoori [14, 15] applied Cuckoo
SearchAlgorithm (CSA) for optimumdesign of steel frames.
Maheri and Narimani [16] developed an enhanced harmony
search algorithm (EHS) to find the optimum design of side-
sway steel frames. Kaveh et al. [17] performed optimum
seismic design of steel frames using the simplified dol-
phin echolocation algorithm. Farshchin et al. [18] employed
school-based optimization (SBO) to carry out an optimum
design of steel frames. Gholizadeh et al. [19] proposed
improved black hole and multiverse algorithms to solve the
optimization problem of planar frame structures. Togan [20]
employed teaching–learning based optimization (TLBO) to
obtain the minimum weight of planar steel frames according
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to AISC-LRFD specifications. The feature-sign search algo-
rithm is used to reduce the uncertainty of idealized boundary
conditions in the identification of structural damage [21].
Hasancebi et al. [22] utilized an evolution strategy for opti-
mum seismic design of large steel space frame structures
according to ASD-AISC requirements. A combination of
PSO and artificial neural network is used to find optimized
parameters of the tunneling process according to monitoring
surface settlement [23]. Mangal and Cheng [24] developed
GA-HJ hybrid approach by integrating Hooke and Jeeves
(HJ) based local search algorithm in GA and utilized it in
optimization of steel reinforcement in RC building frames
considering constructability limitations.

Although meta-heuristic algorithms are robust tools in
dealing with the optimization problem of frame structures,
they induce a high computational burden. This drawback is
mainly attributed to the random stochastic nature of solu-
tion updating rules utilized in the meta-heuristic algorithm.
Similarly, GA, due to its inherent randomness in finding
the optimum solutions, usually requires significant computa-
tional efforts with substantial NFEs to achieve the optimum
solutions, especially in dealing with the optimum seismic
design of structures that contain a high number of design
variables.

In the present study, a new variant of GA, termed oriented
GA (OGA), is proposed to efficiently tackle the optimum
seismic design of steel special moment resisting frames
(SMRFs). OGA uses a novel operator named orienting oper-
ator, which directs the algorithm to an optimum solution. GA
and OGA are applied to perform the optimum seismic design
of different SMRFs, and comparisons are made between the
results.

The present manuscript is organized as follows: The opti-
mization problem, including a definition of the objective
function and intended design constraints and also themethod
of handling constraints, are described in Sect. 2. Fundamental
concepts of genetic algorithm and its operators and the pre-
sentation of the novel orienting operator, and how to consider
it in GA are described in Sect. 3. In Sect. 4, the application of
theOGAon 2- to 5-story SMRFs is demonstrated. In this sec-
tion, the optimal values of GA parameters are determined by
parameter tuning, and then the performance of OGA and GA
with optimal parameters are compared. Finally, in Sect. 5,
the conclusions and limitations are drawn, and suggestions
for future studies are presented.

2 Problem Formulation

Structural optimization aims to find the design variables
so that some specific objectives such as weight, construc-
tion costs, life-cycle costs, repair costs after an earthquake,
and specific performance objectives of the structure to be

optimized minimized; subject to certain design constraints.
Considering weight as the objective function, the problem
formulation can be expressed as follows [8]:

Find : X � {
x1, . . . , xi , . . . , xnDV

}T

To minimize : W (X) �
ne∑

i�1

ρi Li Ai

Subject to : gk(X) ≤ 0, k � 1, 2, . . . ., ncons (1)

Where design variable xi is steel section assigned to the ele-
ment i , nDV is the number of design variables, ne is the
total number of beam and column elements, W (X) indicates
the total weight of the structure, ρi represent the material
density of the element i, Li is the length of element i, Ai

the cross-sectional area of element i, gk(X) is the k’th design
constraint, and ncons is the total number of design constraints.

2.1 Design Constraints

As stated previously, the present study deals with the opti-
mum seismic design of SMRFs. In this respect, design
constraints taken into account are present as follows:

Strength constraint: According to the AISC 360–10 [25],
demand-to-capacity ratio constraint should be satisfied for
each structural element as follows:

g1,i �
⎧
⎨

⎩

Pr
Pc

+
(

Mr x
Mcx

+ Mr y
Mcy

)
− 1 for Pr

Pc
< 0.2

Pr
Pc

+ 8
9

(
Mr x
Mcx

+ Mr y
Mcy

)
− 1 for Pr

Pc
≥ 0.2

, i � 1, 2, . . . ., ne

(2)

where Pr is the required axial strength, Pc is the available
axial strength, Mr is the required flexural strength, Mc is
the available flexural strength, and ne is the total number of
elements.

Inter-storydrift constraint:According toASCE07-10 [26],
inter-story drift constrain is applied as follows:

g2,i � di

dallow,i
− 1, i � 1, 2, .., ns (3)

where di is the inter-story drift of floor i, dallow,i is the allow-
able inteory drift of floor i specified by the code, and ns is
the total number of stories.

Strong column-weak beam criterion: To avoid the forma-
tion of plastic hinges in the columns that may give rise to
structural instability, the strong column-weak beam criterion
as in AISC 341–10 [27] should be satisfied for each beam-
to-column connection of the SMRF as follows:

g3,i �
∑

M∗
pb∑

M∗
pc

− 1, i � 1, 2, . . . , ncon (4)
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where
∑

M∗
pb is the sum of the projections of the expected

flexural strengths of the beams at the plastic hinge locations
to the column centerline,

∑
M∗

pc is the sumof the projections
of the nominal flexural strengths of the columns above and
below the joint to the beam centerline with a reduction for
the axial force in the column, and ncon is the total number of
beam-to-column connections.

Width-to-thickness limitations: According to AISC
341–10 [27], to prevent local buckling before the occurrence
of yielding in elements under compression, the width-to-
thickness ratios for the flanges and webs of W-sections are
limited as follows:

g4,i � b f /t f

0.6
√

E/Fy
− 1, i � 1, 2, . . . , ne (5)

g5,i �

⎧
⎪⎨

⎪⎩

h/tw
2.45

√
E/Fy (1−0.93Ca )

− 1 f or Ca ≤ 0.125
h/tw

max
(
0.77

√
E/Fy(2.93−Ca),1.49

√
E/Fy

) − 1 f or Ca > 0.125
i � 1, 2, . . . , ne (6)

where b f is the flange width, t f is the thickness of the flange,
E denotes the modulus of elasticity, Fy indicates the spec-
ified yield stress of the steel, h is the web depth, tw is the
web thickness, ne is the total number of elements, and Ca is
defined as follows:

Ca � Pu

φc Py
(7)

where Pu is the required axial strength, φc is the Resistance
factor for compression, and Py is the Nominal axial yield
strength of a member.

Geometric constraints: In practical designs, the beamflange
width should be smaller or equal to the column flange width
at each beam-to-column connection. Also, the ctiodth of the
upper-story column should be equal to or smaller than that
of the lower-story coln at each column-to-column connec-
tion. Thus, two geometric constraints should be satisfied as
follows:

g6,i � b f b

b f c
− 1, i � 1, 2, . . . , ncb (8)

g7,i � dc,upper

dc,lower
− 1, i � 1, 2, . . . , ncc (9)

where b f b and b f c are the beam flange width and column
flange width, respectively, ncb is the number of beam-to-
column connections, dc,upper and dc,lower are the depth of
the upper and lower columns, respectively, and ncc is the
number of column-to-column conneions.

The control of geometric constraints does not need any struc-
tural analysis. Geometric constraints are first evaluated to

prevent excessive structural analysis. If geometric constints
are not satisfied, the other constraints are not evaluated, and
the structure is removed from other steps of the optimization
algorithm.

2.2 Constraint Handling

As GA is used to optimize unconstrained problems, the
constrained problem should be converted to an uncon-
strained problem by an appropriate constraint handling
approach. Two approaches may be applied [28]: (a) Death
Penalty Approach in which members of the population that
have not satisfied constraints (infeasible designs) are com-
pletely removed from the population, and no information is
extracted from the infeasible population. (b) Penalty Func-

tion Approach where the objective function is penalized
proportionally to the degree of unsatisfied constraints. The
DeathPenaltyApproach has somedisadvantages. First, prob-
lems in which design space is strictly under the control
of constraints, production of a generation in which all of
its members satisfy all the constraints requires very high
computational costs [28]. Moreover, because of the possi-
bility of approaching optimum value from any direction,
usually search in both feasible and infeasible design spaces
is more efficient than restricting the search to just feasible
design space [28]. Considering the disadvantages of the death
penalty method, the penalty function approach is used here
to dealithints. The penalty function is considered as follows:

F � W+ V

W �
ne∑

i�1

wiLi

V �
ne∑

k�1

v1,k +
ne∑

k�1

v2,k +
ne∑

k�1

v3,k + . . .

�
ncons∑

j�1

ne∑

k�1

vj,k

vj,k �
{
0 i f cj,k ≥ 0∣∣cj,k

∣∣ × α i f cj,k < 0

}

α � ne × meanPool × R (10)

where ne is the total number of beam and column elements,
wi represents theweight of the element i per unit length, ncons
is the number of constraints, vj,k is the violation of constraint
j in element k, cj,k is the value of constraint j in element k,
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α is the penalty multiplier, meanPool is the mean weight of
variables pool (mean weight per unit length of selectable
sections), and R is the penalty constant determined by the
designer (here is assumed 1000).

3 Oriented GA

In the present section, GA is first introduced, and then the
oriented GA (OGA) is presented in detail.

3.1 Fundamentals of Genetic Algorithm

GA is an evolutionary algorithm that aims to find the global
optimumsolution by using a population of potential solutions
and their combinations. GA also searches the entire design
space in multiple directions to prevent trapping in local min-
ima and tries to achieve a global solution [29, 30]. The search
process in GA is explained as follows:

1. Initial population: Design variables (genes) are selected
randomly from the search space (e.g., W-sections in the
design of steel structures). Putting the genes together, amem-
ber of the population (chromosome) is formed. Then this
process is repeated npop times to form an initial population
with npop random members.

2. Fitness Evaluation: All population members are ana-
lyzed at this stage, and the objective function values are
obtained. Considering design constraints, a fitness value
(value of the penalized objective function) is allocated to
each population member. In this way, the population can be
sorted and classified based on members’ fitness.

3. Selection of appropriate members to produce next gen-
eration: Following the evaluation of members’ fitness in the
previous stage, some members (parents) should be selected
to produce the next generation. Researchers have suggested
different strategies to select parents. Usually, members’
selection chance/probability for production of the next gen-
eration has a direct relationship with members’ fitness. In
other words, members with better fitness have a much higher
chance of being selected.Differentmethods such asRoulette-
Wheel, Uniformly Random, Tournament selection, etc., can
be used to select parents for next-generation operation [1]. In
the present study,Roulette-Wheel, bywhich parentswith bet-
ter features have a greater chance of being selected, is chosen.

4. Crossover: ncross number of parents are selected for
crossover, which ncross is determined by the designer through
crossover percentage parameter (pcross):

ncross � 2*round
(
pcross × npop/2

)
(11)

where ncross is the number of selected parents for crossover,
and pcross is the crossover percentage.

Bay 
Crossover

Story
Crossover

Fig. 1 Schematic representation of related bay-story crossover

Selected members are randomly paired together to share
some of their genes, to generate ncross new children for the
next generation. There are different crossover methods: sin-
gle point, double point, uniform, mixed-random, and related
bay-story. The operation of a single point, double point, and
uniform crossover operators are described in Kaya [31] and
Hasançebi [32]. Mixed-random crossover randomly selects
(with uniform distribution) one of the single point, double
point, or uniform crossover in each step where crossover is
required.

The “related bay-story” crossover, called “boosted or object
homologous geometric” crossover by [33, 34], selects ran-
domly one bay and one story from the first parent and
substitutes corresponding elements in the second parent
(Fig. 1). In all kinds of crossover operations, care should
be taken to avoid substituting beams with columns or vice
versa. For instance, if the two following parents (for a 3story-
3bay structure) are considered, double point crossover acts
as Fig. 2.

5. Mutation: mu genes of each of nm chromosomes (nm of
members selected for mutation, in the way described in stage
3) are changed randomly, and new nm children are produced.
For mutation operation, two parameters should be deter-
mined by the designer: mutation percentage (pm) and muta-
tion rate (mr) mutation percentage determines the number of
parents for mutation, and mutation rate determines the num-
ber of genes (mu) that change in a chromosome. For example,
if the mutation rate � 20% in a 3story-2bay frame structure,
two columns of the selected parent (round[20% × ncol] �
round[20% × 9] � 2) and one beam of the selected parent
(round[20% × nbeam] � round[20% × 6] � 1) alter.

6. Termination: New generated members (from crossover
and mutation) are analyzed, and their merits are evaluated.
Objective function values and degree of constraints violation
are criteria of merits for generated members. Children with
higher merit would substitute weaker parents. Stages 3 to 6
are repeated until the convergence condition is satisfied or the
algorithm reaches the predetermined number of iterations.
The values of npop, ncross, nm, and mu are determined by the
designer.
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Columns Beams

Parrent 1 a b c d e f g h i j k l m n o p q r s t u

Parrent 2 A B C D E F G H I J K L M N O P Q R S T U

Offspring 1 a b c d E F G H i j k l m n o P Q R s t u

Offspring 2 A B C D e f g h I J K L M N O p q r S T U

Fig. 2 Sample of double point crossover for a 3story-3bay structure

In GA, the crossover is responsible for approaching the
local optimum solutions and mutation searches the entire
design space to overcome trapping in local optimums [35].

3.2 Oriented Genetic Algorithm (OGA)

As shown in the Numerical results section, NFE in GA is
relatively high and in practice, GA’s performance and effi-
ciency diminish when applied to the large-scale structures.
Moreover, due to the random nature of the offsprings gen-
eration process in GA, many researchers such as Azad and
Hasançebi [36] and Gen and Cheng [37] named it as a “blind
algorithm.” Various attempts have been made to improve the
performance of this algorithm. Most of these efforts have
focused on changing operators, which in pieces of the lit-
erature such as Gero et al. Gero, García and del Coz Díaz
[38], Shi et al. Shi, Liang, Lee, Lu andWang [39], and Toğan
and Daloğlu [40] have been named as modified, improved,
enhanced, intelligent, etc.

In this study, by adding an operator called “Orienting” to
GA, the efficiency of the optimization process is considerably
increased. In generatingoffsprings by crossover andmutation
operators, genes change randomly; thus, generated offsprings
can gain good or poor properties of their parents. Usually, in
two statuses, the number of generated offsprings with worse
propertieswouldbehigher than thenumber of offspringswith
better properties: 1) when the number of design variables is
large; 2) when early stages of the optimization process have
passed. Thus, it is intended that with some changes in GA,
the properties of offsprings be improved compared to their
parents; as a result, better generations (generationswithmore
optimized objective function and less violated constraints)
and solutions would be achieved over time.

The number of parents selected for orienting operator
is affected by two designer-determined parameters. These
parameters are “Orienting Percentage” (Op) and “Orienting
Diversity Rate” (Or).

To select parents for orienting, at first, members with at
least Odiv � round(ne × Or) different genes are selected.
These selected members are sorted based on their fitness,
and following that, the nOri,max � Op × npop first best chro-
mosomes are chosen for orienting; then Orienting operator
is applied as Orienting section.

To evaluate the necessity of applying “Diversity Rate”:
At first, a structure (chromosome) including few members
(genes) that do not satisfy the constraints is chosen (initial
structure). Next, some other structures (chromosomes) are
created with random change in a few genes of the initial
structure; in thisway, the initial population is built frommem-
bers with relatively similar genes. Then Orienting operator is
applied to this initial population, and the resulted population
is recorded after 20 iterations of Orienting. The mentioned
operation was repeated several times and applied to multiple
different initial structures. Comparison of the resulted pop-
ulation after 20 iterations (with a similar initial population)
shows that in more than 73% of analyses with different initial
structures; the obtained population after 20 iterations con-
verges to a unique chromosome (in other words, more than
73% of the resulted population with similar initial structure
converges to a unique chromosome). Therefore, given that
similar parents usually orient to a unique solution; if similar
parents are selected, then extra calculations are made. Thus,
with the application of diversity rate, different parents are
selected for Orienting operation.

Orienting is applied as follows: based on the designer’s
opinion, the designer sorts constraints according to their
effect on the value of the objective function. Constraints with
more effect on objective function value are checked firstly,
and subsequently, constraints with lower effect are checked.
Based on the authors’ experiences, using constraints out of
proper order only affects the performance of the Orienting
operator; and if the designer has not sorted the constraints
according to their effect, NFE increases.
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Fig. 3 Genetic algorithm optimization process

Parents are selected, as stated earlier, and “Orienting”
modifies them as follows:

(a) If the selected parent has members (genes) with dissat-
isfied first constraint (capacity ratio): for dissatisfied genes,
“Orienting” operator substitutes a section randomly with
equal or higher characteristic (for beams higher moment
of inertia and columns larger section area) than the cur-
rent gene’s section. Thus, generated offsprings might have
a similar or heavier weight than their parents; but because of
probable satisfaction of its first constraints, they may have a
better merit function.

(b) In the case of satisfaction of the first constraint for all
members and dissatisfaction of the second constraint (drift
ratio), a section with the same or larger area than the cur-
rent section is randomly dedicated to columns of the relevant
story.

(c) If both the first and second constraints of all members
are satisfied and the third constraint (strong column-weak
beam principle) is not satisfied for some joints of structure,
one of the three following cases is selected randomly:

(c.1) left or right beam of the dissatisfied joint is
selected randomly.
(c.2) both left and right beams of the dissatisfied joint
are selected.
(c.3) columns corresponding to the dissatisfied joint are
selected.

Note: If c.1 or c.2 is selected, a section with the same or
lower moment of inertia than the current section is assigned
to beam from variables pool; and if c.3 is selected, a section
with the sameor higher area of the current section is dedicated
to columns of the relevant story.
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Table 1 Specifications of
Analyzed SMRFs Frame ID No. of stories No. of bays First story

height
Others stories
height

Bay Width
(from left to
right)

No. of design
search space

1 2 2 4 3 5, 5 1.05E + 06

2 3 3 4 3 5, 6, 5 3.66E + 15

3 4 4 4 3 5, 6, 6, 5 3.83E + 21

4 5 5 4 3 5, 6, 6, 6, 5 3.33E + 23

Table 2 Material Properties

Elastic Modulus (E) 1.99e11 N/m2

Yield Stress (Fy) 3.44e8 N/m2

Effective Yield Stress (Fye) 3.79e8 N/m2

Tensile Strength (Fu) 4.48e8 N/m2

Effective Tensile Stress (Fue) 4.92e8 N/m2

Shear Modulus (G) 77.2e9 N/m2

(d) If all three constraints of all members are satisfied,
and the fourth constraint is not satisfied, then a section with a
higher moment of inertia than the current section is assigned
to dissatisfied members from the variables pool.

(e) If all four constraints of all members are satisfied,
the same or smaller section property (moment of inertia for
beams and area for columns) is dedicated to all members,
randomly.

Eventually, generated offsprings from “Orienting” oper-
ation are merged with other population of the current
generation (parents, crossover & mutation offsprings) and
then sorting & truncating is applied.

Population is sorted base on their fitness value, and the
first npop are selected, and the rest are set aside.

The summary of described algorithm is shown in Fig. 3.

4 Numerical Results

In this section, by running GA for different values of affect-
ing parameters and considering convergence rate, parameter
tuning is carried out and optimum values for GA parame-
ters are suggested. Then OGA is applied to several SMRFs.
Finally, a comparison has been made between this study’s
results and some previous studies to point out the superiority
of OGA and tuned GA.

4.1 Steel Frames

To determine optimum values of GA parameters
(npop, pcross, pm,mr and crossover mode), GA is applied
to some SMRFs (Table 1).

Auniformdead and live load of 6.0 kN/m2 and2.0 kN/m2

was applied on all floors, respectively. A live load of 1.5

Table 3 Selection pool for beams and columns

Items No. of sections Sections selection pool

Columns 20 W5X19, W6X12, W6X25, W8X15,
W8X28, W8X40, W8X67,
W10X100, W12X45, W14X53,
W14X82, W14X311, W14X455,
W14X730, W18X119, W18X143,
W18X175, W18X211, W24X250,
W40X372

Beams 15 W5X16, W6X16, W8X15, W8X21,
W8X40, W8X58, W10X112,
W12X50, W12X136, W18X106,
W21X132, W24X162, W24X250,
W24X370, W27X539

kN/m2 was applied on roofs. The tributary width of the uni-
form loads on frames was considered 5 m. For all beams and
columns, material properties are set as Table 2.

Beamand columns aremodeled as “Elastic Beam-Column
Element” in OpenSees. Sections of all members can be
selected from a list of AISCW-Sections; 15 and 20 selectable
sections for beams and columns have been considered here,
respectively (Table 3).

Considering the symmetry of frames and the number of
selectable beams and columns (Table 3), a total number of
searches in design space is indicated in Table 1.

4.2 Grouping

Regarding construction conditions, members of beams and
columns can be grouped, and for each group, a section would
be assigned. Changing the grouping of beams and columns
causes different results [41]. Since the determination of opti-
mumparameters ofGA is one of the goals of this research, for
generality, no grouping is considered for beams and columns.

It should be noted that in the case of grouping, NFE
decreases, and calculations speed up.

4.3 Determination of Optimal GA Parameters
(Parameter Tuning)

Range of parameters; npop, pcross, pm,mr and crossover
mode are effective parameters on GA. To obtain optimum
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Table 4 Values of parameters for determination of optimum GA parameters

Parameters Values (Modes)

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

nPop Ratio (n pop/nDV ) 1 1.25 1.5 1.75 2

Crossover pct. (pc) 0.5 0.6 0.7 0.8 0.9

Mutation pct. (pm ) 0.03 0.06 0.09 0.12 0.15

Mutation Rate (mr ) 0.01 0.05 0.10 0.15 0.20

Crossover Mode Single Point Double Point Uniform Mixed-Random Related Bay-Story

values for these parameters, earlier described GA is run for
different frames of Table 1 and parameter values of Table 4.

For shorthand and better perception, every parameter
value is assigned to amode; for example, in the case of “nPop
Ratio,”Mode1 corresponds to 1 × nDV ,Mode 2 corresponds
to 1.25× nDV , … and in the case of “crossover percentage,”
Mode 1 corresponds to 0.5, Mode 2 corresponds to 0.6, …
and other parameters in the same way.

As it can be seen inTable 4, there are five effective parame-
ters. For each parameter, five different modes are considered.
Thus, for each frame, 55 different states are available. Due
to the inherent randomness of GA, the algorithm is repeated
500 times for each state (totally 55 × 500 GA runs for each
frame). Optimum GA parameters. Optimization results of
frames mentioned in Table 1, with parameter values men-
tioned in Table 4 are shown in Fig. 4; In which the given data
refers to the occurrence percentage of optimized weight with
minimum NFE, for different modes of parameters.

For instance, in a 5story-5bay frame, the thirdmodeof npop
(namely npop � 1.50×nDV) in 34.85% of runs has the mini-
mum NFE to achieve optimum result among other modes of
npop and the secondmodeof npop (namely npop � 1.25×nDV)
with 27.28%has the nextminimumNFE tofind the optimized
result. Also, in this frame, the fourth mode of crossover per-
centage (pcross � 0.7) with 28.25% has minimum NFE to
achieve optimized results among all modes of parameters.

The summary of optimized modes for all parameters of
analyzed frames is shown in Table 5.

As it can be seen in Table 5, for frames analyzed with npop
between 1.25~1.5 nDV and selection of crossovermode as
“mixed random crossover” or “uniform crossover” and pcross
in the range of 0.7~0.8 and pm in the range of 0.06~0.09
and mr in the range of 0.05~0.10, optimized results can be
obtained with minimum NFE.

Also applying variousOp andOr values on frames of Table
1, Op � 0.2 ∼ 0.3 and Or � 0.15 ∼ 0.20 are suggested for
the efficient performance of OGA.

As seen in Fig. 4, usually occurrence percentage of min-
imum weight with optimum parameter value (for example,
fourth mode of crossover in 5story-5bay frame) has rela-

tively little difference with the second optimum mode of the
parameter (for example, the third mode of crossover in the
5story-5bay frame; namely%28.25-%25.67�%2.58). Thus,
choosing even the next optimized value of parameters has lit-
tle effect on the required NFE for optimization.

4.4 Comparison of OGAwith GA

Toevaluate the efficiency ofOGA, theNFE required to obtain
optimizedweight is compared.OGAandGA(with optimized
parameter values) are applied on mentioned frames of Table
1, and the results are compared (Table 6). As it can be seen
in Table 6, in the case of applying OGA, the average of NFE
reduction to obtain optimum weight is at least 21.73% less
than GA (even with using optimum values of GA param-
eters); and for a 5bay-5story frame, the reduction in NFE
reaches 48.47%.

In Fig. 5, convergence history for some considered frames
is illustrated. There are few iterations in 3bay-3story and
5bay-5story frames in which GA has a relatively better-
penalized objective function than OGA. But despite those
iterations, the trends in Fig. 5 make it clear that in all frames,
OGA has an obvious superiority over GA (in the case of con-
vergence rate). In other words, OGA optimizes the frame to
a lower weight in a shorter time.

As stated in the section Improving GA with Orienting
Operator, the most important reason for increasing effi-
ciency, is the improvement of offsprings by the “Orienting”
operator. Figure 6 compares improved offsprings (relative
to their parents) produced by Orienting, crossover (single
point, double point, uniform, mixed random), and mutation
operators. It can be observed that more than 65% of Orient-
ing offsprings and about 30% of mixed-random offsprings
are better than their parents. As expected, mutation opera-
tor generates few offsprings better than their parents (only
about 8%). Also, the mixed-random and uniform crossover
operators have the highest percentage of improved offsprings
between all utilized crossover operators.

In Fig. 7, the average number of the best and worst off-
springs produced by each operator during all iterations of
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Popula�on
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Crossover
Percentage

Muta�on
Rate

1 25.42 21.78 18.31 18.41 20.54

2 32.61 19.01 23.31 20.18 23.81

3 19.89 30.18 22.3 19.31 20.99

4 13.65 15.45 19.85 25.6 17.65

5 8.43 13.58 16.22 16.5 17.01
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1 23.41 20.25 6.89 19.22 13.55

2 30.74 18.62 21.16 17.65 31.65

3 27.63 22.1 29.2 23.95 36.3

4 10.86 26.89 21.22 22.53 9.34
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0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge

3 Story-3 Bay Frame

Popula�on
Number

CrossOver
Mode

Muta�on
Percentage

Crossover
Percentage

Muta�on
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1 16.52 12.98 17.91 19.97 9.81

2 26.54 15.27 25.27 17.57 32.52

3 31.78 26.01 27.63 22.18 25.74

4 13.83 28.69 15.68 24.31 12.87

5 11.33 17.05 13.51 15.97 19.06
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1 12.74 19.42 17.65 17.16 16.51

2 27.28 17.53 30.17 19.87 33.28

3 34.85 25.67 22.63 24.69 29.84

4 16.98 28.25 18.31 23.57 11.26

5 8.15 9.13 11.24 14.71 9.11
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Fig. 4 Percentage of optimized frames, for different values of GA parameters

Table 5 Optimized modes of GA parameters (occurrence of minimum
weight with least NFE)

Parameters Frames

2*2 3*3 4*4 5*5

Population Number (npop) 2 2 3 3

Crossover Mode 3 4 4 4

Mutation Percentage (pm) 2 3 3 2

Crossover Percentage (pcross) 4 3 4 3

Mutation Rate (mr) 2 3 2 2

Dominant Mode

several runs is presented. In each iteration, the origin of the
best and worst offsprings are recorded; in another word, it is

recorded that the best and worst offsprings in each iteration
are created bywhich operator, and then at the end of each run,
the number of roles of operators in creation of the best and
worst offsprings are determined. This operation is repeated
for different runs, and finally, the average number of roles
of each operator in creating the best and worst offsprings is
determined. As can be seen, a large proportion of offsprings
of the Orienting operator have better features than their par-
ents or are the same as their parents; while in other operators
(especially mutation), a relatively large percentage of gener-
ated offsprings have worse features than their parents.

Considering the prominent role of Orienting operator in
generating better offsprings, why are crossover and mutation
operators not eliminated? Or why the role of Orienting oper-
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Table 6 Comparison of NFE, in
OGA and GA Statistics Frames

2*2 3*3 4*4 5*5

GA OGA GA OGA GA OGA GA OGA

Minimum NFE 172 132 2,248 1,436 3,336 2,016 4,320 2,226

Average NFE 1,026 803 5,135 3,667 7,061 4,712 9,576 5,998

Standard Deviation 613 121 2,272 251 3,483 275 4,243 309

NFE Reduction (max) 23.26% 36.12% 39.57% 48.47%

NFE Reduction (Ave) 21.73% 28.59% 33.27% 37.36%

Fig. 5 Typical convergence history of considered frames

ator is not increased? To answer these questions, it should
be noted that offsprings of crossover and mutation opera-
tors are necessary to prevent the algorithm from trapping in
local optima. In the case of reducing these operators’ role, the
algorithmmay be trapped in local minima before converging
to global result, or the progress toward it may be extremely
slow.

4.5 Comparison of OGAwith PSO and ACO

A typical convergence history diagram of the 5bay-5story
frame is shown inFig. 8; inwhich the convergence rate ofGA,
OGA, ACO, and SPO algorithms are compared. As shown,
the convergence rate of theOGA ismuch faster than the other
algorithms. It should be noted that the OGA does not claim
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Fig. 7 Role of various operators in the generation of best and worst
offspring

more final optimized results than other algorithms, but it is
approved that for a given NFE limit, OGA achieves a more
optimal result; for example, if the number of iterations is lim-
ited to 85 iterations, OGA usually results in more optimized
results. But if there is no limit to NFE, other algorithms may
give more optimal results.

5 Conclusion

As mentioned earlier, the purpose of this paper is to reduce
the computational burden of optimization problems with an
emphasis on SMRFs.

Fig. 8 Comparative typical convergence history of 5bay-5story frame
for different optimization algorithms

In this paper, GA with various parameter values was
applied to some SMRFs, and optimum values for param-
eters of GA were determined, aiming to reduce NFE. For
analyzed frames, selection of npop in the range of 1.25~1.5
nDV , crossovermode as “mixed random crossover” or “uni-
form crossover,” pcross in the range of 0.7~0.8, pm in the
range of 0.06~0.09 and mr in the range of 0.05~0.10 were
determined as optimum values for GA parameters.

It should further be noted that during case study investiga-
tions for this paper, among different kinds of crossover oper-
ators (single point, double point, uniform, mixed-random,
and related bay-story), mixed-random and uniform crossover
operators had better performance in GA and in more than
44%of optimized stateswithminimumNFE, these two kinds
of crossover operators were utilized.

Due to the inherent blindness of crossover and especially
mutation operators in generating better offsprings, a novel
operator called “Orienting” was introduced. This operator
has tried to generate better offsprings in each generation by
adding a local search engine to the GA algorithm.

The presented novel operator has two affecting param-
eters: Op and Or; which their values are suggested in the
range of Op � 0.2 ∼ 0.3 and Or � 0.15 ∼ 0.20. Consider-
ing that most offsprings of Orienting operator are better than
their parents, GA’s efficiency is highly increased and NFE
is reduced considerably. In the case of applying OGA, the
average NFE to obtain minimum weight is at least 21.73%
less than that of GA (even with using optimum values of
GA parameters); even in the 5bay-5story frame, this average
efficiency increases to 37.36%.

Despite the significant improvement of GA through
addingOrienting operator, it should be noted that elimination
or reduction in the role of crossover andmutation operators or
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excessive increase in the role of Orienting operator, not only
reduces the efficiency of GA and increases the probability
of trapping but also increases NFE. Thus, Orienting operator
beside other operators (crossover and mutation) makes GA
a more efficient algorithm.

Also, in comparison of OGA with PSO and ACO, it is
shown that OGA gives more optimized results when the NFE
limit is considered. It should be noted that the OGA does not
claim more final optimized results than other algorithms, but
it is approved that for a given NFE limit, OGA achieves a
more optimal result; But if there is no limit to NFE, other
algorithms may give more optimal results. The efficiency of
OGA over these algorithms in fields other than SMRFs can
be a subject of research.
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