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Abstract
This paper proposes the Marine Predators Algorithm (MPA) as a new bio-inspired optimization algorithm to extract the 
parameters of three-photo voltaic models of solar cells. These models are three diode model (TDM), double diode model 
(DDM) and one-diode model (SDM). The MPA is dependent on the manner of a population of Marine Predators. This optimal 
strategy allows prey to use an optimal foraging strategy and allows predators to use an intelligent rate policy for encounters. 
The proposed MPA-based parameter estimation algorithm is tested at normal and low radiation operating conditions. The 
normal operating condition is employed with the 57 mm diameter commercial silicon solar cell (Case 1), while the Case 2 
is based on a multi-crystalline silicon solar cell of area 7.7  cm2 from Q6-1380 under low irradiance levels. The capability of 
MPA is validated for the three models compared with other competitive algorithms. Simulation results show that high close-
ness between the estimated and experimental records reflects the high capability of the MPA with more accurate parameters. 
The RMSE of 8.43854E−4, 7.59E−4 and 7.561E−4 are achieved for Case 1 by using SDM, DDM and TDM, respectively. 
While, the RMSE has the best levels of 1.61E−5, 1.46E−5, and 1.42E−5 in Case 2, respectively. Also, the MPA has com-
petitive results compared with several optimization algorithms in the literature as sine cosine, particle swarm, salp swarm, 
grey wolf optimization algorithms. The proposed MPA has good convergence and robust statistical analysis for different 
operating conditions of low and high irradiance.

Keywords Marine predators optimization algorithm · PV parameter estimation · PV-electrical models · Multi-crystalline 
solar cell low radiation solar cells

1 Introduction

The expanding and fluctuations in the prices of the fossil 
fuels as well as the pollution and solid wastes make the 
renewable energy sources the best solution to support energy 
in continues manner and almost no pollution. Solar energy 
is one promising of renewable energy source because of its 
widespread over world, little maintenance, noise free and 
almost conventional fabrication techniques. It is important to 

find the most accurate model for representing the solar cells/
modules for techno-economic benefits in the electrical grids. 
Many researchers are developed several models as the mode-
ling of solar cell has attracted interest from them to describe 
its behavior at different environmental conditions as in Refs. 
[1–6] and for enhancing power performance issue [7–9]. 
In the previous modeling works, the (I–V), current versus 
voltage, characteristic curve is the most important behavior 
to be formulated. To achieve this target, various developed 
models describe the characteristic of solar cell systems. The 
first model is called single-diode model (SDM). The SDM 
combines between the simplicity and accuracy, as it has only 
five parameters, hence it is considered the most commonly 
used in many power applications as in [9–11]. The second 
model is called second diode model which is abbreviated 
as DDM. The DDM has seven parameters, with two extra 
parameters that model the extra added diode compared with 
SDM, which make the calculations more complicate, but 
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it is more accurate. The third presented model is called the 
triple diode model with abbreviation of TDM. The TDM 
which is the most complicated of these three models, but 
it is the most accurate especially in case of low radiation 
[12–16]. Also modified triple diode versus modified diode 
models were assessed recently in [17]. From the previous 
presentation, there are many efforts for modeling solar cell/
modules at different environmental conditions of tempera-
ture and irradiance.

From the point of applications and real markets, Refs. 
[18–22] cover the energy hub applications and market 
requirements with the existence of uncertainty impacts of 
renewable energy resources. Finding the accurate modeling 
way is an important issue in energy market and energy 
hubs. The main merits of the parameter estimation play an 
important role in power system operation. For controlling 
the frequency in multi-area system, the parameter of solar 
cell is modeled by SDM as in [23]. Also, it helps in the 
operation enhancement of pumping system with synchro-
nous machines as in [24] with using of the third generation 
of solar cell.

In the viewpoint of solution methodology, several 
reported methods have been explored in the literature to 
determine the PV parameters. Most of those methods can 
be varied between three popular classes. The analytical 
methods belong to the first one [25–28], which provide for-
mulations for the parameters of the data sheet information 
or I–V characteristic curve data. The metaheuristic methods 
belong to the second one [29, 30], which describe the prob-
lem of the estimation of the PV cell model parameter as an 
optimization problem. The resulting optimization problem 
can be solved by metaheuristic optimization techniques. The 
third one is hybrid approaches based on metaheuristic and 
analytical techniques, that means some of the parameters are 
calculated by a metaheuristic optimization algorithm and the 
remaining set of model parameters are found by analytical 
approach [31].

The determination of parameters accurately is very 
important in PV design, optimization, simulations, control 
and performance evaluation. Therefore, the process and tech-
nique of parameters estimation are very necessity. There is 
continuous development in methods to reach more accurate 
parameters for engineering problems, this aspect motivates 
this work to find higher accurate optimization algorithm to 
emulate the PV model. Table 1 represents the recent meta-
heuristic approaches used for the parameter estimation of 
PV cell/ modules As shown above, continuous development 
of optimization algorithms encourages many researchers in 
variant engineering fields to utilize and achieve the elevated 
merits to their own situations.

The MPA is one of these recent techniques. It is nature-
inspired optimization algorithm based on the optimal forag-
ing strategy and allows predators to use an intelligent rate 

policy for encounters. It has been proposed in 2020 [53]. It 
depends on the behavior of a population of Marine Preda-
tors. The Marine Predators's social organization and behav-
ior depend on swarm intelligence and evolutionary heuristic. 
MPA depends on the prey-predator speed ratio. Brownian 
motion and levy flight are considered to simulate prey and 
predator movement. Marine predators rely on their spatial 
memories and advanced cognitive skills in many activities, 
such as retrieving food and remembering the places where 
their food is often obtained.

Through this paper, MPA-based algorithm is developed 
to achieve the optimal parameters of PV models. However, 
the main contributions of this paper could be summarized 
in the following points:

• Develop an efficient MPA-based parameter estimation 
algorithm for solving three different models of PV cells;

• The proposed MPA-based algorithm is applied at normal 
and low radiations operating conditions of PV cell;

• The normal operating condition is employed with the 
57 mm diameter commercial (R.T.C. France) silicon 
solar cell, while the second operating case is emulated 
with the MCSSC of area 7.7  cm2 from Q6-1380 irradi-
ated by low levels.

• The results obtained from MPA are compared with those 
obtained by other well-known methods in the literature;

• The proposed MPA-based algorithm is characterized by 
its high robustness and good convergence rates;

• The estimated performance characteristics for I–V and 
P–V of the tested cells are very close to experimental 
data.

The rest of this manuscript has been formed as: Sect. 2 
illustrates the various PV models. The problem formulation 
is declared in Sect. 3. Section 4 explains the MPA algorithm. 
Section 5 describes results and discussion. Finally, Sect. 6 
concludes the paper findings.

2  Photovoltaic Models

Various models have been used to characterize the physics 
of PV modules. Practically, the most popular models are 
single- double- and three-diode models that are abbreviated 
as SDM, DDM and TDM, respectively. The following sub-
sections present the details of the variant models of PV cells.

2.1  Single Diode Model

The first PV model is the single-diode model (SDM). Fig-
ure 1 describes the equivalent circuit of SDM. This model 
simply consists of a current source IPV in parallel with a 
diode, resistance (RP) which considers the leakage current 
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of PN junction and consists of the partial short circuit (SC) 
current path near the cell’s edges related to the semi-con-
ductor layers and non-idealities and a series resistance which 
consider the effects of silicon and electrodes surfaces con-
tact, electrodes resistance and the flowing current resistance.

Mathematically, the diode current ‘ ID1 ’ is given using 
Shockley diode equation:

where Is1 represents the reverse saturation current, �1 is the 
ideality factor of (D1), I is the output current of the cell, V is 
the output voltage of the cell, ID1 is the diode current, and Rs 
is the series resistance of the equivalent circuit of SDM. The 

(1)ID1 = Is1[e

(
V+IRs

�1VT

)
− 1]

Table 1  Reveiw on meta-heuristic methods applied for parameter estimation problem

Reference # Comment

[1] In this study, the extracted of solar cell/modules parameters was employed by using penalty-based differential evolution
[2] The neural network with radial basis function was developed to identify the electrical models parameters of a photovoltaic module
[3] An iterative numerical cluster analysis method was developed in this study to extract the parameters of DDM of photovoltaic 

module parameters
[6] The Interior branch bound optimization algorithm was extracted for three-diode PV models
[9] In this study, the third generation of solar cells is modeled by SDM model and investigated for water pumping system. The param-

eters are extracted by using elephant herd optimization algorithm
[17] In this study, two soft parameter estimation methods called closed loop particle swarm and elephant herd optimizers were devel-

oped for parameter estimation of multi-crystal solar cell. Two models are considered
[29] The Pattern Search technique was employed on the basis of the experimental data presented in [32] to estimate the parameters of 

SDM and DDM
[30] Two PV models for cell and modules, called single diode, double diode, and photovoltaic module, are used in this using Simulated 

Annealing Approach (SAA)
[33] This study developed the Moth-Flame Optimization Algorithm (MFO) to extract the modified TDM parameters of the discussed 

MSC
[34] The Bacterial Foraging (BF) algorithm was applied for shading and normal conditions
[35] The GOTLBO method that so-called Generalized Oppositional Teaching Learning Based Optimization aims to enhance the quality 

and speed of convergence process
[36, 37] Two hybrid differential evolution methods were proposed for the estimation process and are characterized with good performance 

in CPU-execution time and accuracy
[38] The PV model is considered at low solar irradiance levels the Flower Pollination algorithm was developed to estimate its param-

eters
[39] Mutative-scale Parallel Chaos Optimization algorithm was proposed for different solar cell models are extracted, i.e., double diode, 

single diode models for PV module
[40] Feature detection of solar cells was employed by using the Artificial Bee Colony algorithm
[41] An optimization method was proposed for parameter identification based on the single and double diode models for a 57 mm diam-

eter commercial (R.T.C. France) silicon solar cell. This method is called as Artificial Bee Swarm Optimization algorithm
[42] The Harmony Search based algorithm (HS) was proposed for identifying the parameters of the solar cell single and double diode 

models
[43] The Genetic algorithm was proposed to obtain the global optimal parameters for SDM and DDM
[44] The Bird Mating technique estimates the SDM parameters for PV solar array
[45] Parameters extraction of three-diode PV models by Coyote optimization algorithm for PV modules
[46] Parameters extraction of three-diode PV models by Elephant herd, cuckoo search and crow search optimizers for PV modules
[47] This study provides an assessment of a modified three-diode against modified two-diode models of PV. Two methods are applied 

elephant herd optimizer and closed loop particle swarm optimization algorithm
[48] An opposition-based sine cosine algorithm (SCA) was used to estimate the parameters of PV with different models. It based on the 

basic sine cosine optimization approach
[49] The salp swarm optimization algorithm (SSA)was proposed and applied for extracting identifying the parameters of the electric 

model of PV. The optimal parameters were found using the double diode model of PV
[50] Particle Swarm Optimization technique (PSO) was used to enhance the double diode model by using the experimental data to 

extract the proposed triple diode model. The model was applied to the large-scale industrial solar modules
[51] Grey Wolf Optimizer (GWO) was proposed and developed to obtain an optimal model of PV. The approach considered the single 

diode model as the reference and accurate model of PV
[52] A method called forensic optimization algorithm was proposed for three models of the parameter estimation of solar cells
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thermal voltage of SDM ‘ VT ’ is given ( VT = KBT∕q ). KB rep-
resents Boltzmann's constant ( K = 1.3806503 × 10−23J∕K ), 
T is the operating temperature in Kelvin (K), and q is the 
electron charge ( q = 1.60217646 × 10−19).

The load output current is calculated using (2).

where IPV is the photons currents, IP is the leakage current 
that passes through the shunt resistance which is calculated 
by:

The (I–V) relation of SDM becomes:

In SDM, five unknown parameters ( IPV, Is1, �1,RPandRs) 
have to be estimated at their optimal values.

2.2  Double Diode Model

Practically, another additional diode is shunted to the cur-
rent source considering the space charge recombination [54], 
compared with the SDM. The DDM equivalent circuit is 
shown in Fig. 2.

The additional new diode current is given as follows:

(2)I = IPV − ID1 − IP

(3)IP =
V + IRs

RP

(4)I = IPV − Is1

(
e

(
V+IRs

�1VT

)
− 1

)
−

V + IRs

RP

where Is2 is the reverse saturation current, �2 is the ideality 
factor of the second diode.

The output current I is now recalculated as follows:

Equation (7) describes seven parameters of I–V relation 
which, ( IPV, Is1, Is2, �1, �2,RPandRs).

2.3  Triple Diode Model

In the triple-diode model (TDM), the influence of large leak-
age, and recombination in defect region are considered as in 
[12]. Therefore, the third diode is shunted with the DDM. 
Figure 3 shows the equivalent circuit of TDM.

Like SDM and DDM, the output current is calculated by 
applying KCL as follows:

where Is3 is the reverse saturation current and �3 is the ideal-
ity factor of the third diode.

In the literature [55–57], seven parameters, IPV , Is1 , Is2 , 
Is3 , �3 , RP and Rs had been estimated for this model, while the 
other parameters remain constant as �1 equal 1, �2 was taken 
as 2, and �3 > 3. In this work, nine parameters are estimated 
to get better results and enhance the accuracy of the higher 
models ( IPV, Is1, Is2, Is3, �1, �2, �3,RP andRs).

(5)ID2 = Is2[e

(
V+IRs

�2VT

)
− 1]

(6)I = IPV − ID1 − ID2 − IP

(7)

I = IPV − Is1

(
e

(
V+IRs

�1VT

)
− 1

)
− Is2

(
e

(
V+IRs

η2VT

)
− 1

)
−

V + IRs

RP

(8)
I = I

PV
− I

s1

(
e

(
V+IRs

�1VT

)
− 1

)
− I

s2

(
e

(
V+IRs

�2VT

)
− 1

)

− I
s3

(
e

(
V+IRs

�3VT

)
− 1

)
−

V + IR
s

R
P

Fig. 1  Equivalent circuit for SDM of PV cell

Fig. 2  Equivalent circuit for DDM of PV cell Fig. 3  Equivalent circuit for TDM of PV cell
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3  Problem Formulation

The main goal of PV modeling is to minimize the differ-
ence between the data extracted using the proposed model 
and the measurements. This can be achieved by identify 
the unknown parameter of different PV models under a 
variety of operating conditions. The unknown param-
eters are estimated optimally in order to obtain accurate 
models as possible. It is required to use an efficient opti-
mization algorithm to estimate various unknown param-
eters. In SDM, it is important to optimize five parameters 
( IPV, Is1, �1,RP andRs) . Seven parameters in DDM have to 
be estimated ( IPV, Is1, Is2, �1, �2,RP andRs) . In TDM, nine 
parameters ( IPV, Is1, Is2, Is3, �1, �2, �3,RP and Rs) have to be 
optimized. It seems that the TDM is a complicated model 
and time consumed in estimation of its parameters; however 
it depicts the complicated behavior of different PV cells, 
especially the multi-crystalline cell. Using an efficient 
optimization algorithm give accurate results and minimize 
the execution time. Here in, the objective function is the 
mean root square error (MRSE). The error function is the 
difference between measured and modeled cell current. In 
this problem, the minimization of root means square error 
(RMSE) (9) is considered as the problem objective function 
(OF).

where Iexp refers to the experimental current and N refers to 
the experimental data points.

According to the literature [8, 9, 39, 42–45], the upper 
and lower limits of different parameters are:

Rs is within the range[0 2], RP is ∈ [50 5000], Is1 , Is2 , Is3 
are ∈ [0 1E−12], �1, �2, �3 are ∈ [1 5] and IPV ∈ [0 2 ISC ] 
where ISC is the short circuit current.

The proposed optimization algorithm, MPA, is used to 
estimate the optimal parameters of different models with 
minimum RMSE. The MPA code is built with the help of 
using MATLAB environment [46].

(9)MRSE =

√√√√ 1

N

N∑
k=1

[
I(k) − Iexp(k)

]2

OF = min (MRSE)

subject to:

I
min
PV

≤ IPV ≤ I
max
PV

I
min
si

≤ Isi ≤ I
max
si

for i = 1, 2, and 3

�min
i

≤ �
i
≤ �max

i
for i = 1, 2, and 3

i = 1 for SDM,2 forDDM and 3 for TDM

R
min
s

≤ Rs ≤ R
max
s

R
min
P

≤ RP ≤ R
max
P

4  Proposed Marine Predator Algorithm

MPA is one of meta-heuristic optimization techniques. MPA 
is a nature-inspired from the marine predators' behavior. An 
optimal strategy between prey and predator is followed by 
MPA. This strategy allows predators to use an intelligent 
encounters rate policy and prey to utilize an optimal foraging 
strategy. MPA relies on the prey to predator speed ratio. The 
movement of prey and predator are simulated by Brownian 
motion and levy's flight. Spatial memories and advanced 
cognitive skills are utilized in many activities by marine 
predators such as food retrieval and recalling places where 
they are often finding the food. The optimization process is 
as follows:

4.1  Initialization of Population

MPA considered as a population-based algorithm with n 
space search. The initial population, X0, is initialized ran-
domly and based on allowable lower and upper limits of 
control variables (d search space), Xmax and Xmin.

where rand is uniformly distributed vector lies between 0 
and 1.

4.2  Evaluate the Fitness and Construct Elite 
and Prey Matrices

The more intelligent in food search are considered to con-
struct the most suitable solution. This solution is correspond-
ing to the predator which sets up the Elite matrix to find the 
prey depending on information about prey's locations. Elite 
matrix is given for ‘n’ search agents and ‘d’ search space, 
as follows:

where the top predator vector ���⃗XI  is repeated n times to rep-
resent the search agents for d dimension (control variables). 
Both prey and predator are considered search agent because 
both of them search for its own food. Thus another matrix 
called Prey matrix with the same dimension as Elite. The 
initialization found the initial Prey that the top predator con-
struct Elite based on it and the updating of Elite is based on 
Prey locations.

(10)X0 = Xmin + rand ×
(
Xmax − Xmin

)

(11)Elite =

⎡
⎢⎢⎢⎢⎢⎣

XI
1,1

XI
1,2

… XI
1,d

XI
2,1

XI
2,2

⋯ XI
2,d

⋮

⋮

XI
n,1

⋮

⋮

XI
n,2

⋯

⋮

⋮

XI
n,d

⎤⎥⎥⎥⎥⎥⎦
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where Xi,j represent ith prey at jth dimension.

4.3  MPA Phases

The optimization process takes three main phases after the 
initialization process of Prey matrices and Elite, according 
to three levels velocity ratio, high velocity ratio, unit veloc-
ity ratio and low velocity ratio. In first phase, the velocity of 
predator is slower than that of prey. The second phase occurs 
when the velocities of predator and prey are equal then we 
have a unity velocity ratio. Phase three indicates that preda-
tor is moving faster than prey. The action of predator and 
prey in these three phases is explained as follows:

4.3.1  Phase 1: High Velocity Ratio (Prey Moves in High 
Speed, (v ≥ 1))

At the start of optimization process, the space between prey 
and predator is large and the prey moves in high speed. The 
best scenario of predator is not moving at all. This scenario 
takes place whileIter ≤ 1

3
Max_Iter . Where, Iter is the current 

iteration, and maximum number of iteration is Max_Iter. The 
step size of prey and its position is formulated as follows:

where �⃗Rb is a normal distributed vector representing Brown-
ian motion of prey, and the constant P has a value of 0.5. The 
vector �⃗R is randomly distributed values in range of [0,1]. The 
Prey's positions at time interval, ‘t + 1’, are updated using the 
calculated step size at the end of time interval ‘t’.

4.3.2  Phase 2: Unit Velocity Ratio ( v = 1)

In this phase both prey and predator are looking for its prey. 
This occurs in the intermediate of the optimization process, 
while 1

3
Max_Iter ≤ Iter ≤

2

3
Max_Iter . In this phase the tran-

sition from exploration to exploitation takes place. Thus 
the population size is equally dividing for exploration and 
exploitation (i.e., one half tries to explore, while the other 
half of population exploits). The Levy's flight and Brownian 
movement are considered for the motion. The formulation 
of this phase is as follows:-

For exploration stage (the first half of population):

(12)Prey =

⎡
⎢⎢⎢⎢⎢⎣

X1,1 X1,2 … X1,d

X2,1 X2,2 ⋯ X2,d

⋮

⋮

Xn,1

⋮

⋮

Xn,2 ⋯

⋮

⋮

Xn,d

⎤
⎥⎥⎥⎥⎥⎦

(13)

�������������⃗Stepsize
i
= R⃗b ⊕

(
�������⃗Elite

i
− R⃗b ⊕ ������⃗prey

i
(t)
)
, i = 1,… , n

������⃗prey
i
(t + 1) = ������⃗prey

i
(t) + P ∗ R⃗⊕ �������������⃗Stepsize

i

The vector, �⃗RL , represents the Levy distribution of move-
ment and has random numbers. The production of �⃗RL and 
the prey represent the levy movement. Updating the prey 
movement is considered through adding the step size to the 
position of prey. The best value of P was found as 0.5. The 
step size of this stage is small to enable preys to exploit in 
the second half of the population.

For exploitation stage (the second half of population):

The production of �⃗Rb and Elite represent the Brownian 
movement of Elite. Prey updates its position according to 
predator movement and an adaptive factor, CF, with a value 
equal to CF =

(
1 −

Iter

MaxIter

)(2Iter/Max_Iter)

.

4.3.3  Phase 3: Low Velocity Ratio (Prey Moves In Low 
Speed, (v = 0.1)

In this phase predator moves faster than prey and it pre-
fers to move in Levy's flight motion. In This phase predator 
exploits its prey. This stage occurs whileIter > 2

3
Max_Iter . 

Prey updates its position based on predator.

4.4  FADs’ Effect

The predators alter their manner according to environmental 
conditions. One of the most important conditions is “Fish 
Aggregating Devices” (FADs) effect which motivates preda-
tors to find different areas with different preys' distribution 
and concentration. FADs is considered as local optima. 
FADs = 0.2 which represents the probability of FADs effect 
on optimization process. The effect of FADs on prey's posi-
tions is given as in Eq. (17)

where the binary vector ��⃗U contains 0 and 1. It is generated 
randomly in the range [0,1], then it changes its array to zero 
if the array is less than 0.2 and the array becomes ones if 

(14)

�������������⃗Stepsize
i
= R⃗L ⊕

(
�������⃗Elite

i
− R⃗L ⊕ ������⃗prey

i
(t)
)
, i = 1,… , n∕2

������⃗prey
i
(t + 1) = ������⃗prey

i
(t) + P ∗ R⃗⊕ �������������⃗Stepsize

i

(15)

�������������⃗Stepsize
i
= R⃗

b
⊕

(
R⃗
b
⊕ �������⃗Elite

i
− ������⃗prey

i
(t)
)
, i = n∕2,… ., n

������⃗prey
i
(t + 1) = ������⃗prey

i
(t) + P ∗ CF⊕ �������������⃗Stepsize

i

(16)

�������������⃗Stepsize
i
= R⃗L ⊕

(
R⃗L ⊕

�������⃗Elite
i
− ������⃗prey

i
(t)
)
, i = 1,… , n

������⃗prey
i
(t + 1) = �������⃗Elite

i
+ P ∗ CF⊕ �������������⃗Stepsize

i

(17)

������⃗prey
i
=

{
������⃗prey

i
+ CF

[
X⃗min + R⃗⊕ (X⃗max − X⃗min)

]
⊕ ��⃗U if r ≤ FADs

������⃗prey
i
+ [FADs(1 − r) + r]

(
������⃗prey

r1 − ������⃗prey
r2

)
if r > FADs
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the generated array is greater than 0.2. The indices r1 and 
r2 indicate random indices of prey matrix.

4.5  Memory Saving of MPA

Memory saving in MPA reflects the predators' good memory 
that allows them to remember the best search food locations. 
The fitness of updated prey is evaluated in this stage for each 
solution at time interval (t + 1) and compared to the corre-
sponding one at the previous time interval t. Elite matrix is 
updated by deciding the best fitness obtained. The flowchart 
of MPAbased approach is illustrated in Fig. 4.

5  Results and Discussion

The performance of proposed MPA is verified by estimating 
the parameters of two case studies of PV cells with three 
models (SDM, DDM and TDM):

Case study 1: In this study case, R.T.C. France silicon solar 
cell with 57 mm diameter commercial is considered to be 
verified. The experimental (I–V) data of case study at normal 
operating condition (1000 W/m2 at 33 °C) are taken from 
the literature [31].

Case study 2: In the second case, multi-crystalline silicon 
solar cell Q6-1380witharea of 7.7  cm2 is taken to investigate 
the most accurate model representing its behavior. The cell 
operates under room temperature (27 °C) and low irradia-
tion level (98.4 W/m2) [9]. The experimental dataset is taken 
from the literature [9].

To test the effectiveness of the proposed MPA-based 
parameter estimation technique, it has been compared to 
four well known competitive optimization algorithms in the 
field of solar cell parameters estimation. The competitive 
algorithms are SCA [48], SSA [49], PSO [50] and GWO 
[51]. To make the comparison fair, all of search agents of 
the competitive algorithms are set at 100 agents and the 
maximum number of iterations is set at 400. All results 
obtained in this research are carried out using the MATLAB 

Fig. 4  Flowchart of the proposed MPAbased-parameter estimation technique
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R2016b software on a PC with Intel(R) Core (TM)i3-CPU 
M370@2.4 GHz 3 GB (RAM).

The variation of objective function (RMSE) over many 
runs of the algorithm (30–100 runs) can be used to inves-
tigate the robustness of any algorithm. A lower change in 
objective function over runs indicates that the algorithm 
is more robust. To confirm the robustness of the proposed 
MPA, about 100 individual runs for different PV models, 
SDM, DDM and TDM, recorded at normal and low radiation 
operating conditions, respectively.

5.1  Simulation Results for Single Diode Model

• Case study 1

For SDM, the comparison results including estimated 
parameters and RMSE are shown in Table 2. It is clear that 
MPA provides the lowest RMSE (8.43854E−4) among the 
competitive algorithms, followed by SCA [48], SSA [49], 
PSO [50]. The RMSE is considered as the best index used 
to represent the accuracy of methods. The convergence rates 
of MPA compared with GWO, PSO, SSA and SCA algo-
rithms are shown in Fig. 5a. The robustness of the proposed 
algorithm has been tested by checking the variation of the 
RMSE over 100 runs of the algorithm. Figure 5b presents the 
robustness of the proposed MPA compared with GWO and 

PSO for SDM. The convergence rate and robustness empha-
size the effectiveness of MPA. For further validation of the 
quality of the estimated results, the extracted parameters have 
been used to reconstruct I–V and P–V curves, as illustrated 
in Fig. 6. It is noticed that the estimated data obtained by the 
proposed MPA is highly closest to the measured data which 
prove the high accuracy of estimated parameters. In this case, 
the RMSE has the lowest value of (8.43854E−4) compared 
with SCA, SSA, PSO, and GWO which have 9.26567E−4, 
8.45486E−4, 8.45724E−4 and 8.50301E−4, respectively.

• Case study 2

In this case, the PV operates under low irradiance. The 
accuracy and performance of MPA are checked to prove 
the accuracy of the extracted model. Table 3 introduces 
the simulation results compared to the selected competi-
tive algorithm. The convergence rate and robustness are 
presented in Fig. 7. Also, the optimization parameters are 
used to reconstruct I–V and P–V characteristics as shown 
in Fig. 8. Therefore, Table 3, Figs. 7 and 8, assure the high 
robustness of the proposed MPA. In this case, the RMSE has 
the lowest value of (1.611E−05) compared with SCA, SSA, 
PSO, and GWO which 3.86E−05, 3.86E−05, 2.10E−05 and 
1.69E−05, respectively.

Table 2  Comparison of 
simulation results for SDM 
(Case study #1)

Algorithm RP (Ω) RS (Ω) η1 IS1 (A) IPV (A) RMSE Rank

MPA 51.79484084 0.037214598 1.465687442 2.80E−07 0.76078 8.43854E−4 1
SCA [48] 50.96919115 0.038069364 1.451390692 2.42E−07 0.76078 9.26567E−4 5
SSA [49] 51.6315017 0.037121619 1.467467157 2.85E−07 0.76078 8.45486E−4 2
PSO [50] 52.50334238 0.037071124 1.46900025 2.89E−07 0.76078 8.45724E−4 3
GWO [51] 51.80331115 0.037212697 1.465734872 2.80E−07 0.76078 8.50301E−4 4

Fig. 5  Comparison of performance rates for SDM (Case Study #1), a Convergence rates and b Robustness characteristic
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5.2  Simulation Results for Double Diode Model

• Simulation results of Case study 1

For DDM, the simulated results compromising optimal 
parameters and RMSE are shown in Table 4. As shown, 
MPA provides the lowest RMSE (7.592E−4), followed by 

PSO, GWO, SSA, and SCA. Figure 9a represents the con-
vergence rates of MPA with the four competitive algorithms 
GWO, PSO, SSA and SCA. The robustness characteristic of 
the MPA and competitive algorithms is illustrated in Fig. 9b. 
All of these results again confirm the effectiveness of MPA. 
V–I curve, for measured and calculated values, is shown in 
Fig. 10, which emphasizes the high closeness between the 

Fig. 6  Comparison between measured and estimated data using the proposed MPA for SDM (Case study#1), a I–V curve and b P–V curve

Table 3  Comparison of 
simulation results for SDM 
(Case study #2)

Algorithm RP (Ω) RS (Ω) η1 IS1 (A) IPV (A) RMSE Rank

MPA 971.351 0.45 3.389204263 9.29E−05 0.019349731 1.611E−05 1
SCA [48] 971.351 0.45 3.513808978 0.000109144 0.019408303 3.86E−05 5
SSA [49] 1163.510619 0.5541 3.429712352 9.74E−05 0.019353862 2.10E−05 4
PSO [50] 971.351 0.45 3.389208419 9.29E−05 0.019349734 1.612E−05 2
GWO [51] 971.351 0.45 3.389190436 9.29E−05 0.019349726 1.69E−05 3

Fig. 7  Comparison of performance rates for SDM (Case Study #2), a Convergence rates and b Robustness characteristic
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estimated and experimental I–V curve. Based on Table 4, the 
MPA has the first rank followed by PSO, GWO, SSA then 
SCA, respectively.

• Simulation results of Case study 2

In this case, the simulation results compared to the competi-
tive algorithms are introduced in Table 5. The least value 

of RMSE is obtained with the proposed MPA (1.461E−05) 
compared to 1.462E−05, 1.48E−05, 1.56E−05, and 
5.50E−05 for PSO, SSA, GWO, and SCA, respectively.

5.3  Simulation Results for Three Diode Model

Similarly, to the previous two models, the proposed MPA 
is developed for TDM and the obtained results are assessed 

Fig. 8  Comparison between measured and estimated data using the proposed MPA for SDM (case study#1), a I–V curve and b P–V curve

Table 4  Optimal PV estimated 
parameters of competitive 
optimization methods for DDM 
(Case study #1)

Algorithm RP (Ω) RS (Ω) η1 η2 IS1 (A) IS2 (A) IPV (A) RMSE Rank

MPA 62.4591 0.03869 1.39036 2.56454 1.18E−07 1.00E−05 0.76077 7.592E−4 1
SCA [48] 50.0000 0.03772 1.45478 2.76999 2.51E−07 9.37E−11 0.76077 13.14E−4 5
SSA [49] 61.8183 0.03677 1.92948 1.44999 7.10E−07 2.22E−07 0.76077 9.150E−4 4
PSO [50] 55.3354 0.03752 1.45191 3.32821 2.41E−07 1.00E−05 0.76077 8.071E−4 2
GWO [51] 50.8790 0.03723 1.46497 1.73253 2.78E−07 1.39E−09 0.760888 8.218E−4 3

Fig. 9  Comparison of performance rates for DDM (Case Study #1). a Convergence rates and b robustness characteristic



3099Arabian Journal for Science and Engineering (2022) 47:3089–3104 

1 3

compared with several published studies in the literature. In 
both studied cases, TDM is considered as the most accurate 
model dealing with the complicated behavior of PV cells, 
especially multi-crystalline PV cell. Tables 6 and 7 show 
the optimal PV estimated parameters and the ranking of 
RMSE for MPA compared with the competitive optimization 
methods for TDM for Case study 1 and 2, respectively. It is 
observed that MPA has the least RMSE for the two studied 

cases with PSO, GWO, SSA and SCA. The obtained results 
assure the high capability of the proposed MPA.

For Case study1, the RMSE via MPA equals 8.43854E−4, 
7.592E−4, and 7.592E−4 for SDM, DDM, and TDM 
(Tables 2, 4, and 6), respectively. These results emphasizes 
that DDM and TDM are more accurate than TDM.

For case study 2, as the physical behavior of multi-
crystalline PV cell is more complicated, TDM is the most 
accurate model. The results obtained from Tables 3, 5, and 
7 confirm the accuracy of TDM as the RMSE values are 
1.461E−05 for TDM, 1.46E−05 for DDM, and 1.611E−05 
via SDM.

Figure 11 shows the high closeness between the experi-
mental and estimated I–V and P–V curves for Case study 1 
and 2. The solution quality is proved in Fig. 12 through the 
fast convergence rates and the robustness of the proposed 
MPA compared to other competitive algorithms. Moreover, 
the values of RMSE obtained for the three models are illus-
trated in Fig. 12c, d. these figures confirm again the accuracy 
of DDM and TDM and that MPA outperforms all compared 
algorithms. The previous results prove the high capability of 
the proposed MPA for optimizing the considered parameter 
estimation problem of solar cells at normal and low radiation 
Case study 1 and 2) (Fig. 13).  

Fig. 10  Performance of I–V for DDM using the proposed MPA (Case 
study #1)

Table 5  Optimal PV estimated 
parameters of competitive 
optimization methods for DDM 
(Case study #2)

Algorithm RP (Ω) RS (Ω) η1 η2 IS1 (A) IS2 (A) IPV (A) RMSE Rank

MPA 950 1 2.595 4.047 1.00E−05 9.85E−05 0.019391 1.46E−05 1
GWO [51] 950.7 0.642796 2.566 3.660 5.25E−06 9.59E−05 0.019368 1.56E−05 4
PSO [50] 950 0.955747 2.615 3.956 1.00E−05 9.46E−05 0.019386 1.462E−05 2
SSA [49] 959.7 0.722057 2.662 3.833 9.77E−06 9.56E−05 0.019374 1.48E−05 3
SCA [48] 1100 0.711326 1 3.594 3.40E−11 1.144E−4 0.019423 5.50E−05 5

Table 6  Optimal PV estimated parameters of competitive optimization methods for TDM for Case study 1

Algorithm RP (Ω) RS (Ω) η1 η2 η3 IS1 (A) IS2 (A) IS3 (A) IPV (A) RMSE Rank

MPA 64.998 0.0391 1.376 1.9985 2.69 1.00E−07 2.76E−12 1.54E−05 0.76080184 7.561E−4 1
GWO [51] 61.139 0.0395 1.367 2.997 2.62 9.02E−08 5.11E−12 1.32E−05 0.760876 7.8E−4 3
PSO [50] 65 0.0391 1.376 4 2.69 1.00E−07 1.00E−11 1.55E−05 0.760776 7.562E−4 2
SSA [49] 61.613 0.0398 1.357 1.0652 2.79 8.00E−08 1.78E−12 2.12E−05 0.760876 8.14E−4 4
SCA [48] 64.019 0.04 1.372 1.5599 3.66 9.83E−08 9.99E−13 7.08E−05 0.760776 9.77E−4 5

Table 7  Optimal PV estimated parameters of competitive optimization methods for TDM for Case study 2

Algorithm RP (Ω) RS (Ω) η1 η2 η3 IS1 (A) IS2 (A) IS3 (A) IPV (A) RMSE Rank

MPA 607.876 0.7579 1.9380 3.215 4.949 1.00E−12 6.81E−05 5.71E−08 0.0193951 1.42E−05 1
GWO [51] 723.427 1.5467 1.99999 2.000 3.508 7.08E−07 1.07E−09 7.33E−05 0.0194251 1.44E−05 2
PSO [50] 600 0.4 2 3.291 3.5 1.00E−12 7.97E−05 1.00E−12 0.01938786 1.56E−05 4
SSA [49] 680.376 1.8167 1.98669 3.372 4.324 7.20E−07 4.83E−05 2.38E−05 0.01944742 1.48E−05 3
SCA [48] 661.879 0.4249 1.17916 2 3.5 1.74E−12 2.07E−07 9.97−05 0.01937818 4.09E−05 5
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5.4  Statistical Analysis

The statistical analysis compromising best, worst, aver-
age and standard deviation of RMSE, is applied over 100 

independent runs to the selected studied cases with the three 
models of PV. The statistical analysis can confirm the average 
accuracy and reliability of the proposed algorithm. Tables 8 
and 9 introduce the statistical analysis of Case study 1 and 2, 

Fig. 11  Closeness between estimated and experimental dataset for Case study 1 and 2 a, c: (I–V) curves, b, d (P–V) curves

Fig. 12  Convergence rates and robustness of TDM using the proposed MPA compared with competitive algorithms a convergence rate for Case 
study 2, b robustness for Case study 2
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respectively. It can be noticed that the proposed MPA-based 
estimated parameters method has the best RMSE over all 
cases and models. Moreover, TDM has the best RMSE as it 
is 7.56E−4 in Case 1 and 1.42E−5 for Case2.

The Standard deviation indicates the MPA can realize 
higher reliability in parameter estimation problem, as it 
observed from Table 8 that MPA gets the best standard devi-
ation (3.56E−10, 1.86E−5, and 4.37E−6 for SDM, DDM, 
TDM, respectively). Table 9, also, emphasizes the high reli-
ability of MPA compared to the other methods as it realizes 
the best recorded standard deviation (5.07E−12, 2.00E−7, 
and 2.04E−7 corresponding to SDM, DDM, and TDM). The 
PSO achieve the second best RMSE and standard deviation 
in Case 1. In Case 2, the second best RMSE with SDM and 
DDM is via PSO, while GWO realize the second best RMSE 
with TDM. Also, GWO achieve the second-best standard 
deviation with SDM and TDM.

From all discussions, it can be concluded that the pro-
posed MPA outperforms the four competitive algorithms. 
It is accurate and reliable in extracting optimal parameters 
of different models and in variety of operating conditions.

6  Conclusions

In this work, a new MPA has been developed to estimate the 
optimal parameters of three PV models at normal and low 
radiations operating conditions. These models are single-, 
double- and three-diode PV models. The normal operat-
ing condition has been employed on the 57 mm diameter 
commercial (R.T.C. France) silicon solar cell while the 
second case was carried out on a MCSSC of area 7.7  cm2 
from Q6-1380 irradiated by low levels. The main goal of 
this study is to estimate an accurate and reliable PV model 

for any commercial panel under any operating conditions. 
This model of PV helps the studying of various real operat-
ing systems such as stand-alone microgrid, grid-connected 
microgrid, PV pumping system. The simulation results 
assure robustness of the proposed MPA for accurate param-
eters achievement with good and fast convergence. Also, the 
estimated performance curves, for current and power versus 
the cell voltage, obtained by the proposed algorithm are very 
close to the experimental date for the two studied operating 
conditions. The convergence rate has been used as an assess-
ment criterion that is considered in this study. The conver-
gence curves assure the highest and fast rates to reach the 
steady solutions for the studied cases compared with several 
optimizers in the literature. These figures expose the good 
convergence rates of MPA. Furthermore, the proposed MPA 
has achieved the best RMSE, the lower standard deviation 
overall the models and with the two studied cases. Therefore, 
this method is highly outperformance compared with GWO, 
SSA, PSO, and SCA. It was proven that the MPA leads to 
high accuracy solutions supported by the lowest RMSE and 
high reliability in terms of lowest standard deviations given 
for all tested cases. MPA can be considered as a promising 
and distinct optimization tool, especially in case of nonlinear 
complex optimization situations.

In the future research, advanced models to represent hys-
teresis behavior of the solar cell will be considered. Also, the 
MPA will be intended to solve several problems such as opti-
mal power flow, unit commitment, economic load dispatch, 
parameter estimation of poly phase induction machines, fuel 
cell and battery energy storage and energy hub issues. In the 
area of solution methodology, when developing MPA in joint 
with other optimization methods such as PSO, SSA, SCA and 
GWO then it will produces an new hybrid optimization algo-
rithm that combines the merits of the two jointed algorithms.

Fig. 13  Comparison of RMSE using the proposed MPA compared with competitive algorithms a RMSE of different models for Case study 1, 
and b RMSE of different models for Case study 2
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