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Abstract
In this paper, we derive a tight lower bound of the detection probability of the energy detector when intelligent reflecting
surface (IRS) are used. The secondary source uses the energy detector to detect primary source activity. There is IRS between
primary source and secondary source. The secondary sources compute the energy of the received signal from primary source
and reflected on IRS. The proposed spectrum sensing algorithm using IRS offers 15, 21, 27, 33 dB gain with respect to
conventional sensing without IRS for a number of reflectors K = 8, 16, 32, 64. We also used IRS for data communication
between primary source and destination as well as the communication between secondary nodes. The proposed primary and
secondary networks of cognitive radio network (CRN) using IRS offer 23, 29, 36, 43, 49 and 56 dB gain with respect to
conventional CRNwithout IRS for a number of reflectors K = 8, 16, 32, 64, 128, 256. We show that the use of N = 20, 10, 5
symbols in energy detection offers up to 8.5, 7.7 and 4.7 dB gain with respect to a single symbol. We plot the miss detection
probability Pmd versus the false alarm probability Pf . For K = 16 reflectors, average SNR per bit Eb/N0 = −10dB and
Pf = 0.01, Pmd = 210−3, 710−3, 2.510−2 when N = 20, 10, 5 symbols are used in energy detection, whereas Pmd = 0.45
when a single symbol is used.

Keywords Cognitive radio networks · Intelligent reflecting surfaces (IRS) · 6G · Spectrum sensing · Energy detection

1 Introduction

Cognitive radio networks (CRN) were suggested to improve
the use of frequencybands [1]. There are three possible strate-
gies: In interweave CRN, secondary source is allowed to
transmit only when primary user is idle. In underlay cogni-
tive radio networks, secondary source transmits over the same
channel as primary source. Secondary source transmits with
an adaptive power in order to not cause harmful interference
to primary nodes. In overlay CRN, secondary and primary
nodes transmit over the same channel and secondary nodes
dedicate a part of their power to relay signal to primary nodes
and ensure a good quality of service (QoS) in the primary net-
work. The detection probability and throughput of CRN have
been extensively studied in [1–5].

In this paper, we suggest a new spectrum sensing algo-
rithm where the energy detector uses a signals obtained
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from reflections on intelligent reflecting surface (IRS) [6–
8]. The phases of IRS are optimized so that all reflections
have a null phase at the receiver [9–14]. IRS can be used
in non-orthogonal multiple access (NOMA) systems as well
as millimeter wave or free-space optical (FSO) communica-
tions [15–18]. A hardware and practical implementation of
IRS was discussed in [19,20]. The phase shifts of IRS reflec-
tors can be continuous or quantized [21,22]. To the best of
our knowledge, the use of IRS in the spectrum sensing pro-
cess with multiple symbols was not yet suggested to improve
the detection probability.

2 RelatedWork

The false alarm and detection probabilities of the energy
detector using a single symbol and intelligent reflecting sur-
faces were recently derived in [23]. The secondary through-
put using IRS was derived in [23] as the product of the
secondary user transmit probability and the transmission rate.
The packet error probability was not studied in [23]. In [24],
the transmitted power is minimized for CRN using IRS. The
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minimization has been performed under the constraint that
the signal to interference plus noise ratio (SINR) is larger
than a predetermined threshold for all users. The spectral
and energy efficiencies of CRNusing IRSweremaximized in
[25,26]. The achievable weighted sum ratewasmaximized in
[27]. The achievable rate of secondary users was maximized
in [28] subject to a total transmit power constraint. Opti-
mal resource allocation for CRN using IRS was proposed
in [28]. Vertical and robust beamforming has been proposed
to improve the performance of CRN using IRS [29,30]. The
physical layer security of CRN using IRS was studied in
[31,32] in order to maximize the secrecy rate.

The main innovation and contributions of the paper are:
- We suggest the use of IRS in the spectrum sensing

process. The energy detector uses N symbols. The use of
N = 20, 10, 5 symbols in energy detection offers up to
8.5, 7.7 and 4.7 dB gain with respect to N = 1 as con-
sidered in [23]. We derive the detection probability Pd and
the miss detection probability of the energy detector using
intelligent reflecting surface (IRS). The proposed spectrum
sensing algorithm using IRS offers 15, 21, 27, 33 dB gain
with respect to conventional sensing without IRS [1-5] for a
number of reflectors K = 8, 16, 32, 64.

- We derive the throughput of the primary and secondary
networks of CRN using interweave transmission technique
where secondary source is allowed to transmit only when
primary source is idle. The proposed primary and secondary
networks of CRN using IRS offer 23, 29, 36, 43, 49 and 56
dB gain with respect to conventional CRNwithout IRS [1-5]
for a number of reflectors K = 8, 16, 32, 64, 128, 256.

- We plot the miss detection probability Pmd = 1 − Pd
versus the false alarm probability Pf . For K = 16 reflec-
tors, average SNR per bit Eb/N0 = −10dB and Pf = 0.01,
Pmd = 210−3, 710−3, 2.510−2 when N = 20, 10, 5 sym-
bols are used in energy detection, whereas Pmd = 0.45 when
a single symbol is used (N = 1) as studied in [23].

The paper contains eight sections. The system model is
presented in Sect. 3. Section 4 derives a tight lower bound
of detection probability of the energy detector using intelli-
gent reflecting surfaces. Sections 5–6 derive the throughput
in primary and secondary networks using IRS. Section 7
discusses the obtained results. Section 8 summarizes the
obtained results. Section 9 concludes the paper.

3 SystemModel

Figure 1 shows the system model with a primary source and
destination (PS and PD), a secondary source and destination
(SS and SD). We consider interweave cognitive radio net-
works (CRN) where SS performs spectrum sensing and is
allowed to transmit only when PS is idle. We assume that
PS is active with probability pa . SS uses the energy detec-

Fig. 1 System model: interweave CRN using intelligent reflecting sur-
face (IRS)

tor (ED) to measure the energy of received signal and will
detect PS is the measured energy E is larger than threshold
T . Intelligent reflecting surfaces (IRSs) are placed between
all nodes to improve the throughput and detection probabil-
ity as all reflections have the same phase at the secondary
and primary destination. Besides, IRSs are placed between
PS and SS so that the spectrum sensing is based on received
signals originating from all K reflections.

4 Spectrum Sensing Using Intelligent
Reflecting Surface (IRS)

Spectrumsensing is performed at SS to detect PS activity. The
energy detector is used at SS to detect if PS is active or idle. SS
receives K reflected signals on IRS. Let

√
λ1ak the channel

coefficient between PS and k-th reflector of IRS, λ1 = PAL
dβ
1

is the average power of channel gain, PAL = 1 is the path

loss at reference distance d0, d1 = deff1
d0

is the normalized
distance between PS and IRS, d0 is a reference distance in
meters, deff1 is the effective distance in meters between PS
and IRS and β is the path loss exponent. Therefore, d1 is a
normalized distance without unit. The same model is used
for all other links with PAL = 1 and all other distances
di , i = 1, . . . , 6 are also normalized. For Rayleigh channels,
ak is a zero-mean complex Gaussian random variable (R.V.)
with module gk = |ak | and phase φk : ak = gke− jφk . gk is

Rayleigh distributed with mean
√

π

2 and unit second order
moment. Let

√
λ2bk be the channel coefficient between k-th
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Fig. 2 Detection probability
when IRS is deployed as a
reflector
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reflector of IRS and SS . λ2 = 1
dβ
2

where d2 is the normalized

distance between IRS and SS . We denote by bk = hke− jθk ,
hk = |bk | is the absolute value of bk and θk is the phase. hk
is Rayleigh distributed with mean

√
π

2 and unit second-order
moment.

Let ζk be the phase shift induced by k-th IRS reflector. ζk
is adjusted so that all K reflections have the same phase at
SS :

ζk = φk + θk . (1)

The received signal at SS is written as:

r SSl = sPSl

√
2EPSλ1λ2

K∑

k=1

akbke
jζk + nSSl , (2)

where sPSl is the l-th transmitted symbol by PS , 1 ≤ l ≤ N ,
N is the number of symbols used by the energy detector in
the spectrum sensing process, EPS is the transmitted energy
per symbol of node PS , n

SS
l is zero-meanGaussian noisewith

variance 2N0.

Using (1) and (2), we obtain

r SSl = sPSl

√
2EPSλ1λ2A + nSSl , (3)

where

A =
K∑

k=1

gkhk . (4)

Secondary source SS computes the energy E of received
signal r SSl to detect PS activity:

E =
∑N

l=1 |r SSl |2
N0

= 2Nλ1λ2EPS

N0
A2 +

∑N
l=1 |nSSl |2
N0

(5)

For a fixed value of channel gains, i.e., fixed value of A,
E is the sum of 2N Gaussian R.V. with unit variance and
non-centrality parameter (NCP):

NCP = 2N�PS SS , (6)
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Fig. 3 Detection probability
when IRS is deployed as a
reflector for different numbers
of symbols N used in energy
detection: K = 16
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where �PS SS is the signal-to-noise ratio (SNR) at SS defined
as [33]:

�PS SS = λ1λ2EPS A
2

N0
= ASN R × A2, (7)

where

ASN R = λ1λ2EPS

N0
. (8)

Using the central limit theorem (CLT), A is approximated
by a Gaussian R.V. with meanmA = Kπ

4 and variance σ 2
A =

K (1 − π2

16 ). The conditioned detection probability (DP) is
equal to

Pd (�PS SS ) = QN (
√
NCP,

√
T ) = QN (

√
2N�PS SS ,

√
T ), (9)

where T is the ED threshold and QN (., .) is the generalized
Macum Q-function.

The average detection probability (ADP) is computed as:

Pd =
∫ +∞

0
Pd(x) f�PS SS

(x)dx, (10)

where f�PS SS
(x) is the probability density function (PDF) of

�PS SS .
�PS SS is a non-central Chi-square R.V. with PDF: [33]

f�PS SS
(x) = e

− m2
A

2σ2A

2ASN Rσ2
A

(
x

m2
A ASN R

)−0.25e
− x
2σ2A ASN R I−0.5(

√√√√ m2
Ax

σ4
A ASN R

)

(11)

The average miss detection probability is equal to

Pmd =
∫ +∞

0
[1 − Pd(x)] f�PS SS

(x)dx, (12)

We use the tight upper bound derived in [34]

Pmd < F�PS SS
(w0), (13)

where F�PS SS
(w0) is the cumulative distribution function

(CDF) of SNR given by

F�PS SS
(w0) = 1 − Q0.5

(
mA

σA
,

√
x

ASN Rσ 2
A

)

, (14)
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Fig. 4 Miss detection
probability versus false alarm
probability
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and w0 is water-fall threshold defined as [34]:

w0 =
∫ +∞

0
[1 − Pd(x)]dx . (15)

We deduce a tight lower bound of detection probability

Pd > 1 − F�PS SS
(w0) = Q0.5

(
mA

σA
,

√
xN0

EPSλ1λ2σ
2
A

)

.

(16)

5 IRS Deployed in the Primary Network

IRSs are deployed in the primary network between PS and
PD . Let

√
λ3ck be the channel coefficient between PS and

k-th reflector of IRS. λ3 = 1
dβ
3

where d3 is the normalized

distance between PS and IRS. We can write ck = ike− jηk

where ik = |ck | is the absolute value of ck and ηk is the

phase of ck . ik is Rayleigh distributed with mean
√

π

2 and
unit second-order moment.

Let
√

λ4dk be the channel coefficient between k-th reflec-
tor of IRS and PD . λ4 = 1

dβ
4

where d4 is the normalized

distance between IRS and PD . We can write dk = jke− jμk

where jk = |dk | is the absolute value of dk and μk is the

phase of dk . jk is Rayleigh distributed with mean
√

π

2 and
unit second-order moment.

The phase of k-th reflector of IRS is adjusted so that all
reflections have the same phase at PD:

vk = ηk + μk . (17)

The received signal at PD is equal to

r PDl = sPSl

√
2EPSλ3λ4

K∑

k=1

ckdke
jvk + nPD

l (18)

where nPD
l is a zero-mean Gaussian noise with variance 2N0.

Using (17), we obtain

r PDl = sPSl

√
2EPSλ3λ4B + nPD

l (19)
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Fig. 5 Primary throughput for
64QAM modulation when IRS
is deployed as a reflector
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where

B =
K∑

k=1

ik jk . (20)

Using theCLT, B is approximated by aGaussianR.V.with
mean mA = Kπ

4 and variance σ 2
A = K (1 − π2

16 ). Here, K is
the number of IRS reflectors between PS and PD that can be
different from the number of reflectors between PS and SS .

The SNR at PD is equal to

�PS PD = EPSλ3λ4

N0
B2. (21)

Using the CLT, �PS PD is approximated by a non-central Chi-
square distribution with one degree of freedom and CDF:

F�PS PD
(x) = 1 − Q0.5

(
mB

σB
,

√
xN0

λ3λ4EPSσ
2
A

)

. (22)

The packet error probability (PEP) at PD is tightly upper
bounded using the CDF of SNR [35]

PEPPD < F�PS PD
(T0). (23)

where T0 is a water-fall threshold defined as:

T0 =
∫ +∞

0
1 − [1 − SE P(x)]Ldx, (24)

where L is packet length and SE P(x) is the symbol error
probability (SEP) of M-quadrature amplitude modulation
(QAM) defined as [33]:

SE P(x) = 2

(
1 − 1√

M

)
er f c

(√

x
3 log2(M)

2(M − 1)

)

, (25)

The throughput at PD is computed as:

Thr PD = palog2(M)[1 − PEPPD ]. (26)

where pa is the probability that PS is active.
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Fig. 6 Primary throughput for
64QAM modulation for
different values of pa ; K = 16
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6 IRS Deployed in the Secondary Network

IRSs are deployed in the secondary network between SS and
SD . Let

√
λ5ek be the channel coefficient between SS and

k-th reflector of IRS. λ5 = 1
dβ
5

where d5 is the normalized

distance between SS and IRS. We can write ek = lke− jmk

where lk = |ek | is the absolute value of ek and mk is the

phase of ek . lk is Rayleigh distributed with mean
√

π

2 and
unit second-order moment.

Let
√

λ6 fk be the channel coefficient between k-th reflec-
tor of IRS and SD . λ6 = 1

dβ
6

where d6 is the normalized

distance between IRS and SD . We can write fk = oke− j pk

where ok = | fk | is the absolute value of fk and pk is the

phase of fk . ok is Rayleigh distributed with mean
√

π

2 and
unit second-order moment.

The phase of k-th reflector of IRS is adjusted so that all
reflections arrive with the same phase at SD:

wk = mk + pk . (27)

The received signal at SD is equal to

r SDl = sSSl
√
2ESSλ5λ6

K∑

k=1

ek fke
jwk + nSDl (28)

where sSSl is the l-th transmitted symbol by SS , ESS is the
transmitted energy per symbol of secondary source SS and
nPD
l is a zero-mean Gaussian noise with variance 2N0.
Using (27), we obtain

r SDl = sSSl
√
2ESSλ5λ6C + nSDl (29)

where

C =
K∑

k=1

lkok . (30)

Using the CLT, C is approximated by a Gaussian R.V.
with mean mC = Kπ

4 and variance σ 2
C = K (1 − π2

16 ).
The SNR at SD is equal to

�SS SD = ESSλ5λ6

N0
C2. (31)
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Fig. 7 Secondary throughput
for 64QAM modulation when
IRS is deployed as a reflector
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Using the CLT, �SS SD is approximated by a non-central Chi-
square distribution with one degree of freedom and CDF:

F�SS SD
(x) = 1 − Q0.5

(
mC

σC
,

√
xN0

λ5λ6ESSσ
2
C

)

. (32)

The packet error probability (PEP) at SD is tightly upper
bounded using the CDF of SNR [35]

PEPSD < F�SS SD
(T0). (33)

where T0 is defined in (24).
The throughput at SD is computed as:

Thr SD = [1 − pa][1 − Pf ]log2(M)[1 − PEPSD ]. (34)

where Pf is the false detection probability defined as:

Pf = �(N , T
2 )

�(N )
, (35)

where �(., .) is the incomplete Gamma function, �(.) is the
Gamma function, N is the number of symbols used by the
energy detector, and T is the detection threshold.

7 Theoretical and Simulation Results

We have made simulations using MATLAB software for a
fixed false alarm probability Pf = 0.05 in Figs. 2, 3, 7 and
8 by setting the detection threshold as follows:

T = 2�−1(N , Pf �(N )) (36)

We used N = 10 symbols for spectrum sensing using the
energy detector in Fig. 2. The normalized distance between
PS and IRS (placed between PS and SS) is d1 = 1. The
normalized distance between IRS and SS is d2 = 1.1. The
normalized distance between PS and IRS of primary net-
work is d3 = 1. The normalized distance between IRS of
primary network and PD is d4 = 1.3. The normalized dis-
tance between SS and IRS of secondary network is d5 = 1.3.
The normalized distance between IRS of secondary network
and SD is d6 = 1. The path loss exponent is β = 3.
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Fig. 8 Secondary throughput
for 16QAM modulation when
IRS is deployed as a reflector
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Figure 2 compares the detection probability at SS when
using IRS to conventional spectrum sensing algorithms [1-5].
To measure the detection probability, we did 10 000 Monte
Carlo simulations. We plotted the detection probability ver-
sus Eb/N0 where Eb = Es

log2(M)
is the transmitted energy

per bit and M is the size of the constellation. Es = PTs is
the transmitted energy per symbol, Ts is the symbol duration
and P is the power of primary source PS . We have fixed the
value of N0 and varied the transmitted power P to obtain
different values of Eb/N0. We observe the proposed spec-
trum sensing algorithm using IRS offers 15, 21, 27, 33 dB
gain with respect to conventional sensing without IRS [1-5]
for a number of reflectors K = 8, 16, 32, 64. The simulation
results are close to the derived theoretical ones.

Figure 3 shows the detection probability versus the aver-
age SNR per bit for K = 16 reflectors and the same
parameters as Fig. 2. Figure 3 shows that the use of N =
20, 10, 5 symbols in energy detection offers up to 8.5, 7.7
and 4.7 dB gain with respect to a single symbol, N = 1, as
considered in [23].

Figure 4 depicts the miss detection probability Pmd =
1−Pd versus the false alarm probability Pf for average SNR

per bit Eb/N0 = −10dB. When there is no IRS, Pmd = 1 as
the average SNR per bit is very low. For Pf = 0.01, Pmd =
210−3, 710−3, 2.510−2 when N = 20, 10, 5 symbols are
used in energy detection, whereas Pmd = 0.45 when a single
symbol is used N = 1 as studied in [23].

Figure 5 compares the throughput at primary destination
for 64QAM modulations when IRS are used to conven-
tional CRN without IRS [1-5]. We have measured the packet
error rate (PER) to deduce the throughput. Simulations have
been performed until 500 packets are erroneously received.
The primary user is active with probability pa = 0.4. The
proposed primary network of CRN using IRS offers 23,
29, 36, 43, 49 and 56 dB gain with respect to conven-
tional CRN without IRS [1-5] for a number of reflectors
K = 8, 16, 32, 64, 128, 256.

Figure 6 depicts the primary throughput for 64QAMmod-
ulation, K = 16 reflectors and the same parameters as Fig. 5.
We have varied the value of the probability that primary user
is active pa = 0.6, 0.4, 0.2. Obviously, as pa increases, the
primary throughput increases.

Figures 7, 8 show the throughput at the secondary des-
tination for 64-QAM and 16-QAM modulation using IRS.
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Fig. 9 Secondary throughput
for 64QAM modulation for
different values of pa and Pf :
K = 16

−30 −20 −10 0 10 20 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
b
/N

0
(dB)

Se
co

nd
ar

y 
Th

ro
ug

hp
ut

 in
 b

it/
s/

H
z

K=16, 64QAM

p
a
=0.4 P

f
=0.05 Theory

p
a
=0.4 P

f
=0.05 Sim

p
a
=0.2 P

f
=0.05 Theory

p
a
=0.2 P

f
=0.05 Sim

p
a
=0.6 P

f
=0.05 Theory

p
a
=0.6 P

f
=0.05 Sim

p
a
=0.6 P

f
=0.2 Theory

p
a
=0.6 P

f
=0.2 Sim

The proposed secondary network of CRN using IRS offers
23, 29, 36, 43, 49 and 56 dB gain with respect to conven-
tional CRN without IRS [1-5] for a number of reflectors
K = 8, 16, 32, 64, 128, 256.

Figure 9 depicts the secondary throughput for 64QAM
modulations and the same parameters as Fig. 7. We plotted
the secondary throughput for K = 16 reflectors and different
values of the probability that primary user is active pa =
0.6, 0.4, 0.2.Wealso varied the false alarm probability Pf =
0.05, 0.2. The secondary throughput decreases as the false
alarmprobability Pf increases or the probability that primary
user is active pa increases.

8 Discussion on the Obtained Results

In this paper, we have shown that the use of IRS allows to
increase the detection probability of the energy detector. The
proposed spectrumsensing algorithmusing IRSoffers 15, 21,
27, 33 dB gain with respect to conventional sensing without
IRS [1-5]. We have also shown that the use of N = 20, 10, 5
symbols during energy detection offers up to 8.5, 7.7 and 4.7

dBgainwith respect to a single symbol, N = 1, as considered
in [23]. We also plotted the miss detection probability Pmd

versus the false alarm probability Pf . For K = 16 reflec-
tors, average SNR per bit Eb/N0 = −10dB and Pf = 0.01,
Pmd = 210−3, 710−3, 2.510−2 when N = 20, 10, 5 sym-
bols are used in energy detection, whereas Pmd = 0.45
when a single symbol is used. IRS allows also to increase
the throughput of primary and secondary networks. The pro-
posed primary and secondary networks of CRN using IRS
offer 23, 29, 36, 43, 49 and 56 dB gain with respect to con-
ventional CRN without IRS [1-5] for a number of reflectors
K = 8, 16, 32, 64, 128, 256.

9 Conclusions and Perspectives

In this paper, we suggested a new spectrum sensing algo-
rithm using intelligent reflecting surface (IRS). We derived
a tight lower bound of detection probability of the energy
detector using IRS. We observe the proposed spectrum sens-
ing algorithm using IRS offers 15, 21, 27, 33 dB gain with
respect to conventional sensing without IRS [1-5] for a num-
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ber of reflectors K = 8, 16, 32, 64.We also used IRS for data
communication between primary source and destination as
well as the communication between secondary nodes. The
proposed primary and secondary networks of CRN using
IRS offer 23, 29, 36, 43, 49 and 56 dB gain with respect to
conventional CRN without IRS [1-5] for a number of reflec-
tors K = 8, 16, 32, 64, 128, 256. As a perspective, it will
be interesting to derive the detection probability, primary
and secondary throughput when the primary source and sec-
ondary source harvest energy using radio frequency signals,
solar energy or wind.
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