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Abstract
The Archimedes optimization algorithm (AOA) based on the principle of upward force on an object, partially or completely
submerged in a liquid, in proportion to the weight of the dispersed liquid has been introduced. It is most famous for its
efficiency, simplicity and robustness, but at the same time, it faces problems of premature and slow convergence, due to
which it gets trapped in local minima. To overcome these shortcomings, the levy flight has been merged with AOA under
this work, hence named as Levy Flight Archimedes optimizer (LAO). Here, the levy flight phase has been used for random
walk determining step size. Levy flight plays an important role for improving the exploration phase and for ignoring the
local optima of the AOA algorithm during the search process. In this proposed methodology, the limit of each variable is
fixed for all decision variables, and if the variable could not mend its own optima solution in the search space at the end
of present generation, such limit is improved. If the decision variable crosses the limit value, the levy flight phase helps the
decision variable for controlling the speed. The robustness and efficiency of the evolutionary methods have been examined
on well-known 29-CEC 2017 test functions and also compared with recent evolutionary algorithms. Furthermore, it has also
been successfully applied on four different antenna issues. The metaheuristics MATLAB-R2018a codes have been linked
with the two different simulators such as computer simulation tool and ADS (Keysight advanced design system software)
to simulate the antennas. Simulated results of LAO method and other metaheuristics have been compared with respect to
gain, return loss, directivity, efficiency, fitness score, bandwidth, VSWR, reflection coefficient to prove the robustness of the
proposed method.

Keywords Evolutionary algorithms (EAs) · Archimedes optimization algorithm (AOA) · Levy flight · Levy distribution ·
Optimization · Microstrip patch antenna (MPA)

1 Introduction

Microstrip patch antennas are extensively used in mobile
communication systems and wireless since of their mer-
its, like low profile, ease of fabrication and light weight,
respectively. Normally, the elementary antenna topology can
be preferred as per to the desired antenna presentation.
The huge challenge is to conclude the regular constraints
of the antenna, including the feed position and the patch
dimensions, to attain the best design that satisfies con-
vinced conditions. Noticeably, a trial-and-error procedure
is time-consuming and will not necessarily give the opti-
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mum patch constants or parameters. Then, the most robust
MHAs are needed which will assist the antenna designer
to design a definite antenna that meets exact necessities.
The best training–testing stratification proportions have been
thoroughly examined consuming the forecast of porosity
and permeability of petroleum reservoirs as a trial circum-
stance by [1]. The fair performances of seven traditional
and advanced machine learning methods were measured
by [2].Further, an inclusive research has been lead on the
forecast of the bubble point pressure and oil formation
volume factor using two hybrid of soft computing meth-
ods. Experimental outcomes of the proposed methods have
been compared with commonly used regression correlations,
including standard artificial neural networks.

To meet the present demand, the issues in designing of
microstrip patch antenna can be resolved using optimization
functions, i.e., if we need to find efficient patch antenna spec-
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ifications. The metaheuristic algorithms (MHAs) are most
powerful techniques for these kinds of issues, because these
involve the strong and powerful toolswhich help in designing
the efficient patch antenna.Hence, daybyday, the researchers
are trying to developmore enhanced evolutionary algorithms
for tracking of highly complex issues. These are refined
optimization techniques, and they are often an enhanced sub-
stitute to traditional MHAs, giving an outstanding trade off
between the optimal solution’s quality and computing time,
particularly for complex issues or large dimension optimiza-
tion functions. Usually, the MHAs can be distributed into
dissimilar stages as per sources of motivation [3]:(1) swarm
intelligence (SI) methods, including population-based meth-
ods that mimic the social behavior of animals or insects,
(2) evolutionary algorithms that follow the natural evolu-
tion processes found in nature, and (3) natural phenomena
(NP) algorithms that imitate the principles of physics and
chemistry. In detail, MHAs have delivered extraordinary per-
formances in several practical problems of a broad domain
of applications, such as engineering [4,5], feature selection
[6], wireless sensor networks [7,8], optimization problems
[9], biomedical [10], drug design [11] and microstrip patch
antenna [12]. For superior efficiency of the MHAs, various
robust population-based algorithms have been developed in
the last few decades.

A newly physical inspired optimizer algorithm is devel-
oped by [13].To assess the robustness and effectiveness of
the algorithm, it is tested through other recent optimizers. On
the basis of outcomes, it has been shown that the proposed
method is very powerful with other deliberated state-of-
the-artmetaheuristics. Greedy–Levy ant colony optimization
method has been originally developed by [14] with the help
of levy flight mechanism and greedy policy. The computa-
tional testing shows the supremacy of the presented method.
It has been observed that the proposed method can reach
the best outcomes with the least number of generations. A
newly hybrid physics-based optimization algorithm has been
originally developed by [15]. In this strategy, atom search
and tree-seed method have been merged together. And fur-
ther, the levy flight random walk and chaos theory were
merged with it. To assess the robustness of the presented
method, it has been tested on 23-standard functions. This
rising attention in MHAs coincides with the needed for addi-
tional efficient MHAs for searching the best optima’s of
the complex issues. Several of these MHAs include par-
ticle swarm optimization (PSO) [16], genetic algorithms
(GAs) [17], simulated annealing algorithm (SA) [18], Henry
gas solubility optimization (HGSO) [19], Cuckoo search
(CS) algorithm [20], sine cosine algorithm (SCA) [21],
Archimedes optimization algorithm (AOA) [22], Chimp
optimizer algorithm (ChoA) [23], Lévy flight distribu-
tion (LFD) [24], one half personal best position particle
swarm optimizations (OHGBPPSO) [25], personal best

position particle swarm optimization (PBPPSO) [26], half
mean particle swarm optimization algorithm (HMPSO)
[27], HAGWO [28], hybrid particle swarm optimization
(HPSO) [29],HPSOGWO[30], hybridMGBPSO-GSA [31],
HGWOSCA [32], MGWO [33], MVGWO [34], HSSAPSO
[35], SChoA [36], HSSASCA [37], respectively. In addition,
the researchers of different areas are using the robust optimiz-
ers for addressing the challenges such as efficient mechanical
performance [38], feature selection [39], structural damage
detection problem [40], FMCgreen scheduling problem [41],
random projection-based feature transformation [42], struc-
tural damage identification problem [43] and constraint and
unconstrained problems [44], respectively.

Nowadays, patch antenna is a huge challenging optimiza-
tion problem. It is worth revealing that with the help of the
MHAs, the numerous shortcomings of the microstrip patch
antenna’s have been determined such as design of microstrip
patch antenna in the communication systems like Wi-Fi,
Wi-MAX, Telemedicine , UWB applications, to cover Blue-
tooth operations as light, cheap, small size and low profile,
[45]. In [46], the newly enhanced version of central force
optimization (CFO) is introduced for designing and optimiz-
ing the two different patch antennas such as microstrip line
fed E-shaped and a coaxial line-fed double E-shaped patch
antennas. Robustness of the proposed method have been ver-
ified through different MHAs. [47] presented a new method
for minimizing the size or dimension of the planar MPA
and to achieve inferior frequencies. The dimension decrease
method was constructed on slicing the antenna into dissimi-
lar slots mostly in saw teeth shape (STS). As the demand of
mobile devices was exceeding, the miniaturization methods
were commonly applied besides the dimension decrease in
devices. This work is divided into two categories; firstly, the
MPAwas designed; then, to achieve STS, these lotswere sep-
arated. On the basis of this strategy, the MPA was compact
to 87.88% with an operation frequency same to 1.7 GHz.
[48] presents a circular MPA design for UWB issues. The
MPA has been designed on FR-4 substrate with size same to
0.9mm×30mm×35mm. To develop the impedance alike,
a thin strip line 1.8mm has been introduced amid the circular
radiating patch and feed port. Various constants have been
carried out such as inner and outer radius, feed size, substrate
size and ground plane through applying the HFSS simulator.
A planar monopole MPA is designed by [49] with U-shaped
patch and slantwise cut partial ground plane forMSS (mobile
satellite services). By optimizing the cut in patch and partial
ground plane length, the designed antenna has been reduced.
During this work, frequency stable radiation patterns and
bands have been obtained. Experimental solutions shows that
the extreme radiation competence attained has 13 % for 2–
2.1 GHz frequency, and competence has 75% for 4–4.7 GHz.
MFO algorithm has been used by [12] for designing the high
performance and inexpensive MPA during this work. The
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return loss cost of developed algorithm is 20 dB with a band-
width of 3.1 GHz. The newly existing approach robustness
is examined based on return loss as well as antenna gain.

In particular, Archimedes optimization algorithm (AOA)
[22] is a new metaheuristic that has already started attract-
ing attention. The purpose of the present-day study is the
enhanced application of a novel modified MHAs based on
the mixture of AOA with levy flight called Levy Flight
Archimedes optimization algorithm (LAO) for considering
the microstrip patch antenna issues. All experimental efforts
proves that the LAO algorithm robustness is better to other
well-known MHAs in the literature. In summary, the main
contributions of this work are:

• A novel enhanced method called LAO algorithm that
includes features from AOA and levy flight is proposed.

• proposed method is developed for solving 29-CEC 2017
standard test suites.

• The proposed strategy is developed for the design of
microstrip patch antenna’s.

• Statistical and qualitative experimental analyses assess
the robustness of the LAO algorithm compared to recent
competitive MHAs.

The remainder of this paper is as follows: An overview
about theArchimedes optimization algorithm (AOA) is given
in Sect. 2. Section 3 describes the mathematical model of
the proposed LAO algorithm. Section 4 presents the results
and their analyses obtained by the proposed strategy and the
competitor algorithms. Brief details of the optimal solutions
of antenna design issues are given in Sect. 5. Lastly, Sect. 6
concludes the paper.

2 Archimedes optimization algorithm (AOA)

The AOA is a recent population-based method, and it has
been developed by Hashim et al. [22], which mimics the
Archimedes’ principle. In this methodology, the search pro-
cess of each member of crowd in the complex domain starts
with accelerations, densities and random volumes, respec-
tively. Here, the object is also re-modified with its random
location in fluid. After testing fitness of each object, this
method works in generations until stopping criteria are not
met. This method also updates the volume and density for
each object in all iterations during the whole search process.
The acceleration of each object has been modified based on
the conditions of its collision with the nearest object. The
reorganized acceleration, density and volume defines the new
update location of an object. Further, the mathematical for-
mulation ofAOAmethod has been illustrated in the following
steps:

• Initialization For initializing the location or position of
the each object in the search domain during the search
process, Eq. 2.1 is applied:

oi = lowi + r × (upi − lowi ); i = 1, 2, ..., N (2.1)

where oi , low and upi illustrate the i
th object in a crowd,

lower and upper bound of the search area.
For initializing the volume and density for the each object
in the search domain during the search process, Eqs. (2.2–
2.3) are applied:

di = rand (2.2)

vi = rand. (2.3)

Further, initialize the acceleration of the each object by
Eq. (2.4):

ai = lowi + r × (upi − lowi ). (2.4)

During this stage, it assesses the initial crowd and iden-
tifies the best object with the help of best fitness score.

• Modify volume and densities The volume and density of
object have been modified by Eqs. (2.5–2.6);

vt+1
i = vti + r × (vbest − vti ) (2.5)

dt+1
i = vti + r × (dbest − dti ) (2.6)

where r , dbest and vbest illustrate the random number,
density and volume linked with the best object found so
far, respectively.

• Density factor and transfer operator The followingmath-
ematical equations have been used for transform search
from exploration to exploitation:

T f = exp

(
t − tmax

tmax

)
(2.7)

where t and tmax illustrate iteration number and maxi-
mum iterations. Similarly, the density factor has calcu-
lated by the following mathematical equation:

dt+1 = exp

(
t − tmax

tmax

)
−

(
t

tmax

)
. (2.8)

• Exploration stage If tmax ≤ 0, then object’s acceleration
updated by the following mathematical equation is:

at+1
i = dmr + vmr × amr

dt+1
i × vt+1

i

(2.9)

where di , ai and vi illustrate the density, acceleration and
volume of object i .

123



3686 Arabian Journal for Science and Engineering (2022) 47:3683–3706

• Exploitation stage If tmax > 0, then the acceleration
updated by the following mathematical equation is:

at+1
i = dbest + vbest × abest

dt+1
i × vt+1

i

(2.10)

where abest is denoted the acceleration of the superior
object.

• Normalize acceleration For evaluating the % of change,
the normalize acceleration equation is applied:

at+1
i−norm = u × at+1

i − min (a)

max (a) − min (a)
+ l (2.11)

where u and l denote the constant parameters; generally,
these range set amid 0.9 to 0.1, respectively.

• Modified location of object If tF ≤ 0.5, then the next
position of object’s is updated by the following equation:

xt+1
i = xti + c1 × r × at+1

i−norm × d × (
xr − xti

)
(2.12)

where c1 = 2 denotes the constant value. Similarly if
tF > 0.5, then the location of the each object’s is replaced
or modified by the following equation:

xt+1
i = xtbest + F×c2×r ×at+1

i−norm ×d×(
t × xbest − xti

)
(2.13)

where c2 = 6 denotes the parameter value. F denotes the
flag, and it is applied for replacing the position of motion
using following equation:

F =
{+1 if p ≤ 0.5
−1 if p > 0.5

(2.14)

where p = 2 × r − c4.
• Calculation The fitness function is used for identifying
the best solution so far, and select xbest, dbest,vbest and
abest, respectively.

2.1 Pseudo-code of AOA

The pseudo-code of AOA is illustrated by Algorithm 1.

3 Modified Archimedes Optimization
Algorithmwith Levy Fight (LAO)

The AOA is the most recent algorithm. It is developed for
tackling the complex issues of the different domains. But
due to some shortcomings, it faced some issues such as pre-
mature convergence, and producing incompetent solutions is
still persisting. The levy flight phase has been applied in the

Algorithm 1 Pseudo-code of AOA algorithm
START
Inputs: The N crowd size, tmax total number of generations and c1,
c2, c3, c4 constants etc

Initialization of Objects by randomly, volumes, densities applying
equations (2.1)-(2.3) etc.
Evaluate objective function for the given solutions

Set counter t = 1
while t ≤ tmax do

for all object i do
, Modify volume and density of all object by equations (2.5)-(2.6)
Modify the density and transfer factors by equations
(2.7)-(2.8)

if tF ≤ 0.5 then
Modify acc and normalize acc by equations (2.9) and (2.11)
Evaluate locations by equation (2.12)

else if tF > 0.5 then
Modify acc and normalize acc by equations (2.10) and (2.11)
Modify location flag F by equation (2.14)
Evaluate locations by equations (2.13)

end if
end for
Calculate all object and choose the best one through better fitness

score
Set t = t + 1
end while
Return best score
END

position update equation of the object ofAOAwhich can han-
dle these issues. The levy flight is most famous for its own
long jumps, so it helps in improving the position of each
object in the search area. Additionally, it also helps to ignore
the local optima for finding the best score globally. Hence,
the enhanced methodology traps the best optima solutions
in the search space during the search process without being
trapped in local optima. Further, the modification steps are
illustrated through the followings sub-sections.

3.1 Constant Settings

During the implementation of the code of the evolutionary
algorithms, various constant have been fixed such as crowd
size (N = 30), total number of iterations (tmax = 500) and
constants (c3 = 1 & c4 = 2). In literature, it could be seen
that the performance and robustness of the algorithm depend
on the parameter settings. The above parameter settings are
most famous due to their best balance. With this fact, in this
research, the same parameter settings have been taken.

3.2 Initialization

Under implementation, the value of each variable of problem
denotes the location of each object in the search domain.
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Here, the position of each object is assigned by equations
(2.1–2.4).

3.3 Fitness Evaluation

The best and worst fitness of each object at every iteration
has been calculated by the following equations:

Fbest = Min(fit j (z)) jε(1, 2, ..., n) (3.1)

Fworst = Max(fit j (z)) jε(1, 2, ..., n) (3.2)

where Fbest and Fworst illustrate the best and worst fitness for
minimization functions.

3.4 Lévy Flight

The lévyflight [50] is a randomwalk inwhich the step lengths
have aLévydistribution and is a non-Gaussian r process. This
is simple power law mathematical formula L(s) ∼ |s|−1−β ,
where 0 < β < 2 is an index. Generally, it is most famous
for its long jump, which helps in improving the premature
convergence of the evolutionary algorithms. Mathematical
formulation of lévy flight has been illustrated in the following
forms [51] and [52]:

L (s, γ, μ) =
⎧⎨
⎩

√
γ
2π × exp

[
− γ

2(s−μ)

]
1

(s−μ)
3
2

if 0 < μ < s < in f

0 if s ≤ 0

(3.3)

where μ and γ > 0 illustrate the scale factor or parameters.
This distribution can be formulated in the form of Fourier
transform as :

F(k) = exp
[−α |k|β]

, 0 < β ≤ 2 (3.4)

where α shows the scale factor, and it lies amid [−1, 1] inter-
val, and βε(0, 2] denotes the index of stability. In some
special case for β = 1, the integral can be carried out
analytically, and it is also called Cauchy distribution. Math-
ematically, it can be formulated in the following form:

F(k) = exp [−α |k|] , 0 < β ≤ 2. (3.5)

Similarly, when β = 2, the distribution corresponds to Gaus-
sian probability distribution as

F(k) = exp
[
−αk2

]
. (3.6)

Here, α, β, μ and γ show the major and minor part in
determination of the probability distribution. The β plays a
role for controlling the shape of prob-distribution and tomake
longer jumps because there will be a big tail [53]. Other side,

the α denotes the skew position. When α = 0, it indicates
the prob-distribution is symmetric. The γ and μ illustrate
the width and shift of the prob-distribution peaks [54].The
distinct values of β work to change the prob-distribution. It
makes big jumps for least constant value, whereas it makes
smaller jumps for large constant value.
Modified Position of Object

After studying the details that how probability distribution
performed by applying levy flight, here, we are applying the
levy phase for enhancing the following position update Eq.
(2.13) of AOA for finding the location values of new object.
When generating the new outcome or solution xt+1

i for the
i t h outcome xtbest by performing levy flight, the new search
agent xt+1

i is illustrated as follows:
Here, if tF > 0.5, then

xt+1
i = xtbest + F × c2 × r × at+1

i−norm × d × (
t × xbest − xti

)⊕ Levy(β)

(3.7)

where c2 = 6 and ⊕ denote the parameter value and entry-
wise multiplications.

In Mantegna Algorithm, the step size s can be defined as
follows:

s = random(size(d))⊕ levy(β) ∼ 0.01
u

|v|1/β ×(
t × xbest − xti

)
(3.8)

where random(size(d)) is a random step size parameter, β is
a Levy Flight distribution parameter,t represents the number
of iterations, and v and u are drawn form normal probability
distribution, such as

u ∼ N (0, σ 2
u )v ∼ N (0, σ 2

v ) (3.9)

with

σu =
{

	(1 + β)sin(
πβ
2 )

	[( 1+β
2 )]β(β−1)/2

}
σv = 1. (3.10)

Here, 	 and s illustrates the standard gamma function and
step size sample.

The F denotes the flag, and it is applied for replacing the
position of motion using Eq. (2.14). If tF ≤ 0.5, then the
next position of each object’s is updated by Eq. (2.12).

3.5 Stopping condition

At the end, stopping condition has been utilized for updating
the new location of each object. These criteria are continu-
ously repeated until it satisfies the criteria of prevention for
example whether it reaches the highest no. of generations or
the output is found earlier.
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And the rest of the operations are same as AOA algorithm.

3.6 Pseudo-Code of LAO

The pseudo-code of LAO is illustrated by Algorithm 2.

Algorithm 2 Pseudo-code of LAO algorithm
START
Inputs: The N crowd size, tmax total number of generations and c1,
c2, c3, c4 constants etc

Initialization of objects by randomly, volumes, densities using equa-
tions (2.1)-(2.3) etc.
Evaluate objective function for the given solutions

Set counter t = 1
while t ≤ tmax do

for each object i do
Amend volume and density of each object by equations (2.5)-(2.6)
Amend the density and transfer factors by equations
(2.7)-(2.8)

if tF ≤ 0.5 then
Amend acc and normalize acc by equations (2.9) and (2.11)
Calculate positions or locations by equation (2.12)

else if tF > 0.5 then
Amend acc and normalize acc by equations (2.10) and (2.11)
Amend position flag F by equation (2.14)
Calculate locations or position by equations (3.7)-(3.10)

end if
end for
Evaluate every object and choose the best one by best fitness value

Set t = t + 1
end while
Return best output
END

4 Results Analysis and Discussion of CEC
2017 Test Suites

For verifying the robustness and accuracy of the LAO
method, a comprehensive simulation has been executed. For
assessment, numerous recent robust optimizers such as SCA
[21], Chimp [23], SBPO [55] and AOA [22] algorithms have
been compared with the proposed LAO method.

4.1 Constant Settings and CEC 2017 Test Suites

The code of all evolutionary methods have been coded in
R2018a for testing the robustness of the algorithms. Under
the implementation of the evolutionary algorithms, the var-
ious constant settings have been fixed such as total number
of objects (30) and maximum iterations (500).

To examine the robustness of the proposed LAOmethod, a
well-known29-CEC2017 test suite has taken [56] and shown

in Table 1. The 3D graphs of these test suites are also shown
in Fig. 1. In CEC 2017, 29-test suites involved, which have
been divided into four categories such as unimodal, simple
multimodal, hybrid and composition test suites. Multimodal
test suites are applied to testing competing evolutionary
algorithms to ignore adaptation as these suites have vari-
ous local optima values. Additionally, composite test suites
have applied to examine the balance amid the exploration
and exploitation phases (Table 2; Fig. 2).

Experimental optimal solutions of the evolutionary algo-
rithms on 29-CEC 2017 standard test suites are given in
Tables (3, 4 and 5) in terms of min and max objective values,
average and standard scores, etc. The convergence graphs
have been plotted of evolutionary methods through Figs. 3,
4, 5 and 6. In these graphs, the x-axis and y-axis illustrate the
number of iterations and best solutions so far, etc.

The least and maximum score of the objective function
represents the best outputs of the evolutionary algorithms.
Results of tables show that the LAO method is able to find
the best optima for 29-CEC 2017 standard test functions as
compared to others. The least average and standard scores
are proved the superior stability and fast convergence speed
of the LAOmethod as compared to others. Hence, all simula-
tions have proven that the LAOmethod is able to provide best
global optima solutions in the complex domains as compared
to SCA, Chimp, SBPO and AOA methods.

In addition, the more explanation of the LAO results have
been illustrated through the following sub-sections.

4.2 Discussion

To examine the robustness of the LAO algorithm, 29-CEC
2017 test suites have been used which are shown in Tables
3–5. These test suites have been divided into three distinct
phases, such as: Firstly, unimodal test suites,which have been
used for evaluating the exploitation capability; secondly, the
multimodal test suites, which have been used to find the best
score on many local optima which verified the capability of
the algorithms; and at the end, hybrid and composite test
suites which have been used to verify the exploitation per-
formance of the evolutionary algorithms.

4.3 Exploitation Ability

Unimodal test suites have only one global compatibility
which is used to evaluate the exploitation phase. Exper-
imental results of evolutionary algorithms in tables show
that the proposed method is competent to give better optima
than others. Hence, results reveal that the LAO method has
demonstrated superior exploitation abilities that outperform
than others. The objective of these best results is that the
modification of algorithms allowed the problem to reach the
optima. Hence, the experimental output shows that the LAO
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Fig. 1 Graphs of CEC 17 standard test suites
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Table 1 Summary of the CEC 2017 test suite

Name No. F F∗
i =F(x

∗)

Unimodal f1 Shifted and rotated Bent Cigar function 100

Unimodal f2 Shifted and rotated Zakharov function 200

Simple multimodal f3 Shifted and rotated Rosenbrock’s function 300

Simple multimodal f4 Shifted and rotated Rastrigin’s function 400

Simple multimodal f5 Shifted and rotated Expanded Scaffer’s F6 function 500

Simple multimodal f6 Shifted and rotated Lunacek Bi-Rastrigin function 600

Simple multimodal f7 Shifted and rotated Non-Continuous Rastrigin’s function 700

Simple multimodal f8 Shifted and rotated Levy function 800

Simple multimodal f9 Shifted and rotated Schwefel’s function 900

Hybrid f10 Hybrid function 1 (N = 3) 1000

Hybrid f11 Hybrid function 2 (N = 3) 1100

Hybrid f12 Hybrid function 3 (N = 3) 1200

Hybrid f13 Hybrid function 4 (N = 4) 1300

Hybrid f14 Hybrid function 5 (N = 4) 1400

Hybrid f15 Hybrid function 6 (N = 4) 1500

Hybrid f16 Hybrid function 6 (N = 5) 1600

Hybrid f17 Hybrid function 6 (N = 5) 1700

Hybrid f18 Hybrid function 6 (N = 5) 1800

Hybrid f19 Hybrid function 6 (N = 6) 1900

Composition f20 Composition function 1 (N = 3) 2000

Composition f21 Composition function 2 (N = 3) 2100

Composition f22 Composition function 3 (N = 4) 2200

Composition f23 Composition function 4 (N = 4) 2300

Composition f24 Composition function 5 (N = 5) 2400

Composition f25 Composition function 6 (N = 5) 2500

Composition f26 Composition function 7 (N = 6) 2600

Composition f27 Composition function 8 (N = 6) 2700

Composition f28 Composition function 9 (N = 3) 2800

Composition f29 Composition function 10 (N = 3) 2900

– – Search range [−100,100]D -

method has a better exploitation behavior which is significant
for numerous issues of compatibility that are essential to be
addressed. As stated formally, unimodal CEC 2017 standard
test suites are more appropriate for the benchmarking evo-
lutionary algorithms. Experiments prove that the proposed
method is highly functional. In addition, this modification
shows that it is most effective and successful for finding the
solution of complex issues in the complex domains.

4.4 Capability Assessment

Multimodal test suites contain various variables and local
global optima which exceeds exponentially with the size
of function as compared to these unimodal test suites. In
general, these are used for testing the suitability of the evolu-

tionary methods. Hence, simulation concluded that the LAO
method reaches a sophisticated finding competency.

4.5 Exploration and Exploitation

Hybrid and composition test suites are normally utilized to
assess the capability of local optima survivors and the stabil-
ity amid exploitation and detection, which comprises a huge
amount of local and global optima. Results show that the
LAOmethod is able to create a best balance during exploita-
tion or detection. Due to that fact, LAO method provides a
huge amount of optima in the complex domain due to the
levy flight. Levy flight helps in creating a new location for
all objects at each generation and amend the current position
of each object to the highest position in many aspects that
make it possible for the LAO method to reach the optima
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solution. In these test suites, a huge level of complex search
spaces are involved, while this high exploration is needed for
finding the accurate optima outputs. The solutions of these
test suites prove that the LAOmethod has an high scan ability
which leads this to the best global optimizer.

Additionally, the LAO method involves the high-level
local optima avoidance capacity. This quality helps the pro-
posed method to reach up to the best optima fastly. So the
proposedmethod can enhance the search space and find areas
of ease of discovery by improving the number of local opti-
mas.

4.6 Exactness

Evolutionarymethod exactness on 29-CEC2017 test suites is
given in Table 2.This performance has been designed through
the results of Table (4). Average scores in Table 2 have been
divided into two different phases such as worst (W ) and best
(B), respectively. In general, least average scores show the
exactness of the algorithms for the best optima’s. Experi-
ments prove that the LAO method is able to find the best
optima on maximum standard suites against least average
scores as compared to others. These efforts show the exact-
ness of the proposed method, and results provide strong
evidence that proposed method is able to provide accurate
solutions for highly complex space issues.

4.7 Stability

As in the literature, the stability of the algorithms have been
verified through standard deviation (sd) scores. So the sta-
bility of the algorithms has been discussed statistically. Each
(sd) score of all algorithms on 29-CEC 2017 standard test
suites is plotted in Fig. 2. These graphs show that the pro-
posed method is able to find the best optima against least
(sd) scores, and these sd scores are near to zero on maximum
standard suites, and it means that the LAO is stable on the
CEC suites that were performed. These efforts show the fast
convergence performance of the proposedmethod against the
others. Hence, on the basis of these solutions, we can say that
this strategy can trap the best optima’s fastly as compared to
others.

4.7.1 Convergence Performance

Now, we are describing the performance of the algorithms
through the convergence graphs on 29-CEC 2017 standard
test suites. All these graphs are shown in Figs. 3, 4, 5 and 6.
Graphs have been plotted through x-axis and y-axis, where
x-axis illustrates the number of iterations and y-axis shows
the obtained best global optima so far. In these graphs, we
can easily see how much each algorithm takes the number
of periods to find the best optima against the number of gen-

Table 2 Average values of algorithms on CEC 2017 standard test suites

F SCA Chimp SBPO AOA LAO

f1 W W W W B

f2 W W W W B

f3 W W W W B

f4 W W W W B

f5 W W W W B

f6 W W W W B

f7 W W W W B

f8 W W W W B

f9 W W W W B

f10 W W W B W

f11 W W W W B

f12 W W W W B

f13 W W W W B

f14 W W W W B

f15 W B W W W

f16 W W W W B

f17 W W W W B

f18 W W W W B

f19 W W W W B

f20 W W W W B

f21 W W W W B

f22 W W W W B

f23 W W W W B

f24 W W W W B

f25 W W W W B

f26 W W W W B

f27 W W W W B

f28 W W W W B

f29 W W W W B

erations. As per study of Berg et al. [57], this behavior can
assure that the algorithms ultimately converge to a point and
are found locally.

With these reasons, further we can discuss how to trap
the optima by LAO method in the search space. Each object
moves from high value to low value, so with the assumption
of strength of LAO, all objects and their fitness are modi-
fied during generations. With this strategy, we save the best
optima for searching the next best optima which helps the
objects to find the next new position or best optima’s. Based
on these graphs, we concluded that the LAO method can
provide the best optima against the least number of iterations
as compared to others. This proposed methodology also can
help in saving time for complex issues and is able to resolve
very difficult problems.
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Fig. 2 Standard deviation (sd) scores algorithms on 29-CEC 2017 standard test suites

Table 3 Numerical performance of evolutionary algorithms on the 29-CEC 2017 test suits

F SCA Chimp SBPO AOA LAO
f1–29 Fmin Fmax Fmin Fmax Fmin Fmax Fmin Fmax Fmin Fmax

f1 7.46E+10 2.12E+11 5.80E+10 2.30E+11 1.32E+11 1.42E+11 5.82E+10 2.31E+11 5.20E+10 2.39E+11

f2 2.53E+05 7.85E+08 2.22E+05 1.04E+11 3.82E+05 4.90E+07 1.56E+05 4.63E+11 1.01E+05 5.84E+11

f3 1.02E+04 1.05E+05 1.33E+04 1.09E+05 2.56E+04 5.13E+04 1.43E+04 1.30E+05 1.01E+04 1.38E+05

f4 1.13E+03 1.84E+03 1.09E+03 1.74E+03 1.32E+03 1.50E+03 1.10E+03 1.66E+03 1.06E+03 1.98E+03

f5 6.88E+02 7.45E+02 6.89E+02 7.64E+02 7.01E+02 7.28E+02 6.89E+02 7.55E+02 6.78E+02 7.72E+02

f6 1.92E+03 5.60E+03 1.71E+03 6.30E+03 5.01E+03 5.48E+03 1.76E+03 6.87E+03 1.68E+03 6.94E+03

f7 1.12E+03 1.38E+03 1.22E+03 1.24E+03 1.08E+03 1.46E+03 1.07E+03 1.50E+03 1.04E+03 1.89E+03

f8 9.68E+03 4.74E+04 1.10E+04 4.99E+04 1.86E+04 2.15E+04 8.61E+03 4.55E+04 7.32E+03 6.02E+04

f9 2.47E+03 3.42E+03 2.87E+03 3.49E+03 2.43E+03 2.43E+03 2.45E+03 3.84E+03 2.09E+03 3.99E+03

f10 5.78E+03 1.29E+05 6.71E+03 6.15E+04 2.85E+04 2.94E+04 5.77E+03 2.08E+04 3.93E+03 4.15E+05

f11 1.69E+09 3.47E+10 5.91E+09 2.77E+10 9.97E+09 2.00E+10 2.10E+09 2.24E+10 1.30E+09 3.72E+10

f12 9.39E+08 1.71E+10 8.54E+09 3.27E+10 1.61E+10 1.77E+10 1.12E+09 2.70E+10 6.36E+08 3.11E+10

f13 2.16E+03 4.00E+05 3.48E+03 3.90E+07 3.57E+06 3.99E+06 1.62E+03 5.86E+05 1.57E+03 8.46E+06

f14 4.01E+08 4.46E+10 3.26E+08 2.82E+10 1.03E+10 2.82E+10 5.91E+08 3.55E+10 1.52E+08 4.00E+10

f15 6.58E+03 1.57E+04 6.84E+03 1.90E+04 7.80E+03 9.29E+03 6.65E+03 2.11E+04 5.78E+03 3.34E+04

f16 8.37E+04 5.83E+07 5.41E+04 9.84E+07 1.53E+06 1.65E+06 1.13E+05 1.34E+08 2.86E+04 8.55E+08

f17 4.63E+06 4.20E+08 4.32E+06 7.28E+08 1.15E+08 2.18E+08 2.16E+07 1.96E+09 2.44E+06 2.10E+09

f18 8.75E+07 7.96E+09 4.17E+08 9.15E+09 3.53E+09 4.89E+09 6.68E+06 6.27E+09 1.78E+06 1.38E+10

f19 3.02E+03 3.38E+03 3.28E+03 4.24E+03 3.28E+03 3.44E+03 3.03E+03 4.24E+03 2.76E+03 4.71E+03

f20 2.57E+03 2.96E+03 2.58E+03 3.02E+03 2.71E+03 2.83E+03 2.59E+03 2.97E+03 2.55E+03 3.72E+03

f21 1.03E+04 1.18E+04 1.02E+04 1.25E+04 9.55E+03 9.99E+03 1.07E+04 1.30E+04 7.62E+03 1.99E+04

f22 2.65E+03 2.82E+03 2.65E+03 2.97E+03 2.69E+03 2.72E+03 2.66E+03 2.85E+03 2.64E+03 3.02E+03

f23 2.79E+03 3.09E+03 2.80E+03 2.91E+03 2.83E+03 2.83E+03 2.78E+03 3.17E+03 2.63E+03 3.35E+03

f24 1.05E+04 6.12E+04 9.79E+03 6.31E+04 2.17E+04 4.33E+04 9.66E+03 6.60E+04 8.46E+03 7.69E+04

f25 7.59E+03 1.60E+04 7.21E+03 1.83E+04 9.06E+03 1.15E+04 7.38E+03 1.83E+04 6.66E+03 2.36E+04

f26 3.53E+03 5.84E+03 3.63E+03 6.15E+03 3.42E+03 3.74E+03 3.33E+03 5.48E+03 3.20E+03 6.37E+03

f27 4.20E+03 1.55E+04 5.92E+03 1.30E+04 6.79E+03 9.50E+03 3.30E+03 1.15E+04 3.20E+03 1.72E+04

f28 5.92E+03 9.53E+03 5.08E+03 2.07E+04 5.92E+03 6.74E+03 5.62E+03 4.34E+04 5.07E+03 8.05E+04

f29 9.30E+07 3.81E+09 8.67E+07 1.05E+10 9.24E+08 1.01E+09 3.01E+07 1.37E+09 2.30E+07 3.93E+10
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Fig. 3 Convergence graphs of evolutionary algorithms on unimodal test functions

Summing up, on the basis of all simulations, we concluded
that the proposedmethodology can tackle the complex issues
strongly.

5 Antenna Design Problems

5.1 Microstrip Patch Antenna-I

Nowadays, it is widely accepted that growing societies are
increasinglydistinguishedby—more aged, lessmobile/healthy,
rising cost of medical processes and even the declining finan-
cial assets. To tackle all these problems, telemedicine/telecare
including primitive measures to observe patients in a timely
fashion within their own home is just the beginning to pro-
vide a cost-effective and less painful solution in comparison
with treatment in hospitals/other institutions. Moreover, it
is generally found that most of the patients in such critical
situations prefer to bemonitoredwithin their own home envi-
ronment. To solve all such issues, wearable textile antennas
attracted more attention in past few years. Their rapid growth
of wireless body area networks has increased its scope in
applications like medical, sports, emergency services like
firefighters, detectives and police, etc. In all these applica-
tions,wearable antenna is integrated in clotheswhich transfer
the data from the sensors that are placed on body to central
database/station. Traditional wearable systems were bulky
due to large size of batteries and antenna. But due to the
latest advancements in fabrication technologies, nowadays,
size of wearable systems is getting miniaturized, and tex-
tile materials are being used in fabrication of antennas. The

various features like effective cost, low profile, lightweight,
easy realization and its bending and crumbling features make
textile microstrip patch antennas more suitable candidate for
WBAN applications.

Based on research point of view, the motive of this work is
to design a wearable textile microstrip patch antenna, which
will operate in 2.3 GHz band. The fitness function to be max-
imized is illustrated in Eq. (5.1):

F = −S11 (2.3 GHz) (5.1)

The performance parameters like return loss, gain, band-
width and VSWR of the antenna are measured. Finally,
the performance of antenna is enhanced by applying the
improved LAO optimization algorithm.

5.1.1 Antenna Design Material

The conductive material used for designing and fabrication
of proposed antenna is copper foil tape (CFT). It is used as
it has flexibility, high conductivity, i.e., 5.88 × 107 and low
thickness of 0.14 mm. The textile materials polyester is cho-
sen to make substrate of antenna because of its availability,
durability and inelasticity. Moreover, textile substrate-based
antennas can be easily integrated into clothes without inter-
feringwith the user’s comfort. The textilematerial used along
with its properties is given in Table 6.
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Fig. 4 Convergence graphs of evolutionary algorithms on simple multimodal test functions

5.1.2 Proposed Antenna Geometry

The proposed antenna details are shown in Fig. 7. The overall
size of the antenna is 32mm×40mm, while the thickness of
the substrate varies with the type of textile fabric. The per-
mittivity of 1.6 and loss tangent 0.02 have been taken during
this design. The feed to antenna is provided by a microstrip
feed whose width is taken as (W f = 2.52) mm and length
(L f = 19.5) to match the impedance properly. There is no
ground metallization underneath the radiator for appropriate
procedure. The proposed antenna’s design is quite simple
which is modified from rectangular patch shape. The radiat-
ing patch is glass-shaped geometry with partial ground plane

that results in wider bandwidth coverage, and it is below the
feed line on other side of the substrate. The initial geometry
of patch is shown in Fig. 7 and Eq. 5.2.

P0 = (x0, y0)

P1 = (x1, y0 + 
y1)

P2 = (x2, y0 + 
y1 + 
y2)

P3 = (x3, y0 + 
y1 + 
y2 + 
y3)

P4 = (x4, y0 + 
y1 + 
y2 + 
y3 + 
y4)

P5 = (x5, y0 + 
y1 + 
y2 + 
y3 + 
y4 + 
y5)

P6 = (−x5, y0 + 
y1 + 
y2 + 
y3 + 
y4 + 
y5)
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Fig. 5 Convergence graphs of evolutionary algorithms on hybrid test functions
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Fig. 6 Convergence graphs of evolutionary algorithms on composition test functions
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Table 4 Average values (μ) of evolutionary algorithms on the 29-CEC
2017 test functions

F SCA Chimp SBPO AOA LAO
F1–23 μ μ μ μ μ

f1 1.16E+11 1.63E+11 1.34E+11 6.05E+10 5.47E+10

f2 6.75E+06 4.62E+08 4.36E+05 1.61E+09 1.41E+05

f3 3.42E+04 6.20E+04 2.58E+04 1.60E+04 1.16E+04

f4 1.27E+03 1.45E+03 1.37E+03 1.12E+03 1.03E+03

f5 7.07E+02 7.35E+02 7.02E+02 6.94E+02 6.82E+02

f6 2.89E+03 4.11E+03 5.10E+03 1.84E+03 1.76E+03

f7 1.20E+03 1.22E+03 1.28E+03 1.09E+03 1.00E+03

f8 1.99E+04 3.35E+04 1.87E+04 9.28E+03 7.87E+03

f9 2.64E+03 2.90E+03 2.43E+03 2.86E+03 2.05E+03

f10 1.23E+04 2.87E+04 2.85E+04 8.62E+03 2.87E+04

f11 5.33E+09 1.43E+10 1.03E+10 2.64E+09 1.02E+09

f12 3.29E+09 1.49E+10 1.63E+10 1.49E+09 1.21E+09

f13 1.50E+04 1.53E+05 1.66E+06 4.99E+04 1.02E+04

f14 3.78E+09 7.94E+09 1.13E+10 1.09E+09 6.51E+08

f15 7.76E+03 1.02E+03 7.81E+03 6.89E+03 1.25E+03

f16 1.87E+06 2.48E+07 1.53E+06 9.79E+05 8.28E+05

f17 2.43E+07 3.72E+07 1.15E+08 3.33E+07 1.18E+07

f18 8.56E+08 2.10E+09 3.61E+09 7.08E+07 1.05E+07

f19 3.19E+03 3.57E+03 3.28E+03 3.28E+03 3.00E+03

f20 2.65E+03 2.81E+03 2.72E+03 2.60E+03 2.57E+03

f21 1.05E+04 1.05E+04 9.76E+07 1.13E+04 8.21E+03

f22 2.65E+03 2.67E+03 2.69E+03 2.67E+03 2.63E+03

f23 2.79E+03 2.85E+03 2.83E+03 2.80E+03 2.71E+03

f24 2.66E+04 3.79E+04 2.25E+04 1.03E+04 8.94E+03

f25 8.30E+03 1.01E+04 9.09E+03 7.59E+03 6.87E+03

f26 3.65E+03 4.39E+03 3.43E+03 3.40E+03 3.27E+03

f27 6.21E+03 9.24E+03 7.00E+03 3.86E+03 3.56E+03

f28 6.15E+03 8.75E+03 5.92E+03 5.91E+03 5.56E+03

f29 7.82E+08 2.03E+09 9.24E+08 7.36E+07 5.42E+07

P7 = (−x4, y0 + 
y1 + 
y2 + 
y3 + 
y4)

P8 = (−x3, y0 + 
y1 + 
y2 + 
y3)

P9 = (−x2, y0 + 
y1 + 
y2)

P10 = (−x1, y0 + 
y1)

P11 = (x0, y0) (5.2)

5.1.3 Discussion on Results of Antenna-I

In this work, we have optimized ten constants (x1 to x5 and

y1 to 
y5) for designing the polyester patch antenna. For
designing the antenna, three different algorithms have been
applied. Computer simulation tool (CST) software is used
for designing and simulation of the antennas. The results
of polyester-based antenna is given in Table 12 in terms
of resonant frequency return loss, bandwidth and gain. This

Table 5 Standard deviation values (sd) of evolutionary algorithms on
the 29-CEC 2017 test functions

F SCA Chimp SBPO AOA LAO
F1–23 sd sd sd sd sd

f1 5.04E+10 8.36E+10 2.83E+09 1.20E+10 1.07E+10

f2 7.00E+07 6.57E+09 2.91E+10 3.42E+10 2.65E+07

f3 2.90E+04 4.19E+04 1.48E+03 8.41E+03 1.06E+03

f4 1.76E+02 2.84E+02 3.92E+01 5.06E+01 1.99E+01

f5 3.75E+01 3.36E+01 2.67E+00 7.42E+00 1.90E+00

f6 1.15E+03 1.94E+03 7.55E+01 2.99E+02 1.43E+02

f7 1.14E+02 7.60E-01 1.64E+02 3.39E+01 6.51E−02

f8 8.16E+03 1.68E+04 1.26E+03 2.36E+03 1.17E+03

f9 2.66E+02 9.21E+01 4.55E-12 2.09E+02 9.06E+00

f10 1.25E+04 2.27E+04 8.89E+01 2.54E+03 6.71E+01

f11 5.34E+09 7.92E+09 1.23E+09 2.70E+09 2.42E+09

f12 3.39E+09 8.44E+09 5.40E+08 1.80E+09 2.60E+08

f13 5.96E+04 2.10E+06 2.14E-08 3.84E+05 1.70E+04

f14 6.15E+09 9.78E+09 3.98E+09 2.85E+09 2.05E+09

f15 1.81E+03 3.84E+03 7.11E+01 1.07E+03 7.00E+01

f16 4.08E+06 3.67E+07 4.08E+06 7.49E+06 3.46E+06

f17 2.85E+07 8.83E+07 4.92E+06 1.20E+08 3.73E+06

f18 1.17E+09 2.71E+09 3.06E+08 4.48E+08 2.70E+08

f19 1.98E+02 1.84E+02 1.31E+01 1.93E+02 1.02E+01

f20 1.49E+02 1.57E+02 9.03E+00 3.85E+01 3.52E+00

f21 6.24E+02 4.72E+02 6.55E+02 1.82E+02 3.02E+01

f22 1.20E+02 2.38E+01 2.15E+00 1.83E+01 1.24E+00

f23 1.26E+02 3.72E+01 1.27E-11 3.39E+01 8.07E+00

f24 1.85E+04 2.35E+04 2.67E+03 3.87E+03 2.71E+03

f25 1.40E+03 2.85E+03 1.87E+02 8.97E+02 1.06E+02

f26 2.54E+02 8.06E+02 1.91E+01 2.67E+02 1.60E+01

f27 2.32E+03 3.01E+03 3.63E+02 1.84E+03 1.16E+02

f28 1.11E+03 4.84E+03 3.71E+01 1.77E+03 2.31E+01

f29 7.75E+08 3.31E+09 5.54E+06 2.06E+08 2.21E+06

polyester patch antenna has been designed in the following
form.

Simulated and optimized solutions are given in Table 12.
The performance of the metaheuristics is shown in Figs. (8,
9, 10, 11, 12, 13 and 14). The tabulated results of Table 12
shows that the robustness of LAO algorithms in giving best
solutions such as the resonant frequency (2.257 GHz), return
loss (− 44.68335), band width (589.684161 MHz) and gain
(2.23 dB), respectively. All simulations proved that the pro-
posedmethod is able to give the best optimal values to design
a new antenna as compared to AOA algorithm (Fig. 15).

5.2 Microstrip Patch Antenna (MPA)-II

The basic structure of microstrip patch antenna (MPA) is
shown in Fig. 16. The Shield lt super is a rugged rip-stop
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Table 6 Textile material used
for designing proposed antenna

Textile Thickness Dielectric constant Loss tangent Width of feedline

Polyester 0.14 mm 1.62 0.02 0.7 mm

Fig. 7 Geometry of antenna

fabric which used to design the patch antenna ground plane
and conductive element. This fabric is manufactured by less
EM Incorporated, USA [58] with weight 30 g/m2, thickness
(t) of 0.17 mm, conductivity of 6.67 × 105 and Rs < 0.5�
and a surface resistivity, respectively. During this work, we
are using the sheildlt super and jeans fabric to design the
antenna. During this work, I have taken permittivity (εr ) of
1.70, thickness (h) of 1.00mm and loss tangent of 0.025
[59]. If (εr ) is < 2.0, then MPA can create a higher gain with
effective efficiency [60].

The ground dimension and line feed values have been
optimized by the metaheuristics, and gain graphs have been
plotted by ADS software on the basis of obtained optimized
values.

R-MATLAB-2018a andADS (Keysight Advanced design
system software) have been used for optimizing and plotting
the graphs. The main objective is to minimize the return loss
and maximize the gain of the following function (S11) (5.3):

Fitness = −S11 2.35GHz ≤ f ≤ 2.45GHz (5.3)

Figure 17 illustrates the layout of the wearable MPA fed
by an edge. Figure 18 shows the structure of the wearable
MPA with jeans and Shield lt super fabrics (Tables 7, 8).

The simulated and optimized values are given in the Table
9. The MPA performance have been verified in the terms
of gain, impedance matching, three 3d-dim radiation pat-
tern and return loss (S11), respectively. Here, the least loss
and maximum gain values of the fitness function show the
best optima result for the wearable MPA, while the reflection
coefficient of S11 should be less than − 10 dB [60].

The simulated, optimized, return loss and maximum gain
solutions of wearable MPA are given in Tables 9 and 10.
The return loss and gain of the wearable MPA is plotted by
Figs. 19 and 20. These results have been obtained in the form
of total return loss and maximum gain (in dB), respectively.
Here for wearable MPA antenna-II, the LAO algorithm gives
the total return loss − 35 and gain 2.7 at fc=2.40GHz, AOA
shows total return loss − 34.1023 and gain 2.601 at fc=2.40
GHz while [61] used jeans and denim fabric and clearly
gives that the return loss − 34.4530 with maximum gain
2.689. The optimized results of the proposed LAO method
is more superior than the output found by [61], in [62] using
polyester fabric where return loss was − 30.1520 at fc=2.4
GHz, in [60] using wash cotton fabric where return loss was
− 26.4300 at fc=2.4 GHz, fc=2.45 GHz, in [59] using jeans
fabric where the return loss was − 18.7741 at fc=1.58 GHz
and felt fabric shows return loss − 17.3900 at fc=2.39 GHz
by [58]. All simulation shows that the proposed LAOmethod
is able to find the best optima results for wearable MPA as
compared to others.

5.3 Microstrip E-Shaped Patch Antennas

In this section, we are trying to optimize the E-shaped patch
antenna. This antenna was optimized by [63] by particle
swarm optimization (PSO). During implementation on the
dual-frequency antenna, it operated at 1.8–2.4 GHz fre-
quency, while the antenna had a bandwidth from 1.79–2.43
GHz (30.5 %). Similarly, this antenna was also optimized by
the MPSO algorithm by [64]. During the designing of these
antennas, we had taken dielectric constant 2.55, microstrip
line at (W/2,L f ), fixed width (Wl=5.6mm), respectively.

In [46], the enhanced version of central force optimiza-
tion (CFO) has been proposed for optimizing the E-shaped
patch antennas. The performance of the modified version
has been compared with the differential evolution (DE) algo-
rithm. On the behalf of all simulation, it has been shown that
the CFO optima solutions are near DE solutions. Here, we
are implementing new proposed LAO and AOA algorithms
on microstrip line-fed E-shaped patch antennas in order to
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Fig. 8 Reflection coefficient (dB) versus frequency and imaginary graphs of LAO and AOA algorithms on microstrip patch antenna

evaluate the robustness of the proposed algorithm in such
real antenna issues.

For ignoring the overlap issue in IE3D simulations, the
following restrictions have been taken for this antenna: [64].

Ps + 2Ws < W

Ls < L, L f < L

Ps > Wl + 2W f or Ps + 2Ws < Wl

when Ls + L f >= L (5.4)

The proposed LAO and AOA algorithms have been
applied on the following two different fitness functions to
evaluate the robustness of the algorithms. Under this imple-
mentation, the resonance frequencies have been fixed such
as fr=2.4 GHz) and ( fr=2.4 GHz to 2.484 GHz).

Fitness = −S11(2.4GHz) (5.5)

Fitness = −S11 2.4GHz ≤ f ≤ 2.484GHz (5.6)
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Fig. 9 Reflection coefficient (dB) versus frequency and imaginary graphs of PSO algorithm on microstrip patch antenna

Fig. 10 Simulated and measured VSWR of the antenna
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Fig. 11 Performance efficiency of metaheuristics

Fig. 12 Admittance/s performance of metaheuristics

Fig. 13 Impedance/Ohm performance of metaheuristics

Fig. 14 S-parameters balance for designing the antenna
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Fig. 15 Polyester patch antenna

Experimental results of the algorithms are illustrated in
tables. During the comparison of the optima solutions of
the algorithms in tables, results show that the proposed
method gives highly effective solution on these functions in
comparison with CFO, DE and MPSO algorithms. For first
function, the proposed method provides return loss − 88 dB,
bandwidth 45.76 and for second function the fitness value
− 0.15432, return loss − 16.44 dB and SWR < 1.32 respec-
tively.

Simulated results proved that the proposed method gives
larger bandwidth, best fitness, SWR and return loss than the
CFO, DE and MPSO algorithms. Hence, all the evidences
shows that the proposed method is able to gives the best
solutions for these real antenna issues (Tables 11, 12).

Summing up, the proposed method is able to provide
the best solutions to the complex space functions and real
antenna issues.

Fig. 17 Edge feeding method of MPA antenna-II

Fig. 18 WearableMPAantenna-IIwith Jeans and Shield lt super fabrics

Fig. 16 Shapes of MPA
antenna-II
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Table 7 Optimized values P Antenna-I

x1 7.195

x2 8.388

x3 8.419

x4 8.499

x5 6.119


y1 0.539


y2 4.509


y3 2.809


y4 2.699


y5 3.719

Fig. 19 LAO return loss graph for wearable MPA

Table 8 Simulated and
optimized results of
polyester-based textile antenna-I

Textile Simulated results
- Resonant freq.(GHz) Rloss Band width (MHz) Gain (dB)

Polyester 2.3 − 17.31 420 2.10

Algorithm Optimized results
- Resonant freq.(GHz) Rloss Band width (MHz) Gain (dB)

LAO 2.257 − 44.680335 589.684161 2.23

AAO 2.2378 − 20.127853 369.870856 2.17

PSO 2.2712 − 17.730812 475.633525 2.19

Table 9 Simulated and
optimized results of wearable
MPA antenna-II

P Sim. Opt. Opt. Opt.
- val.’s [61] Val.’s [61] Val.’s of LAO Val.’s of AOA

L 47.2781 47.1300mm 47.1123mm 47.1187mm

W 53.7910 53.7910mm 53.6453mm 53.8765mm

L f 30mm 29.0000mm 28.9812mm 29.8972mm

fc 2.4GHz 2.4GHz 2.4GHz 2.4GHz

Return loss (dB) − 33.4526 – – –

Gain (dB) 2.5310 – – –

Table 10 Return loss and Gain (in dB) results of Wearable MPA antenna-II

Names LAO AOA Embong et al. [61] Lim et al. [62] Parmar et al. [60] Rahim et al. [58] Gil et al. [59]

Return loss (in dB) − 35 − 34.1023 − 34.4530 − 30.1520 − 26.4300 − 17.3900 − 18.7741

At fc(in GHz) 2.40 2.40 2.40 2.40 2.45 2.39 1.58

Gain (in dB) 2.710 2.601 2.689 – – – –
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Table 11 Simulated and
optimized results of E-shaped
patch antenna on Eq. (5.5)

W L Ws Ls Ps W f L f

LB 29 30 0 09 02 01 0

UP 69 45 18 19 34 04 18

CFO 53.7 39.58 9.59 15.46 22.16 2.15 12.79

DE 64.2 39 10.95 14.05 14.86 2.25 9.44

LAO 55.12 39.04 9.36 14.99 16.55 2.01 10.78

Algorithm Fitness S11(2.4GHz) Band width (MHz)

CFO − 22 × 10−4 − 73 dB 35.5

DE − 5.02 × 10−4 − 66 dB 44

LAO − 25 × 10−4 − 88 dB 45.76

Table 12 Simulated and
optimized results of E-shaped
patch antenna on Eq. (5.6)

W L Ws Ls Ps W f L f

CFO 64.24 36.96 5.03 12.21 12.44 1.84 10.83

DE 69 39.84 6.86 9.16 15.7 1.57 17.85

MPSO 67 37.42 7.92 9.88 14.5 3.37 10.86

LAO 68.03 36.93 7.01 9.32 14.9 2.86 15.66

Algorithm Fitness S11(f) SWR

CFO − 0.20654 < − 13 dB < 1.58

DE − 0.16013 < − 15.5 dB < 1.4

MPSO – < − 13.9 dB < 1.5

LAO − 0.15432 < − 16.44 dB < 1.32

Fig. 20 LAO gain graph for wearable MPA

6 Conclusion and FutureWork

In order to overcome the shortcomings of AOAmethod such
as trap in local optima and incompetent to achievewell global

optima due to initial convergence, AOA is merged with levy
flight in this effort. This modification is known as the LAO
method. The performance of the AOA and LAO method has
been verified on 29-CEC 2017 standard test suites. The LAO
is in competence to provide superior quality of optima’s in
almost each standard test suite and is more influential in
utmost of them. In addition, to confirm the robustness of
the LAO, it is compared with the most latest algorithms such
as SCA, SBPO, Chimp and AOA. The numerical and statisti-
cal efforts gives strong evidence that the LAO is more robust
than others.

Additionally, the proposed method has been successfully
implemented to design four different microstrip patch anten-
nas. The performance of LAO method has been compared
with various metaheuristics in terms of total return loss,
maximum bandwidth, total gain, fitness score and SWR.
Experiments give strong evidence that the accuracy of the
LAO method is able to validate their potential application in
antenna design issues (Fig. 21).

In future work, we shall develop various enhanced algo-
rithms for real world and antenna design issues. In the end,
we expect this work will encourage the young scientists of
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Fig. 21 Geometry of E-shaped antenna

different domains, who are recently working on recent evo-
lutionary algorithms and patch antenna issues.
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