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Abstract
This study investigates the buckling behavior of nonlinear elastic cantilever columns, with emphasis on two aspects: the 
generalized moment of inertia (GMI) of the elliptical plane area, and the buckling behavior of cantilever columns fabricated 
using nonlinear elastic materials based on the Ludwick constitutive law. An explicit integration formula is developed to 
calculate the GMI of an elliptical cross section, and the geometric and material nonlinear differential equations that govern 
the elastica of the buckling columns are derived. To integrate the differential equations, the Runge–Kutta method is used, 
and an iterative method that improves upon the Regula–Falsi method is used to determine the unknown deflection of the free 
end of the column. As numerical examples, parametric studies of the GMIs and post-buckling behavior, including buckling 
loads, of nonlinear elastic cantilever columns with elliptical cross sections are extensively discussed.

Keywords  Generalized moment of inertia of plane area · Elliptical cross section · Ludwick-type material · Cantilever 
column · Buckling load · Elastica

1  Introduction

Several modern applications and engineering materials 
involve large strains, the deformations by which are inher-
ently nonlinear, and the corresponding stresses depend on 
the underlying material properties [1]. In recent years, elastic 
materials have often been used to develop main structural 
members to support external loads sustainably in various 
engineering fields. These nonlinear materials include a Lud-
wick-type material whose load–strain relationship adheres to 
the constitutive law of � = E�1∕n . Here, ( �, � ) are the strain 
and stress, respectively, E is the Young’s modulus, and n is 
the material constant [2].

For bending analysis, the Ludwick constitutive law of 
� = E�1∕n should be converted to M = EIg�

1∕n , where M is 
the bending moment, Ig the generalized moment of inertia 

(GMI) of the plane area, and � the curvature [3]. A primary 
objective of this study is the development of a method for 
calculating Ig for bending analysis. In early studies, several 
researchers developed a method for calculating Ig for several 
plane cross sections. One of the most important studies was 
that of Lee [3], where the Ig for the rectangular cross section 
was expressed as Ig = [0.5(1+1∕n)n∕(2n + 1)]ab(2+1∕n) ; here, a 
and b are the width and height of the rectangle, respectively. 
Lee [4] and Brojan and Kosel [5] used the beta function to 
calculate the Ig of a superellipsoidal cross section. Lee and 
Lee [6] computed the Ig of a regular polygon cross section 
with circumradius a , where the equilateral triangle, square, 
pentagon, hexagon and circular cross sections were consid-
ered in a numerical example. Here, Ig is expressed as an 
explicit integral formula that can be easily obtained by a 
direct integration method, such as the Runge–Kutta method.

The calculated Ig should be applied to the bending analy-
sis for the geometric nonlinear analysis of the structure. In 
previous studies, the GMI was applied to the analysis of 
large deflections of geometric nonlinear beams/columns, 
i.e., elastica analysis. The elastica problem was first inves-
tigated by Euler [7] in 1774, who managed the exact elastic 
deformation of long and slender rods for only linear mate-
rials. Since Euler, the elastica has expanded and evolved 
into nonlinear elastic materials as well as linear materials. 
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Accordingly, a significant number of investigations pertain-
ing to elastica have been conducted. Herein, representative 
studies related to the current one, including various topics 
pertaining to elastica, such as the basic theory for developing 
governing equations, are reviewed.

First, the geometric nonlinear elastica problem for linear 
elastic materials [8–14], a classical study such as that by 
Euler [7], is reviewed: Bisshopp and Drucker [8] developed 
a large deformation model for Euler beams using the Ber-
noulli–Euler beam theory; Oden and Childs [9] investigated 
finite deflections of an elastic rod based on large deformation 
theory, in which a moment–curvature relationship followed 
by a hyperbolic tangent law was adopted; Berkey and Freed-
man [10] investigated bifurcation elastica depicting a large 
deformed slender simple beam with pinned ends that was 
subjected to an axial thrust force at both ends; Lee et al. 
[11] numerically and experimentally solved the elastica of 
cantilevered beams with a variable cross section subjected 
combined with a linearly varying distributed load, a free end 
point load, and an end moment; Lee and Oh [12] computed 
the elastica and buckling load of simple tapered columns 
subjected to an axially compressive load at the end, whose 
column volume was maintained constant; Aristizabal–Ochoa 
[13] investigated the nonlinear behavior of post-buckled 
Timoshenko beam-columns with internal semi-rigid con-
nections subjected to conservative and non-conservative 
end loads; Lee and Lee [14] reported the configurations of 
a shear-deformable column with the largest buckling load 
in the same column volume exhibiting a regular polygonal 
cross section based on large deformation theory.

Second, studies pertaining to elastica for nonlinear 
elastic materials have been investigated extensively [2–5, 
15–23]. For example, for materials that adhere to the Ram-
berg–Osgood constitutive law, two typical studies have 
been conducted by Anatolyevich and Yokovlevna [15] 
and Giardina and Wei [16]. The nonlinear stress–strain 
relationship described by the Ramberg–Osgood law is 
specifically applicable to materials that are hardened by 
plastic deformation, as described in the two abovemen-
tioned papers [15, 16]. In particular, this study empha-
sizes Ludwick-type materials applicable to soft hardening, 
instead of Ramberg–Osgood-type materials applicable to 
plastic hardening, to analyze the elastica of large deform-
able structural systems. The most important studies [2–5, 
17–23] pertaining to Ludwick-type materials relevant to 
this study are reviewed herein: Lewis and Monasa [2] 
investigated the elastica of cantilever beams subjected to 
an end moment where, in formulating the analysis, the 
Euler–Bernoulli law and the exact expression of the cur-
vature was used; Lee [3] used the shear force formula 
instead of the bending moment formula to derive the 
governing differential equation to analyze the cantilever 
beam elastica; Lee [4] and Brojan and Kosel [5] explicitly 

determined the bending stress–strain relationship of super-
ellipsoidal cross sections; Jung and Kang [17] investigated 
the nonlinear buckling of fiber materials with rectangu-
lar prismatic columns subjected to a combined load of 
horizontal and vertical point loads as well as distributed 
loads; Eren [18] calculated the cantilever elastica with a 
uniformly distributed load and one vertical concentrated 
load at the free end using the Euler–Bernoulli curva-
ture–moment relationship, assuming different arc lengths; 
Brojan et al. [19] explained that the Euler column elastica 
typically exhibits the stability characteristics and buckling 
patterns observed individually in different structural sys-
tems; Saetiew and Chucheepsakul [20] established a set 
of highly nonlinear simultaneous first-order differential 
equations with boundary conditions to analyze the post-
buckling behavior of linearly tapered columns; Eren [21] 
calculated the elastica of uniformly distributed loaded and 
simply supported beams followed by a curvature expres-
sion defined using two different arc length functions; Bor-
boni and Santis [22] investigated the elastica of a nonlin-
ear, asymmetric cantilever beam subjected to a horizontal 
force, vertical force and bending torque at the free end; Liu 
et al. [23] investigated the elastica of an axially extensible 
curved beam with a rectangular cross section, where the 
stress–strain relationship is formulated implicitly based on 
the Euler–Bernoulli postulation.

As discussed above, the topic of elastica analysis of non-
linear elastic materials remains one of the most important 
topics in mechanical and structural engineering. The cross-
sectional properties of the second moment of inertia plane 
area I of linear elastic materials are no longer available for 
the bending analysis of nonlinear elastic materials, including 
Ludwick-type materials. Therefore, cross-sectional proper-
ties other than I , which is the generalized moment of inertia 
(GMI) in the planar area Ig , must be derived for Ludwick-
type materials. In addition, to apply GMIs to structural 
analysis, appropriate examples from various engineering 
problems must be selected. Hence, this study was conducted 
in two parts: the development of a GMI calculation method 
and the analysis of the elastica of nonlinear elastic materials.

First, a method to calculate the Ig of the elliptical plane 
area and its solution is devised, and some numerical exam-
ples are presented. Subsequently, the calculated Ig is applied 
to the buckling of a cantilever column. The derivation of 
governing differential equations for the nonlinear buckling 
elastica, numerical solution methods and numerical exam-
ples, including those of the buckled elastica and buckling 
load, are described. The calculated Ig , buckled elastica and 
buckling loads in the numerical examples presented herein 
are discussed extensively in the dimensionless and dimen-
sional forms.

The following were assumed for the elastica analysis: the 
column axis is incompressible, the shear deformation effect is 



4547Arabian Journal for Science and Engineering (2022) 47:4545–4557	

1 3

disregarded, the cross section remains plane even after defor-
mation, and the load direction of the free end is considered to 
be vertical after buckling.

2 � GMI of Elliptical Plane Area

2.1 � Geometry of Elliptical Cross Section

Prior to the analysis of the buckling behavior of a nonlinear 
elastic column, Sect. 2 presents the mathematical formulation 
for calculating the GMI, denoted by Ig as the representative 
nomenclature, of an elliptical cross section based on the Lud-
wick constitutive law.

A closed elliptical curve with semi-axes a and b in Carte-
sian coordinates ( w, h ) is shown in Fig. 1a, and its equation is 
expressed arithmetically as

where w and h represent the width and height axes, respec-
tively, and the w-axis is the bending axis of the cross section 
that is applied to the bending moment after buckling.

The aspect ratio � , defined as the ratio of a to b , is expressed 
as

where it is noted that the bending axis, or w-axis, is the weak 
axis when 𝛼 > 1 and the strong axis when 𝛼 < 1.

Using Eqs. (1) and (2) yields the coordinate w in terms of 
� and b at any coordinate h , or

(1)w2

a2
+

h2

b2
= 1

(2)� =
a

b

(3)w = �
√
b2 − h2

The area A of an ellipse can be obtained using Eq. (4), 
and the semi-axis b and coordinate w are rearranged in the 
form of Eqs. (5) and (6), respectively, as follows:

2.2 � GMI of Elliptical Cross Section

Figure 1b shows the distributions of strain � and normal 
stress � along the coordinate h that occur in the cross section 
owing to the bending moment M.

For nonlinear elastic materials adhering to the Ludwick 
constitutive law, the relationships between (�,�) and curva-
ture � are expressed as

where E is the Young’s modulus, and n is the material con-
stant of Ludwick-type materials. The typical values of E and 
n for the linear and soft hardening materials considered in 
this study are as follows:

•	 Linear elastic material: E = 207 GPa and n = 1 for steel;
•	 Annealed copper: E = 458.5 MPa and n = 2.16 ; and.
•	 NP8 aluminum alloy: E = 455.8 MPa and n = 4.785,

where linear elastic materials (n = 1) such as steel can be 
adopted for the GMI, as shown above.

(4)A = �ab = ��b2

(5)b =
√
A∕��

(6)w = �
√
A∕�� − h2.

(7)� = �h

(8)� = E�1∕n = E(�h)1∕n

Fig. 1   a Elliptical cross section 
subjected to bending moment 
M and b its strain � and stress � 
distributions along cross section 
for nonlinear elastic material

(a) (b)
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Next, the equilibrium between the internal and external 
moments subjected to the cross section is considered. The 
infinite-element area dA depicted in Fig. 1b is obtained using 
Eq. (6), or

The internal infinite force dF exerting on dA is expressed 
using Eqs. (8) and (9), as follows:

The internal infinite moment dM due to dF about the neu-
tral axis is obtained as

where the neutral axis is the w-axis because the ellipse is 
symmetric about the w-axis.

The total internal moment M occurring in the cross section 
was obtained by integrating Eq. (11), or

The well-known relationship [3] between the external 
moment M and curvature � is expressed in terms of E and Ig , 
as follows:

Finally, the Ig of the elliptical cross section is obtained using 
Eqs. (12) and (13), as follows:

By setting the normalized coordinate � as defined in 
Eq. (15.1), the corresponding coordinate h is expressed by 
Eq. (15.2), as follows:

(9)dA = 2wdh = 2�
√
A∕�� − h2dh.

(10)dF = �dA = 2�E(�h)1∕n
√
A∕�� − h2dh

(11)dM = (dF)h = 2��1∕nEh(1+1∕n)
√
A∕�� − h2dh

(12)M =
∫

dM == 4��1∕nE

b

∫
0

h(1+1∕n)
√
A∕�� − h2dh.

(13)M = �1∕nEIg.

(14)Ig = 4�

b

∫
0

h(1+1∕n)
√
A∕�� − h2dh.

(15.1)� =
h

b

Substituting Eq. (15.2) into Eq. (14) yields Ig for the ellip-
tical cross section with area A and aspect ratio � , or

where n1 = (1 + 1∕n)∕2 and n2 = (3 + 1∕n)∕2 . It is notewor-
thy that Ig has a physical dimension of Ig = [A]n2 = [L]3+1∕n , 
as shown in Eq. (16.1). For example, when A is expressed in 
units of cm2, the dimensional units for Ig are as follows: cm4 
for n = 1 of the linear elastic material; cm3.463 for n = 2.16 
of the annealed copper; and cm3.209 for n = 4.785 of the NP8 
aluminum alloy.

2.3 � Numerical Examples of Ig

For a set of material constants n , an aspect ratio � , and an 
area A of an elliptical plane area, Ig can be calculated using 
Eq. (16.1). For a specified value of n , Cn in Eq. (16.2) can be 
numerically obtained using the directed integration method, 
such as the Runge–Kutta method [24] used in this study. 
After calculating Cn , the Ig of the ellipse with � and A was 
calculated using Eq. (16.1). In this study, a FORTRAN com-
puter program was created to calculate Ig.

To verify the mathematical formulation for obtain-
ing Ig developed in this study, the Ig values of this 
study and reference [4] were compared, as shown in 
Table 1. The GMI from reference [4] was formulated as 
Ig =

[
2ab(n+2)∕(n + 3)

]
B(0.5, (n + 2)∕2) , where B is a beta 

function. By varying � , the two resulting Ig values for three 
typical nonlinear elastic materials of n = 1, 2.16 , and 4.785 
with A = 20 cm2 were almost identical to each other within a 
0.2% error, which implies the effectiveness of the calculation 
method presented herein.

As one of the main cross sections of structural members, 
the elliptical and rectangular cross sections are often used 
in field engineering. It is beneficial to compare the Ig of 

(15.2)h = b� =
√
A∕��� .

(16.1)Ig =
4An2

�n2�n1

1

∫
0

�2n1
√
1 − �2d� = Cn

An2

�n1

(16.2)Cn =
4

�n2

1

∫
0

�2n1
√
1 − �2d�

Table 1   Comparison of Ig 
between this study and reference 
[4] for A = 20 cm2

a  Ig =
[
2ab(1∕n+2)∕(1∕n + 3)

]
× B(1∕2, (1∕n + 2)∕2) , where B is a beta function.

Properties of n and � Dater source GMI Ig % Error

n = 1 , � = 0.5   (Linear elastic material) This study 63.662 cm4 –
Reference a 63.550 cm4 0.18

n = 2.16 , � = 1    (Annealed copper) This study 25.112 cm3.463 –
Reference a 25.072 cm3.463 0.14

n = 4.785 , � = 2 (NP8 aluminum alloy) This study 15.040 cm3.209 –
Reference a 15.012 cm3.209 0.19
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elliptical and rectangular cross sections as nonlinear elastic 
materials. Table 2 shows this comparison for the same aspect 
ratio � and cross-sectional area A(= 10 cm2) for three differ-
ent material constants n . The Cn value for a rectangular area 
introduced in the Introduction was Cn = 0.5(1+1∕n)∕(2 + 1∕n) . 
It is clear that the Ig values of the rectangular cross sec-
tion were approximately 5% higher than that of the ellipti-
cal cross section, regardless of the values of � and n . It is 
noteworthy that the ratios 1.0472, 1.0495 and 1.0474 for 
n = 1, 2.16 , and 4.785 , respectively, were similar, but not 
identical. In addition, even if omitted herein, the ratio of the 
rectangle to the ellipse is always the same regardless of �.

The dimensionless value of Cn expressed in Eq. (16.2) 
depends only on n . Once a Cn vs. n curve is plotted graphi-
cally, Ig can be computed using Eq. (16.1), regardless of � 
and A . A graph showing the relationship between Cn and n is 
presented in Fig. 2. The Cn values for n = 1, 2.16 , and 4.785 
of steel, annealed copper and NP8 aluminum alloy (i.e., typi-
cal nonlinear elastic materials), respectively, are shown in 

this graph, as denoted by ●. As n increased, Cn increased, 
and the rate of increase in Cn became more significant as n 
decreased.

The calculated results of Ig for a specified A(= 20 cm2) 
by changing the � of the abovementioned typical nonlin-
ear materials, i.e., NP8 aluminum (n = 4.785) , annealed 
copper ( n = 2.16 ) and steel (n = 1) , are shown in Fig. 3. 
For example, the process to calculate Ig expressed by 
Eq. (16.1) for n = 2.16 with � = 2 is shown in this figure, 
and the result of Ig = 15.13 cm3.463 is indicated by the sym-
bol ■ of the coordinates (2,15.13). The value Cn = 0.14034 
of n = 2.16 shown in Fig. 2 refers to this calculation. As 
� increased, the value of Ig decreased, and the rate of 
decrease in Ig became more dominant as � decreased. It 
is interesting that at � = 2.25 , all the Ig values for three n 
were the same as the magnitude of Ig = 14.15 and there-
fore, the order of the Ig magnitude changed before and 
after � = 2.25 ; the order of the magnitude of Ig was from 

Table 2   Comparison a of 
Ig between elliptical and 
rectangular cross sections

a  A = 10 cm2

b  Cn = 0.5
(1+1∕n)∕(2 + 1∕n) for rectangular cross section

Properties of n and � Dater source GMI Ig Ratio

n = 1, � = 1 (Linear material) Ellipse 7.9577 cm4 –
Rectangle b 8.3333 cm4 1.0472

n = 2.16, � = 2 (Annealed copper) Ellipse 4.5547 cm3.463 –
Rectangle b 4.7800 cm3.463 1.0495

n = 4.785, � = 3 (NP8 aluminum alloy) Ellipse 3.8709 cm3.209 –
Rectangle b 4.0545 cm3.209 1.0474

Fig. 2   Graph showing relationship between Cn and n
Fig. 3   Ig(cm3+1∕n ) vs. α curves for A = 20 cm2 for three typical values 
of n
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n = 1 to 2.16 to 4.785; however, the order was reversed 
beyond � = 2.25.

3 � Application of Ig to Cantilever Column 
Buckling

In this section, to demonstrate the application of Ig to struc-
tural analysis, cantilever column buckling is presented. The 
mathematical model of the buckled elastica is formulated, 
solution methods are developed, and finally, numerical 
examples and a discussion are presented.

3.1 � Mathematical Modeling

Figure 4 presents a cantilever column of span length l , based 
on the Ludwick constitutive law under a compressive load P 
at its free end. When P is less than the critical buckling load 
Pcr , the column axis indicated by the dotted line remains 
straight. If P exceeds Pcr , i.e., P > Pcr , the column buckles, 
and the column axis is deformed elastically. The shape of the 
buckled column, known as elastica, is represented by a solid 
line in Cartesian coordinates ( x, y ) starting at the clamped 
end C . The arc length at ( x, y ) measured from the clamped 
end C along the deformed axis is denoted by s . Assuming 
incompressibility, the length of the deformed column axis 
retains its original length l . The angle of rotation at ( x, y ) is 

denoted by � ; the horizontal and vertical deflections at the 
free end ( s = l ) are denoted by Δh and Δv , respectively. In 
addition, in coordinates ( x, y ), the internal forces of the axial 
force N , shear force Q and bending moment M are applied 
owing to the deformation of the column axis.

The internal forces of (N,Q,M) at (x, y) can be expressed 
using static equilibrium equations, as follows:

From the trigonometric relations of the elastica shown in 
Fig. 4, the following equations are obtained:

The bending moment M is expressed using � = d�∕ds 
and Ig =

(
Cn∕�

n1
)
An2 shown in Eq. (16.1), or

Combining Eqs. (19) and (22) and rewriting the results 
with respect to d�∕ds yields

where the sign convention of d�∕ds follows that of 
(
Δh − y

)
.

To obtain the numerical results easily, the following 
dimensionless parameters are introduced:

(17)N = Pcos�

(18)Q = Psin�

(19)M = P
(
Δh − y

)

(20)
dx

ds
= cos�

(21)
dy

ds
= sin�

(22)M = EIg�
1∕n =

Cn

�n1
EAn2

(
d�

ds

)1∕n

(23)d�

ds
=

[
�n1

Cn

P||Δh − y||
EAn2

]n

(24)� =
s

l

(25)� =
x

l

(26)� =
y

l

(27)�h =
Δh

l

(28)�v =
Δv

l

(
= 1 − ��=1

)

Fig. 4   Geometry of cantilever column and its parameters
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where (�, �, �) are the normalized coordinates; 
(
�h, �v

)
 are 

the normalized horizontal and vertical deflections at the free 
end, respectively; and p is the load parameter.

By applying the dimensionless parameters above to Eqs. 
(20), (21), and (23), the nonlinear dimensionless differential 
equations that govern the elastica of the buckling column 
considered in this study are obtained:

where the unknown parameter �h in Eq. (32) is an eigenvalue 
that can be solved using an appropriate numerical solution 
method. In Eq. (32), the sign convention of d�∕d� follows 
that of 

(
�h − �

)
.

Next, the boundary conditions for the differential equa-
tions above are considered. At the clamped end ( s = 0 ), 
the coordinates ( x, y ) and rotation angle � are zero, and the 
results in the dimensionless form are as follows:

At the free end ( s = l) , the coordinate y becomes the 
horizontal deflection Δh , and the result in the dimensionless 
form is

The internal forces of (N,Q,M) are normalized as follows:

where (n, q,m) are the normalized internal forces corre-
sponding to (N,Q,M).

3.2 � Solution Methods and Validation

To solve the differential equations derived above, numerical 
methods for calculating the elastica and buckling loads were 

(29)p =
Pl2n1

EAn2

(30)
d�

d�
= cos�

(31)
d�

d�
= sin�

(32)
d�

d�
=

[
�n1

Cn

p||�h − �||
]n

(33)� = 0, � = 0, � = 0 at � = 0

(34)�h − � = 0 at � = 0

(35)n =
Nl2n1

EAn2
= pcos�

(36)q =
Ql2n1

EAn2
= psin�

(37)m =
Ml1∕n

EAn2
= p

(
�h − �

)

developed in this study. The input column parameters were 
the column length l , material properties of E and n , semi-
axes of a and b , and axial load P . Using these parameters 
of dimensional units, the dimensionless parameters were 
obtained as � and p . To integrate the differential equations, 
the Runge–Kutta method [24] was used, and to obtain the 
eigenvalue �h , i.e., the unknown horizontal deflection at the 
free end, a solution method of nonlinear equations such as 
the Regula–Falsi method [24] was used. These types of solu-
tion methods for the initial and boundary value problems 
with eigenvalues are often adopted [11, 14]. Specifically, 
the solution method for computing the elastica (�, �, �) is 
as follows:

(1) Set column parameters n , � and p (subsequently, cal-
culate Cn for a specified n.)

(2) Assume a trial eigenvalue �h , i.e., an unknown hori-
zontal deflection at the free end. The first trial is zero.

(3) Integrate differential Eqs. (30–32) subjected to the ini-
tial conditions presented in Eq. (33) using the Runge–Kutta 
method: After a complete integration in 0 ≤ � ≤ 1 , the trial 
elastica (�, �, �) is obtained along the entire arc length of the 
buckled column.

(4) Calculate the trial boundary condition of 
D = �h − ��=1 in Eq. (34). The first convergence criterion is

If the first criterion is satisfied, then calculate the internal 
forces of (n, q,m) and terminate the calculation. For example, 
the typical relationship between D and �h is shown in Fig. 5, 
where the two solutions of �h with D = 0 are indicated by the 
symbol ● on the horizontal axis. The input column param-
eters are shown in Fig. 5.

(38)⌊D⌋ ≤ 1 × 10
−8

Fig. 5   Typical relationship between D and �h
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(5) If the criterion above is not satisfied, then perform 
an increment of Δ to the previous trial �h , i.e., new trial 
�h ← �h + Δ , and repeat steps 2–5.

(6) While repeating steps 2 through 5, monitor the sign 
of D1 × D2 , where D1 and D2 are the corresponding values 
of D in the previous and present trials, respectively. If the 
sign does not change until �h reaches 1, the specified p is 
less than pcr , and the column remains straight because �h 
cannot exceed 1, then terminate the calculation. Here, pcr 
is the buckling load parameter defined as

(7) If the sign changes, then the solution of �h lies 
between �h1 and �h2 . Here, �h1 and �h2 are the �h values cor-
responding to D1 and D2 , respectively. The advanced trial 
�h3

 is set using the Regula–Falsi method [24] as follows:

For example, in Fig. 5, �h3 = 0.181 is obtained from 
Eq. (40) using the two coordinates of (0.1,0.0549) and 
(0.4,-0.148), where the sign of D1 × D2 changes. Compar-
ing �h1 = 0.1 and �h2 = 0.4 , the calculated �h3 = 0.181 is 
much closer to the target value �h = 0.247.

(8) Once the Regular–Falsi scheme is encountered, 
execute the steps above until the second criterion defined 
in Eq. (41) is satisfied:

(9) If the second criterion is satisfied, then calculate the 
internal forces of (n, q,m) and terminate the calculation. 
In the steps above, if the sign of D1 × D2 for a specified 
p does not change until �h

(
= Δh∕l

)
= 1 , then the column 

remains straight, i.e., it does not buckle, because �h can-
not exceed 1 ; therefore, the specified p is less than pcr , 
i.e., p < pcr.

The method for calculating the buckling load pcr is 
developed based on the fact that the buckling load is a 
jumped buckling load [6]. The column with load param-
eter p < pcr does not buckle, implying that the column 
axis is straight, i.e., �h = 0 , and the column with p > pcr 
buckles, implying �h ≠ 0 . Therefore, p becomes pcr , which 
is the smallest p at which �h occurs. For a column with 
a specified aspect ratio � , pcr can be obtained using the 
solution method of elastica described above. Increase p 
from p = 0 by increasing Δp(= 0.2, randomly selected in 
this study) and execute steps 2–5. Subsequently, identify 
the first p at which the sign of D1 × D2 changes and then, 

(39)pcr =
Pcrl

2n1

EAn2
.

(40)�h
3
=

�h
1

||D2
|| + �h

2

||D1
||

||D1
|| + ||D2

||
.

(41)
|||�h1 − �h

2

|||
�h

2

≤ 1 × 10
−5

pcr lies between pa and pb (which are adjacent to each 
other), implying that pb is the first p under which the sign 
of D1 × D2 changes. By repeating steps 2–5 from pa to pb 
with increasing smaller Δp

(
=
(
pb − pa

)
∕10

)
 values until 

the following convergence criteria Er is satisfied, pcr is 
approximately equivalent to pb , as follows:

A typical example of determining pcr for n = 2.16 and 
� = 1 is shown in Fig. 6. For the first iteration i = 1 , the first 
pb is pb = 0.4 with Er = (0.4 − 0.2)∕0.4 = 0.5 > 1 × 10−5 , 
under which the sign of D1 × D2 changes, implying that the 
solution of pcr is bounded by 0.2

(
= pa

)
< pcr < 0.4

(
= pb

)
 . 

Finally, for i = 6 , pcr is approximated as pcr
(
= pb

)
= 0.308 

with Er = 1.95 × 10−6 < 1 × 10−5.
Two FORTRAN computer programs were self-coded 

based on the solution methods described above to calculate 
the elastica of (�, �) and the critical buckling load parameter, 
pcr . In these computer programs, the calculation scheme of 
GMI described in the previous section was included as an 
internal function. For validation, the critical buckling loads 
Pcr (kN) of this study and reference [25] were compared for 
a steel column ( n = 1 and E = 207 GPa) with l = 1 m and 
A = 20 cm2. As shown by the results in Table 3, and the 
two numbers were similar. Although the Pcr of this study 
is an approximate critical buckling load, it is similar to the 
exact solution Pcr of reference [25], within a 0.29% error. 
This comparison validates the solution method developed 

(42)pcr ≈ pb, if Er =
pb − pa

pb
≤ 1 × 10−5

Fig. 6   Convergence analysis for obtaining buckling load parameter 
pcr
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in this study. Because the elastica of the buckling column 
considered herein was not reported in the literature, a direct 
comparison could not be realized. It is noteworthy that the 
solution method of Pcr includes the solution methods of elas-
tica; as such, the solution method of the elastica is verified.

3.3 � Numerical Examples

Based on the theories and numerical solution methods 
developed in this study, a parametric study involving the 
buckling load parameter pcr and post-buckled elastica (�, �) 
was conducted. As mentioned in Sect. 2.2, NP8 aluminum 
( n = 4.785 ), annealed copper ( n = 2.16 ) and steel ( n = 1 ), 
i.e., the most practical materials adhering to the Ludwick 
constitutive law in engineering, were considered in numeri-
cal examples.

First, the equilibrium path, i.e., the load parameter 
p vs. deflection 

(
�h, �v

)
 curve, must be analyzed and dis-

cussed. The equilibrium paths against �h for n = 2.16 and 
n = 1 with � = 2 are shown in Fig.  7a. For n = 2.16 , if 
p < 0.186

(
= pcr

)
 , then �h does not occur, and the column 

remains straight. However, when p reaches the buckling load 
parameter pcr = 0.186,�h increases abruptly from �h = 0 to 
�h = 0.774 , causing the catastrophic buckling of the column. 
After column buckling, two conjugate equilibrium paths 
exist: one is unstable, as indicated by a dotted line, whereas 
the other is stable, as indicated by the solid line. The unsta-
ble path is only the passing path to reach the final equilib-
rium state of the buckled column from the initial straight 
state (see Fig. 9b). An unstable and stable path convenes at 
pcr = 0.186 with an abrupt increase in �h,pcr = 0.774 . It is 
clear that this jump buckling phenomenon can be used for 
the solution method to calculate pcr . After column buckling, 
the stable path passes through a strong nonlinear path with 
increasing p , reaching the peak coordinates (�h,max = 0.855 
at p = 0.204 ) and decreasing with increasing p . The maxi-
mum �h,max does not exceed 1 as expected because of incom-
pressibility. The unstable path is highly nonlinear, and �h 
decreases as p increases. For n = 1 , �h does not occur until 
p = 0.0983

(
= pcr

)
 , and after buckling, the equilibrium path 

exhibits a clear nonlinear behavior. Here, only the stable 
path exists, i.e., the unstable path does not exist. This implies 
that after column buckling, �h does not increase abruptly, 
unlike the annealed copper column ( n = 2.16 ), and post-
buckling behavior is expected. This implies that for a steel 
column ( n = 1 ), a catastrophic collapse due to buckling can 

Table 3   Comparisons a of buckling load Pcr of this study and refer-
ence [25]

a   See text for the column parameters

� a (cm) b (cm) Buckling load Pcr (kN)

This study Reference [25]

1.0 2.523 2.523 163.08 162.58
1.5 3.090 2.060 108.72 108.39
2.0 3.568 1.784 81.54 81.29
2.5 3.989 1.596 65.23 65.03
3.0 4.370 1.457 54.36 54.19

(a) (b)

Fig. 7   Equilibrium paths for � = 2 with n = 1 and n = 2.16 : a Horizontal deflection �h . and b vertical deflection �v
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be avoided because, unlike the annealed copper column, the 
bucking behavior should be detected immediately after col-
umn buckling. As p increases, �h increases, reaches the peak 
coordinate ( �h,max = 0.806 at p = 0.174 ) and then decreases. 
It is clear that increasing p indefinitely results in �h approach-
ing zero. In Fig. 7b, the equilibrium paths of the vertical 
deflection �v for n = 2.16 and n = 1 with � = 2 are shown. 
The path similarly passes through the nonlinear path of �v 
shown in Fig. 7a. However, the path does not correspond to 
the peak coordinates; therefore, �v consistently increases as 
p increases. Unlike �h in Fig. 7a, �v can exceed 1; therefore, 
the free end of the buckled column can be located below the 
clamped end (for further details, see Fig. 9b). The value of 
�v approaches 2 if p increases indefinitely.

Next, the buckling load parameter pcr is discussed. 
Figure 8a shows the pcr vs. � curves for NP8 aluminum 
( n = 4.785 ), annealed copper ( n = 2.16 ) and steel ( n = 1 ) 
columns. As � increased, pcr decreased, as expected, because 
a cross section with a small � has a larger Ig . The decreas-
ing slope of pcr was extremely steep at 𝛼 < 1 ; however, the 
slope was moderate at 𝛼 > 1 . It is interesting that the mag-
nitude order of pcr of the three different columns depended 
on � . For example, at � = 3 the order was from n = 4.785 to 
2.16 to 1; however, at � = 0.2 , the order was reversed. To 
show an example of buckling load Pcr (kN) in the dimen-
sional units,Pcr was calculated based on Fig. 8a for l = 1 m 
and A = 20 cm2, and the results are shown in Fig. 8b. As � 
increased,Pcr decreased, as shown in Fig. 8b. The decreasing 
slope of Pcr was steeper for a smaller � . The dimension-
less pcr value shown in Fig. 8a did not indicate a significant 

difference among the three different columns; however, the 
buckling load Pcr in the dimensional unit indicated a sig-
nificant difference. This is because Pcr is expressed in terms 
of E , as shown in Eq. (39). Consequently,Pcr exhibited a 
significant difference based on the E value of the column 
material.

In field engineering, the buckling and post-buckling elas-
tica must be understood for column analysis and design. 
First, in Fig. 9a, the buckling elastica (�, �) for NP8 alu-
minum ( n = 4.785 ), annealed copper ( n = 2.16 ), and 
steel ( n = 1 ) columns with � = 2 are shown. For n = 1 , 
the buckling elastica with pcr = 0.0983 remained straight, 
whereas for n = 2.16 and 4.785 , a significant deformed 
elastica occurred, as described by the equilibrium path 
shown in Fig. 7. For n = 2.16 , significant deflections of 
the free end, i.e., �h = 0.774 and �v = 0.493(= 1 − 0.507) 
under pcr = 0.186 , denoted by ∙ , occurred immediately 
after column buckling. Such sudden elastica cannot detect 
the cause of catastrophic collapse; therefore, pcr must be 
focused on in the column design of nonlinear elastic col-
umns. As n increases, the elastica becomes more severe. 
Second, the post-buckled elastica for n = 2.16 and � = 2 
is shown in Fig.  9b, where five elastica are presented, 
with p = 0.25, 0.22, 0.204, 0.19 , and 0.186

(
= pcr

)
 . In 

this figure, the dotted elastica is unstable, and the dashed 
elastica is stable. Therefore, the four dotted elastica with 
p = 0.25, 0.22, 0.204 , and 0.19 until the bucking elastica 
of pcr = 0.186 with free end deflections �h = 0.774 and 
�v = 0.493 indicated by ∙ , as shown in Fig. 9a, were unsta-
ble. The trajectory of the free end where the coordinates 

(a) (b)

Fig. 8   a pcr vs. � curves and b Pcr(kN) vs. � curves for l = 1 m and A = 20 cm2
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of the free ends were continuously connected is presented. 
The unstable dotted elastica in the unstable dotted trajectory 
of the free end was only through a path that did not exist 
naturally. Therefore, the unstable elastica with p > pcr was 
located in the upper region from the buckling elastica with 
pcr = 0.186 , i.e., closer to the initial column, and all of the 
stable elastica with p > pcr must pass through this unstable 
region. As described above, the column head moved to the 
coordinates (0.507,0.774) indicated by ∙ immediately after 
column buckling. After column buckling, the free end of the 
buckled column propagated along a stable dashed trajectory, 
i.e., lower region. In this stable trajectory, five post-buckled 
elastica with p

(
≥ pcr

)
= 0.186, 0.19, 0.204, 0.22 , and 0.25 

are presented. Here, an elastica with the maximum horizon-
tal deflection 𝛿h,max = 0.855(< 1) at p = 0.204 denoted as ▲ 
was observed as well. An elastica can be placed under the 
clamped end, such as an elastica with p = 0.25.

The buckling behavior of the internal forces ( N,Q,M ) 
and the distributions of strain and stress ( �, � ) were con-
sidered. In this numerical example, the internal forces 
of ( N,Q,M  ) in dimensional form are discussed rather 
than those of ( n, q,m ) in nondimensional one. Fig-
ure 10 shows a diagram of the buckling internal forces 
( N,Q,M ) for the NP8 aluminum alloy column ( n = 4.785 , 
E = 455.8 MPa) with l = 1 m, a = 3.57 cm and b =1.78 cm 
( � = 2,A = 20 cm2, and Ig = 15.040 cm3.209). The buckling 
load Pcr = 4.32 kN, and its dimensional buckling elastica 
is shown in this figure, where its dimensionless elastica 
is presented in Fig. 9a. As expected, at the clamped end, 

Nc

(
= Pcr

)
= 4.32 kN and Qc = 0 because �c = 0 at the 

clamped end. At the free end, Nf  was approximately zero, 
i.e., Nf ≈ 0 , and Qf = Pcr = 4.32 kN; this is because in this 
case, �f ≈ �∕2 , as shown in the buckling elastica in this 

(a) (b)

Fig. 9   a Buckling elastica for � = 2 by n and b post-buckled elastica for n = 2.16 with � = 2

Fig. 10   Buckling internal forces of (N,Q,M) for n = 4.785 and � = 2
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figure. When s > 0.55 m, N  and Q were almost vertically 
constant because the elastica was horizontally constant 
with � ≈ �∕2 . As expected, at the free end, Mf  was zero, 
and at the clamped end, Mc with Δh,f = 0.890 m was the 
maximum as Mc = PcrΔh,f = 3.85 kNm.

Finally, the distributions of ( �, � ) of the buckling elastic 
at the clamped end, where the maximum bending moment 
Mmax

(
= Mc

)
 occurred, were obtained. Here, the column 

input parameters were the same as those shown in Fig. 10. 
The ( �, � ) along the column depth in −b ≤ h ≤ b can be 
obtained using the following equations for specified values 
of N and M.

For numerical values Nc = 4.32 kN and Mmax = 3.85 
kNm at the clamped end shown in Fig. 10, the correspond-
ing ( �N , �M ) can be obtained as �N = +7.72 × 10−12 and 
�M,h=±b = ±0.121 , respectively, from which �max = 0.121 is 
obtained using Eq. (43). This results are shown in Fig. 11. 
Because �N is approximately zero compared with �M,h=±b , 
the deviation of the neutral axis from the bending axis is 
negligible, i.e., the neutral axis is approximately remained 
at h = 0 . Using �max = ± 0.121, the linear equation � = �h 
along the column depth can be drawn in Fig. 11 where its 
slope � = 0.0678∕cm is obtained from Eq.  (22). Subse-
quently, the nonlinear equation of � = E�1∕n in Eq. (44) is 
obtained, and its result is also shown in Fig. 11. The �max is 

(43)� = �N + �M =

(
|N|
EA

)n

+

(
|M|
EIg

)n

h, −b ≤ h ≤ b

(44)� = E�1∕n

calculated as �max = 293 MPa at the two edge ends, and the 
nonlinear distribution shape is almost rectangular; therefore, 
the use of the cross-sectional area for � is effective compared 
with those of linear materials. The information provided in 
Fig. 11 is important for ensuring column safety when design-
ing nonlinear material columns.

4 � Concluding Remarks

The GMI of the plane area of an ellipse for a nonlinear mate-
rial adhering to the Ludwick constitutive law was investi-
gated. The GMI of an elliptical plane was derived from an 
explicit integral formula based on the equilibrium of tensile 
and compressive forces applied internally to the elliptical 
cross section owing to the external bending moment. The 
GMI values calculated by varying the material constant in 
the nondimensional and dimensional forms were reported 
in tables and graphs. To demonstrate the practical use of the 
GMI in this study and in field engineering, its application 
to cantilever column buckling was considered. Numerical 
experiments of critical buckling loads and buckling behavior 
in dimensionless and dimensional forms were performed, 
and the results are presented in tables and figures. The con-
tents of this study are beneficial to the analysis and design of 
cantilever columns fabricated using Ludwick-type materials.
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