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Abstract
Extraction of frequent itemsets is a key step in association rule mining. Frequent Pattern (FP) mining from a very large dataset
is still a challenging research problem. The basic frequent itemset algorithms are Apriori and FP-growth. FP-growth uses
Frequent Pattern Tree (FP-tree) to store the database information in a compressed form. A large number of research papers
have been proposed as an improvement of the basic frequent itemset mining algorithms. Several researchers have proposed
modifications to existing data structures as well as new data structures to improve the mining process. A new method, Size
Reduced Mining (SR-Mine), is proposed to speed up the FP-tree creation. The proposed work is implemented with the
basic FP-growth algorithm and with the other two recent algorithms based on FP-tree. The three modified algorithms have
been tested with standard datasets and compared with the original algorithms. The proposed method can be applied with the
frequent itemset mining algorithms which consider each transaction one by one to construct a data structure for mining. The
experimental results show that the proposed method can improve the performance of the mining.

Keywords Compressed transactions · FP-tree · Size reduced mining · SR-Mine · FPclose · PrePost+

1 Introduction

Discovering association rules is considered an important
aspect of data mining. Frequent itemset mining is an impor-
tant and time-consuming step in the task of mining asso-
ciation rules. It was first introduced by Agrawal et al. [1]
in the context of transaction databases. The problem of fre-
quent itemsetmining can be defined as follows. A transaction
database is a database containing a bag of transactions, and
each transaction is associated with a unique transaction id.
Let D = {t1, t2, . . . , tN } be a transaction database and
I = {i1, i2, . . . in, } be the set of items appearing in D, where
ti (i ∈ [1 . . . N ]) is a transaction and ti ⊆ I . Each subset of
I is called an itemset. If an itemset contains k items, then
the itemset is called a k-itemset. The support of itemset l
in database D is defined as the percentage of transactions
in D containing l, that is, supportD(l) =| {t | t ∈ D and
l⊆ t} | / | D |. If supportD(l) ≥ min _sup, where min_sup
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is a user-specifiedminimumsupport threshold, then l is called
a frequent itemset in D. Given a transaction database and a
minimum support threshold, the task of frequent itemsetmin-
ing is to find all frequent itemsets in the transaction database
[2].

This algorithm demands an efficient data structure to
store frequent itemsets for further processing in addition to
the problem of a large number of candidates. The Apriori
algorithm has been proposed by Agrawal et al. [1] for min-
ing frequent itemsets. Apriori uses a candidate generation
method, such that the frequent k-itemsets in one iteration can
be used to construct candidate (k + 1)-itemsets for the next
iteration. Apriori terminates its process when no new candi-
date itemsets can be generated. Various methods have been
proposed as the improvement of Apriori. Han et al. [3] pro-
posed the frequent pattern growth (FP-growth)methodwhich
is one of the most efficient and feasible approaches in this
area. Itmines the frequent itemsets byusing a frequent pattern
tree (FP-tree) and avoids costly candidate generation. FP-tree
is a data structure that is used for storing the frequent data of
a transaction database. It achieves much better performance
and efficiency thanApriori-like algorithms. FP-tree stores the
transactions in the database in a compressed form. Another
data structure called header table is also used with FP-tree
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to traverse the tree and find frequent itemsets quickly. The
header table stores frequent 1-itemsets in decreasing order of
their frequencies. Each item in the header table points to the
first occurrence of the corresponding node in the FP-tree. All
nodes with similar items in the FP-tree are connected by a
link. After completing the FP-tree construction, the next step
of the FP-growth algorithm is to mine frequent patterns from
the FP-tree. It starts themining from the least frequent item to
the most frequent item. It traverses from the leaf nodes of the
FP-tree to the root. Paths with the same prefix item in the FP-
tree are used to generate the conditional pattern base, which
is a sub-database. Construct a new FP-tree with each condi-
tional pattern base which is called conditional FP-tree. Using
the conditional FP-tree, the algorithm can generate frequent
itemsets with the same prefix. According to the experimen-
tal results, FP-growth is faster than the Apriori algorithm and
several other methods of mining frequent itemsets.

Recently many improvements have been introduced and
all are faster than the basic FP-growth such as [4–8]. In this
paper, a new size-reduced method (SR-Mine) is proposed.
The proposed method is a novel pre-processing technique
to reduce the tree construction time. The duplicate transac-
tions are compressed to reduce the size of the database. It can
be applied with FP-tree-based algorithms, i.e., any frequent
itemset mining algorithms which consider each transaction
one by one to construct the data structure. The proposed pre-
processing method is combined with three FP-growth-based
algorithms, viz. FP-growth [3], FPclose [9] and PrePost+
[7]. These algorithms are already proved as efficient mining
algorithms.

The new method is a pre-processing method, and it is
attached to the existing algorithms before FP-tree construc-
tion. The remaining codes of the existing algorithms also
have to bemodified to change the support of each transaction.
The three modified algorithms are named as SR-FPgrowth,
SR-PrePost+ and SR-FPclose. To evaluate the efficiency of
the proposedmethod the newSR-algorithms have been tested
with standard datasets and compared with the original FP-
growth, PrePost+ and FPclose algorithms.

The rest of this paper is organized as follows. In Sect. 2 the
background and related work of frequent itemset mining are
analyzed. The motivation and objectives are given in Sect. 3.
In Sect. 4 a detailed description of the proposed SR-Mine
is introduced. The Tree construction procedures are given
in Sect. 5. Details of the algorithms are given in Sect. 6.
The analysis of experimental results is shown in Sect. 7, and
Sect. 8 concludes the paper.

2 RelatedWork

Specific patterns, with supports higher than or equal to a
minimumsupport threshold, have been extracted by using the

frequent pattern mining methods. Many mining algorithms
have been introduced, but Apriori and FP-growth are still
regarded as popular algorithms. Apriori is the oldest typical
mining algorithm. It generates candidate patterns in advance
and compares whether the candidates are frequent patterns
by scanning the database. Apriori scans the database asmuch
as the maximum length among frequent patterns. FP-growth
[1] solved the above problem by introducing an efficient data
structure called FP-tree, which prevents unwanted candidate
pattern generation. An FP-tree consists of a tree for storing
the transactions in the database in a compressed form and a
header table containing item names, support counts and node
links. The links are pointing to the corresponding first item
in the tree. An FP-tree is composed of nodes, each of which
includes an item name, a support count, a parent pointer, a
child pointer and a node link. The node link is a pointer that
connects all nodes with the same item name.

2.1 Improved FP-Trees

Various algorithms have been published as an improvement
of the FP-growth algorithm. Gwangbum et al. [10] recom-
mended an improved tree structure called Linear Prefix Tree
(LP-Tree) to find frequent patterns. An LP tree is composed
of array forms to minimize pointers between nodes. Tsay et
al. [5] proposed a novelmethod, theFrequent ItemsUltramet-
ric trees (FIUT) for mining frequent itemsets. The FIUT-tree
structure is used to enhance the efficiency in obtaining fre-
quent itemsets. Another algorithm, i.e., FPClose, is proposed
by Grahne and Zhu [9]. FPClose uses the FP-tree data struc-
ture in combinationwith theFP-array technique and also used
various optimization methods. In the experimental results
comparing our methods with existing algorithms, the results
show that our methods are the fastest for many cases. The
FPClose consumes more memory, but the authors state that
the algorithm is still the fastest one even when the minimum
support is low. Lin et al. [6] proposed an improved frequent
pattern (IFP) growth method for mining frequent patterns.
The authors of this paper pointed out that the proposed algo-
rithm requires less memory and shows better performance in
comparison with FP-tree-based algorithms and the authors
also propose a new IFP-growth (Improved FP-growth) algo-
rithm to improve the performance of FP-growth. IFP-growth
employs an address-table structure to lower the complexity
of searching in each node in an FP-tree. It also uses a hybrid
FP-treeminingmethod to reduce the need for rebuilding con-
ditional FP-trees. IFP-growth uses additional memory for
holding the address table for each node. This results in a lack
of memory to store those additional data. The address table
contains the item name and pointer to its child. IFP growth
does not reduce the size of trees since it still uses the original
FP-tree-based structures.
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Racz et al. [11] used another way to find frequent item-
sets very easilywithout rebuilding conditional FP-trees. They
used arrays to store the nodes. The authors replaced the recur-
sive mining processes by building new tree structures, which
avoids rebuilding each conditional pattern base. Deng et al.
[12] propose n-lists and n-list tree (PrePost+) to find fre-
quent itemsets. The authors have used a pruning method to
reduce the search space. In this method, additional informa-
tion, such as pre-order and post-order which is the sequence
number of the node when scanning the tree by pre-order and
post-order traversal, respectively, has been stored on each
node of the tree. The same authors proposed a node set, a
more efficient data structure, for mining frequent itemsets
(FIN) [13]. In PrePost+ two properties have been used, but
FIN requires only the pre-order (or post-order code) of each
node.Manymore algorithms have been suggested to find fre-
quent itemsets. Borgelt et al. [14] suggested a new algorithm
by stating that their algorithm is the simplest algorithm to find
frequent itemsets by using a simple data structure. Tseng [15]
presents an adaptive mechanism to choose and use a suitable
data structure among two pattern list structures to mine fre-
quent itemsets. The two methods are the Frequent Pattern
List (FPL) for sparse databases and the Transaction Pattern
List (TPL) for dense databases. The selection criteria depend
on database densities, and they give a method to calculate the
database density.

2.2 Transaction Compression

Few transaction compression approaches are suggested to
reduce the size of the dataset. Ashrafi et al. presented a trans-
action compressionmethod in 2003 [16]. The transactions are
placed in different tables based on the first item. During the
second iteration, the infrequent items are eliminated. Apriori
algorithm is used with each table to generate frequent item-
sets. A transaction merging method is suggested by Hung et
al. [17]. The transactions are grouped into different classes.
The transaction set of each class is merged into a single new
transaction. Each item is represented with a frequency count.
The authors used the Apriori method in the mining phase.
Dai et al. [18] introduced a new transaction compression
method in 2008. The authors state that the previous trans-
action compression approaches cannot decompress the data
to its original form. A new method called Mining Merged
Transactions with the Quantification Table (M2TQT) was
proposed to solve these problems. M2TQT uses the relation-
ship of transactions tomerge related transactions and builds a
quantification table to prune the candidate itemsets. Another
interesting technique has been introduced by Nair et al. [19].
The transactions with one frequent itemset are set as null
transactions by saying that they are not associated with any
itemset in that particular transaction. They suggested remov-
ing all null transactions to reduce the size of the dataset.

The above-mentioned methods have introduced a variety
of suggestions to compress and reduce the data size. The
proposed method is another simple yet efficient method to
reduce the size of the dataset. Themethod canbe incorporated
withmost of the algorithms to increase efficiency by reducing
the runtime of the algorithm.

3 Motivation and Challenges

Various data structures have been introduced to improve the
frequent itemset mining process. The data structure, node set
is introduced in PrePost [12]. The algorithm FIN [13] applied
the set enumeration tree to speed up the mining. Arrays are
used to represent the LP-tree in [10]. The frequent itemset
mining algorithms, which construct a data structure to store
the transactions of a database, require some specific pre-
processing procedures before constructing the data structure.
The procedures are as follows;

1. The first database scan to find frequent 1-itemsets.
2. During the second scan consider each transaction, then ;

(a) Remove all infrequent items.
(b) Sort the items in the transaction according to the sup-

port count.
(c) Insert the transaction into the data structure.

The above steps have to be applied to each transaction sep-
arately. The whole data structure is constructed when the
second scan finishes. The data structure creation is a time-
consuming procedure. The three procedures in the second
step mentioned above are applied to each transaction sepa-
rately. If a set of transactions are treated as a single transaction
and the processes are applied to it, the data structure construc-
tion time can be reduced. In this paper, similar transactions
after removing the infrequent itemsets are represented as one
transaction with a frequency count and applied the proce-
dures.

3.1 Objectives

The main objective of this research is to develop a pre-
processing step with the support of an efficient data structure
to reduce the running time of the data mining task. The pro-
posed method can be applied with any FP-tree-based data
mining algorithm to improve the running time. It reduces
the time of the FP-tree construction, and it also helps reduce
the number of repeated transactions. To improve the overall
mining process the similar transactions are compressed into
a single transaction with frequency count. In data mining
algorithms with FP-tree, the FP-tree is not constructed only
once. The main and the full FP-tree is constructed only once,
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but the construction of the conditional FP-trees is recursively
creating. Hence, the proposed pre-processing step will affect
very efficiently during the mining process. The main aim
of the proposed work is to make the data mining algorithms
applicable without considering the size of the dataset. Nowa-
days, the need for data reduction is increased because of the
ever-increasing data size. The objective of the proposedwork
is to incorporate the data mining algorithms in big data also.

3.2 Methodological Limitations

The literature review revealed that most of the related works
are concentrated to improve themain data structure. The lack
of robustmethodologies used during the pre-processing steps
is an important methodological gap in the data mining algo-
rithms. Most of the transnational databases normally contain
repeated transactions. After the filtering and sorting of
items, the number of repeated transactions is increased sub-
stantially. Therefore, by applying transaction compression
methods, the running time can be improved. The proposed
pre-processing step is introduced to fill this methodological
gap to improve the running time.

4 The ProposedMethod: SR-Mine

In most of the recent frequent itemset mining algorithms, the
procedures which are presented in Sect. 3 have been applied
to the transaction database before constructing themajor data
structure such as trees, graphs, arrays, node sets. This paper
introduces a newmethod to reduce the timeof the second scan
and also to reduce the time to construct the data structure. In
the proposed method after removing the infrequent items,
the transaction is stored in a HashMap. Similar transactions
are represented as one single transaction with a frequency
count, and the procedures are applied to it. The new method
can be added with any algorithm which is going through
the above-mentioned procedures. The proposed method is
combined with three efficient algorithms, and the examples
are illustrated with the SR-FPgrowth implementation.

5 The Tree Construction Procedure

A new approach for transaction pre-processing is presented
here. In the first step, the proposed method scans the trans-
action database to find the frequent 1-itemsets. The frequent
1-itemsets are sorted in descending order of the frequency
and stored in a header table. Scan the database for the sec-
ond time to process each transaction one by one. During the
second scan, take one transaction and remove the infrequent
items.

The reduced transaction with frequent items has to be
stored in a data structure for duplicate elimination. The data
structure should be created with two fields. The first field
is to store the transaction, and the second field is for stor-
ing the frequency (support) count of the transaction. Here
a hash map is used to store the reduced transaction and the
transaction count. The transaction is used as the key and the
support count is used as the value. By setting the transac-
tions as key the uniqueness is guaranteed. Another advantage
of this method is that no extra key value is needed. Before
inserting a transaction, search the HashMap to find whether
the transaction is already there or not. If the transaction is
already there in the hash map, increase the support count of
the transaction; otherwise, insert the transaction with support
count as one. Continue the process until all the transactions
are inserted into the HashMap. Now the HashMap contains
the compressed transactions with support count. The next
step is the construction of the FP-tree. Take each transac-
tion from the hash map and sort the items in the transaction
according to the frequency descending order. Insert the sorted
transaction to the FP-tree as described below.

The tree structure and tree-node structure are the same as
FP-tree [3]. Each node contains the itemname, support count,
child-pointer, parent-pointer and link-pointer. To insert the
first transaction, create a root with the label null and the first
item of the transaction should be inserted as the child of the
root with the support count of the transaction. The remain-
ing items should be inserted as a branch of the child and
set the support of each item with the support count of the
transaction. The remaining transactions have to be inserted
as follows. Take the transaction from the hashmapwith trans-
action support count and search among the children of the
root for the first item of the transaction. If the item is there,
increase the support count by adding the transaction count
with the item support. The second item of the transaction
should be searched among the children of the current node.
If the item is found, repeat the above procedure.

If the item is not found among the children of the root,
create a new node with the item and set the support of the
item with the transaction count. Add the new node as a new
child of the root. The remaining items are added as a branch
from the new child and set the support of each item of the
branch with the transaction support count.

The procedure is illustrated by using the transaction
database shown in Table 1. The table contains 12 transac-
tions. The items have been arranged in lexicographical order.
The result of the first scan is shown in Table 2. Table 3 con-
tains the frequent 1-itemsets with support count. The items
are sorted in the descending order of the frequency. Table 4
contains the transactions after removing the infrequent items.

During the second scan take the first transaction “a b d g
h” and remove the infrequent item h. The processed transac-
tion “a b d g” should be inserted into the HashMap. In each
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Table 1 The transaction
database

TID Transactions

1 a b d g h

2 c b d e

3 b d f

4 a b c d g

5 d f h

6 d h

7 a b d e g

8 b d e

9 a b d j g

10 a b d g l

11 a g l

12 a f g

Table 2 Items with frequency Items Frequency

1 a 7

2 b 8

3 c 2

4 d 10

5 e 3

6 f 3

7 g 7

8 h 3

9 j 1

10 l 1

Table 3 Frequent 1-itemsets Items Frequency

1 d 10

2 b 8

3 a 7

4 g 7

Table 4 Transactions after
removing infrequent items

TID Transactions

1 a b d g

2 b d

3 b d

4 a b d g

5 d

6 d

7 a b d g

8 b d

9 a b d g

10 a b d g

11 a g

12 a g

Table 5 Hashmap contents after
inserting 3rd transaction

Transaction Frequency

1 a b d g 1

2 b d 2

Table 6 Hashmap contents after
inserting all transactions

Transactions Frequency

1 a b d g 5

2 b d 3

3 d 2

4 a g 2

insertion search the hash map for the current transaction. If
the transaction is already inserted in the HashMap, increase
the support count of the transaction; otherwise, insert the
transaction with support 1.

In the example the “a b d g h” is the first transaction and
the HashMap is empty. Therefore it should be inserted with
support as 1. The processed second transaction is “b d.” The
transaction “b d” is not there in the hash map, so insert the
transaction “b d” with count 1. The third transaction after
removing the infrequent item is “b d.” Transaction “b d”
already exists in the hash map, so increase the transaction
count of “b d” by one. The contents of the hash map are dis-
played in Table 5 after inserting transaction 3. Continue the
procedure with all the transactions. Table 6 shows the con-
tents of the hash map after inserting all the transactions. The
first and second transactions repeat 5 and 3 times, respec-
tively, and the third and fourth transactions repeat 2 times.
The original database contains 12 transactions, and the hash
map contains only 4 transactions. The compression ratio is
1/4.

The items are arranged in lexicographical order as in the
original database. The sorting will be done after compress-
ing the transactions so that the time it takes for sorting each
transaction is reduced drastically.

The next step is the construction of the FP-tree with the
compressed transaction. The procedure is illustrated by using
the same example. Only 4 transactions need to be sorted and
inserted into the tree instead of 12 because the hash map
contains only 4 transactions. Create a root with a null value.
Take the first transaction “a b d g ” and sort according to the
frequency count. The sorted transaction is “d b a g.” Insert
the transaction into the tree. Item “d” will be the first child
of root, and the remaining items will be formed as a branch
from the child “d.” The support of each item should be set as
5 which is the transaction count of “a b d g” in the hash map.
The FP-tree after inserting the first transaction is displayed in
Fig. 1a. The remaining transactions are inserted as follows.
The second transaction is “b d” with transaction count 3. Sort
the transaction as “d b.” Search item “d” among the children
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Fig. 1 a FP-tree after inserting transaction-1. b FP-tree after inserting
transaction-2. c FP-tree after inserting all transactions

of the root. item “d” is the first child of the root, so increase
the support count by 3. The support of node “d” becomes
8(5+3). Search “b” among the children of “d.” “b” is the
only child of “d.” Increase the support count of “b” with 3.
Figure 1b is the tree after inserting transaction-2. Insert all
the remaining transactions. Figure 1c shows the FP-tree after
inserting all the transactions.

In the basic FP-tree construction and its variants, each
transaction is processed separately to construct the tree
during the second scan. If the dataset contains 100,000 trans-
actions, the prepossessing should be done 100,000 times.
If the average number of frequent items in a transaction is
25, in the worst-case scenario the sorting complexity will be
100,000* (252).

The insertion process also should be done 2,500,000
(100,000*25) times. In the proposed method, if the aver-
age compression ratio is 1/4, the insertion will be reduced to
625,000.

In the proposed method the sorting and insertion need
not be done for each and every transaction one by one. The
transactions in the database have been arranged in some spe-
cific order. The order may be lexicographical if the items are
strings or ascending or descending order if the items are num-
bers or in any other order. The original order is maintained
while inserting the transactions into the hash map. The sort-
ing is done with the compressed transactions before inserting
them into the tree.

6 TheModified Algorithms

Three FP-tree-based algorithms are selected to attach the
proposed pre-processing method. The SR-FPgrowth, SR-
FPclose and SR-PrePost+ use the prefix tree structure to store

Fig. 2 Algorithm-1 stores transactions in the database to the size
reduced database (hash map)

the transactions. The proposed method is a pre-processing
method and is applied before the tree construction. The first
algorithm “algorithm-1” in Fig. 2 is used to find frequent
1-itemsets and used to store the transactions to the hash
map after removing the infrequent items. The transaction
database DB and minimum support value β are the inputs to
the algorithm-1. The output of the algorithm is the HashMap
with compressed transactions.

The second algorithm “algorithm-2” in Fig. 3 is used to
construct the tree with the contents in the hash map. The out-
put of algorithm-2 is the prefix tree. The mining algorithm is
not included because the selected three algorithms have been
used different mining methods and in this implementation,
the mining phase is not changed. Only two algorithms are
included here because after creating the data structure(tree)
the mining procedure is different for each algorithm.

The block diagram in Fig. 4 shows the procedure of the
above- mentioned three algorithms. The block diagram in
Fig. 5 represents the procedure after modifying the algo-
rithms with the new method.

7 Experimental Evaluation and Performance
Analysis

In this section, the performance of the proposed method is
evaluated. Themethod is a pre-processing step. The proposed
method can be applied with the frequent itemset mining
algorithms which consider each transaction one by one to
construct a data structure for mining. The performance of
the proposed method is evaluated by comparing it with
three algorithms. The three algorithms are FP-growth [3],
PrePost+ [7] and FPclose [9]. The same three algorithms are
used to combine with the proposed method.
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Fig. 3 Algorithm-2 used to create the FP-tree with the transactions in
the hash-map

Implementations of the original algorithms have been
taken from theSPMFwebsite (http://www.philippe-fournier-
viger.com/spmf/index.php?link=license.php) [20]. FP-
growth algorithm is chosen as the baseline algorithm.
PrePost+ has been proven as the best algorithm among all
node-basedmethods. FPclose is included to compare the new
method with a closed frequent itemset mining algorithm. An
itemset I is closed in a transaction dataset TD if there exists
no proper super itemset K such that K has the same support
count as I in TD. An itemset I is a closed frequent itemset in
dataset TD if I is both closed and frequent in TD.

In the experimental evaluation, 10datasets havebeenused.
These datasets are publicly available datasets downloaded

from the FIMI repository (http://fimi.ua.ac.be) [21]. Retail
and T10I4D100K are sparse datasets. The Mushroom, Con-
nect, Pumsb, Accidents, etc., are dense datasets. The details
of the datasets are shown in Table 7. The datasets Accidents-
double and Pumsbdouble are the double-sized datasets of
original Accidents and Pumsb data. Other datasets are used
in their original form without losing any data. The datasets
are real datasets except for T10I4D100K and T40I10D100K.
Experimentedwith the three selected algorithms and the three
modified algorithms with 10 datasets. Here only relevant
results are included.

The proposed algorithm is implemented by using Java lan-
guage and run in 3.3 GHz Intel processor, 4 G byte memory
and Windows 7 32-bit OS.

A huge number of frequent itemsets are produced during
the experiments with all the datasets. These outputs are too
large to compare manually. So to evaluate the accuracy of the
proposed method, a subset of data from each dataset is used
and compared the output of every datasets with the output
of other algorithms. It is observed that the frequent itemsets
generated from the proposed algorithm are the same as the
frequent itemsets generated by other algorithms. Figures 7,
8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26 and 27 show all the experimental results.

7.1 Performance Evaluation of SR-FPgrowth

SR-FPgrowth is the improved version of the FP-growth algo-
rithm. The performance of the SR-FPgrowth is compared
with the FP-growth algorithm, and Figs. 7, 8, 9, 10, 11, 12
and 13 show the results.

7.1.1 Runtime Analysis

Figures 7, 8, 9 and 10 show the runtime of the proposed SR-
FPgrowth compared with the FP-growth algorithm. In the
Retail dataset, a consistent improvement in runtime can be
noticed. The performance of SR-FPgrowth on dataset Con-
nect ismagnificent.Withminimumsupport of 55, the runtime
improvement is 26 s. The performance with dataset Acci-
dentsdouble is better than the performance with Accidents.
Minimum support 20% is not included in the figure of Acci-
dents because a big variation is there from 30 to 20% in
runtime. If the result is added with 20%, it will hide all other
results. The results of SR-FPgrowth with other datasets are
also better than the performance of the FP-growth algorithm.

7.1.2 Memory Usage Evaluation

Figures 11, 12 and 13 show the memory consumption of
the algorithm SR-FPgrowth and FP-growth. The efficient
memory usage of FP-growth is always appreciated when
it is compared with all other recent algorithms. Here also
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Fig. 4 Block diagram-1
representing the working of
FP-tree- based algorithms

Table 7 Datasets

Datasets Transactions Items

1 Accidents 340,183 468

2 Accidentsdouble 680,366 468

3 Chess 3196 75

4 Connect 67,557 129

5 Mushroom 8124 119

6 Pumsb 49,046 2113

7 pumsbdouble 98,092 2113

8 Retail 88,162 16,470

9 T10I4D100K 100,000 870

10 T40I10D100K 100,000 942

SR-FPgrowth consumes more memory than the FP-growth
with most of the datasets. But with dataset Mushroom, the
SR-FPgrowth consumes less memory than the FP-growth.
The memory consumption of SR-FPgrowth in Retail and
Pumsb is not good, but a noticeable runtime improvement
in Pumsb can be seen. The difference in memory usage with
other datasets is negligible.

7.2 Performance Evaluation of SR-PrePost+

Figures 14, 15 and 16 display the experimental results of
algorithms SR-PrePost+ and PrePost+.

7.2.1 Runtime Analysis

The PrePost+ performs better than SR-PrePost+ with dataset
Accidents. But the performance of SR-PrePost+ is far better
than the performance of PrePost+ with the datasetAccidents-
double. It reveals that the efficiency of the proposedmethod is
increased when the size of the data increases. The minimum

support is varied from 60 to 20%, but the time difference
is almost the same with all minimum support values except
65%. All other results show that the proposed method is bet-
ter than the original PrePost+ except the Mushroom dataset
in which the performance of the two algorithms is the same.

7.2.2 Memory Usage Evaluation

Figures 17, 18 and 19 present the memory usage of the algo-
rithms SR-PrePost+ and PrePost+. The memory usage of
SR-PrePost+ is less in dataset Accidents. In all other results,
a negligible increase in memory usage can be seen when
compared with the original PrePost+.

7.3 Performance Evaluation of SR-FPclose

The performance of the proposed SR-FPclose and FPclose
algorithms with different datasets is shown in Figs. 20, 21,
22 and 23.

7.3.1 Runtime Analysis

The proposed pre-processing method is not well suited with
FPclose with all the datasets. When the size of the data is
increased, an increase in the performance is visible in Pumsb
and Pumsbdouble. SR-FPclose performs well with dataset
chess, connect and Pumsbdouble when minimum supports
become low as shown in Figs. 21a,b and 22b. With other
data sets, SR-FPclose keeps a consistent increase in the per-
formance while comparing with FPclose.

7.3.2 Memory Usage Evaluation

Figures 24, 25, 26 and 27 display the memory consump-
tion of the algorithms SR-FPclose and FPclose. SR-FPclose
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Fig. 5 Block diagram-2
representing the working of
FP-tree- based algorithms after
incorporating with the proposed
method

123



9650 Arabian Journal for Science and Engineering (2022) 47:9641–9657

Fig. 6 a A portion of Hash map
contents with dataset Accidents.
b A portion of Hash map
contents with dataset Mushroom

consumes more memory than FPclose, but the memory con-
sumption is varying with different minimum supports.

The Accidentsdouble and Pumsbdouble datasets are the
same as Accidents and Pumsb but doubled the full data to
make a large-sized data.

By analyzing the above results it is evident that the form
of the proposed method is better than the existing ones and
can increase the efficiency of the frequent itemset mining
algorithms which are using a prefix tree structure. Further,

the efficiency is improved when larger datasets are used and
hence suitable in the context of big data. The memory usage
is increased while applying the proposed method because a
HashMap is used to store the compressed transactions.While
comparing the run time with memory usage, the increase
in memory is negligible and sometimes the memory usage
is the same or lesser than the compared algorithms. From
the experimental study, it is proved that the proposed pre-
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Fig. 7 a Runtime of Retail dataset. b Runtime of Connect dataset

Fig. 8 a Runtime of Accidents dataset. b Runtime of Accidentsdouble dataset

Fig. 9 a Runtime of Mushroom dataset. b Runtime of Chess dataset

Fig. 10 Runtime of Pumsb
dataset
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Fig. 11 a Memory usage of Retail dataset. bMemory usage of Connect dataset

Fig. 12 a Memory usage of Accidents dataset. b Memory usage of Pumsb dataset

Fig. 13 a Memory usage of Mushroom dataset. b Memory usage of Chess dataset

Fig. 14 a Runtime of Accidents dataset. b Runtime of Accidentsdouble dataset
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Fig. 15 a Runtime of T10I4D100K dataset. b Runtime of T40I10D100K dataset

Fig. 16 a Runtime of Retail dataset. b Runtime of Mushroom dataset

Fig. 17 a Memory usage of Accidents dataset. b Memory usage of Accidentsdouble dataset

Fig. 18 a Memory usage of T10I4D100K dataset. b Memory usage of T40I10D100K dataset
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Fig. 19 a Memory usage of Retail dataset. bMemory usage of Mushroom dataset

Fig. 20 a Runtime of Mushroom dataset. b Runtime of Accidents dataset

Fig. 21 a Runtime of Chess dataset. b Runtime of Connect dataset

Fig. 22 a Runtime of Pumsb dataset. b Runtime of Pumsbdouble dataset
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Fig. 23 Runtime of Retail
dataset

Fig. 24 a Memory usage of Mushroom dataset. b Memory usage of Accidents dataset

Fig. 25 a Memory usage of Chess dataset. bMemory usage of Connect dataset

Fig. 26 a Memory usage of Pumsb dataset. bMemory usage of Pumsbdouble dataset
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Fig. 27 Memory usage of Retail dataset

processing steps are adaptable with those mining algorithms
which are going through the proceduresmentioned in Sect. 3.

Figure 6a, b is the contents of the hash map during
executing the proposed method SR-FPgrowth with datasets
Mushroom and Accidents. The support is the frequency of
each transaction. A set of selected transactions are included
in the table. The full hash map cannot be presented because
the datasets are very huge in size.

The implementation of the proposedmethodwith all three
algorithms (SR-FPgrowth, SR-PrePost+,SR-FPclose) is per-
formed well and far better than the original algorithms.
The increase in memory consumption of SR-FPgrowth is
negligible, but SR-FPclose consumes more memory. In the
experimental results the proposed algorithm outperforms all
the other algorithms except two results. But with most of
the datasets, its memory consumption is almost near to the
memory consumption of the original algorithms except a few
ones.

The algorithm performs better with the dense dataset.
Dataset Retail is a sparse dataset and also with the highest
number of items. Hence the possibility of similar transac-
tions is very less. The proposed method performs well with
duplicate transactions. It is proved when the datasets are
doubled. The worst performance among the results shown
is the performance of SR-FPclose with dataset Accidents,
but with the dataset Accidentsdouble, the same algorithm
performs better. It proved that the algorithm is efficient with
the dataset which contains duplicate transactions. The three
modified algorithmsperformedbetter than their original form
with all datasets except the above-mentioned one. The most
important and noticeable result from our analysis is the one
with dataset Connect. Both algorithms perform well with
Connect dataset with normal memory consumption. Dataset
Connect is a dense dataset with a lesser number of items.
Other datasets are there with a lesser number of items, but
the number of transactions is also less than the dataset Con-
nect. In Connect dataset, each item has a chance to appear in
more transactions. Hence transaction similarity is increased.
This particular result indicates that the proposed method is
suitable for a Dense dataset with similar transactions.

8 Conclusion

A novel pre-processing method to speed up the construction
of FP-tree is proposed, implemented and tested with stan-
dard datasets. The major contribution of the proposal is the
incorporation of a hash table which reduces efforts required
for sorting and insertion. The experiments carried out with
the standard databases proved that the proposed approach is
efficient than the conventional FP-tree-based algorithms. An
interesting outcome of the study is that the effectiveness of
the proposed approach increases with an increase in the size
of the data. The merit of the proposed algorithm is more pro-
nounced when huge datasets are used compared to smaller
ones.

The proposed approach can be implemented in associa-
tion with most of the FP-tree-based algorithms. A theoretical
and empirical study is required to establish the effectiveness
of the proposed method, and also an extensive comparative
analysis is required to be carried out.

References
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