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Abstract
In this paper, we propose a multi-colony ant optimization based on pheromone fusion mechanism of cooperative game 
(CGMACO) to balance the convergence speed and diversity of the algorithm. Firstly, the heterogeneous multi-colony is 
composed of ant colony system (ACS) and Max–Min ant system (MMAS), and these two classical colonies coordinate 
together to improve the solution quality. Secondly, the cooperative game model determines which sub-colonies can interact 
with each other based on evaluating each union’s payoff, while the pheromone fusion mechanism decides what informa-
tion can exchange by regulating the pheromone matrix of each subpopulation. Those two methods can greatly diversify the 
solution of algorithm. In addition, the information entropy is also introduced to control the interaction frequency, which 
enhances the adaptability of the algorithm. Finally, the experimental results of the large-scale TSP instances show that the 
improved algorithm can improve the accuracy of the solution without affecting the convergence speed and better than the 
existing intelligent algorithms.

Keywords  Ant colony algorithm · Cooperative game · Pheromone fusion · Information entropy · TSP

1  Introduction

Travelling salesman problem (TSP) is a classical combi-
natorial optimization problem. The problem can be mainly 
described as follows: a travelling merchant traverses all the 
cities of the country without repeating and finally comes 
back to the start point. The loop obtained by the salesman 
is required to be shortest, so-called the minimum Hamilto-
nian circuit. There are many methods to solve TSP, such as 
genetic algorithm [1], particle swarm optimization [2], grey 
wolf optimization algorithm [3], ant colony algorithm [4, 5]. 
And current research shows that ant colony algorithm can 
solve the TSP problem well.

Ant colony optimization (ACO) is a classical swarm intel-
ligence algorithm proposed by Italian scholar M. Dorigo 
who was inspired by ants foraging in nature [4]. The main 
idea is that ants can use their own pheromone updating 
mechanism to effectively return and forth between food 
source and nest. After the ant system algorithm was pro-
posed, it attracted much attention and brought largely dis-
cussion about the improvement of the algorithm. In order to 
improve the solution accuracy of the ant system algorithm, 
Dorigo [5] also put forward the ant colony system algorithm 
(ACS). In ACS, only the global optimal ant can be allowed 
to deposit pheromone in each iteration, and other ants will 
diminish the level of pheromone on the tour they visited in 
terms of local pheromone updating rule. This mechanism 
can strengthen the positive feedback effect of the optimal 
information and speed up the convergence of the algorithm. 
However, it also makes the algorithm easily fall into local 
optimum. In order to overcome this problem, Stützle et al. 
[6] proposed the Max–Min ant system algorithm (MMAS). 
MMAS restricts the accumulation and volatilization of pher-
omone by limiting it within a fixed interval, which can avoid 
algorithm stagnation to some certain extent. Thus, the popu-
lation diversity can be improved. However, the algorithm 
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will be difficult to converge when the solutions distribute 
dispersedly.

Although these improved references have acquired some 
achievements in the traditional ant colony algorithms, the 
main problem, how to balance the relationship between 
the convergence speed and diversity, has not been solved 
well. Therefore, more scholars try to solve it based on 
their research fields. Sangeetha et al. [7] used a pheromone 
enhancement mechanism to increase the pheromone con-
centration on the better path that reduced useless search and 
saved the time cost. Ye et al. [8] introduced the negative 
feedback pheromone strategy to guide ant colony search for 
unknown space to avoid too many ants selecting the same 
area, which can expand the search space and enhance the 
diversity of the algorithm. Ning et al. [9] put forward a 
pheromone update mechanism based on the current optimal 
path. The method increased the pheromone value of differ-
ent paths between the best-so-far optimal path and the cur-
rent optimal path, which can speed up the convergence of 
the algorithm. Tseng et al. [10] divided the ant colony into 
two groups and the cooperation between two kinds of ants 
improved the accuracy of the solution. Besides, the param-
eter setting is another conundrum for the ACO. To solve this 
problem, Mahi et al. [2] applied the particle swarm optimi-
zation algorithm to optimize the parameters of the ACO, 
which improved the stability of the algorithm. Olivas et al. 
[11] introduced the fuzzy control system to select the appro-
priate parameters for the ACO algorithm and enhanced the 
accuracy of the solution. Tuani et al. [12] proposed a novel 
adaptive parameter adjustment mechanism to improve the 
adaptability of the algorithm. In addition, other improved 
ACO algorithms have been widely used in various fields, 
such as robot path planning problem [13], network routing 
problem [14], image detection [15], vehicle scheduling prob-
lem [16], data mining [17].

However, due to the limitation of the single population, 
the improvements often weaken one characteristic of the 
colony to strengthen another. For example, it will increase 
the search time to expand more areas or will diminish the 
solution accuracy to accelerate the convergence. In order 
to balance the relationship between the convergence speed 
and diversity of the algorithm further, the multi-population 
gradually attracts many scholars’ attention. Gambardella 
[18] proposed the concept of the multi-ant colony algo-
rithm for the first time. They adopted two colonies of ACS 
to solve vehicle scheduling problems with time window. 
Chu et al. [19] proposed seven interaction strategies to con-
trol the communication among the homogenous colonies. 
Twomey et al. [20] analyzed the homogenous multi-ant 
colony with different communication policies and proposed 
migrant integration strategy for the interaction. The coopera-
tion on homogenous populations will only amplify the sin-
gle feature in terms of their same characteristics, while the 

heterogeneous populations can take full advantage of each 
other. Dong et al. [21] combined the ant colony algorithm 
with genetic algorithm in a novel way to solve the TSPs 
successfully. Zhang et al. [22] used two heterogeneous ant 
colonies to diversify the solution of algorithm by exchang-
ing the pheromone information. Wang et al. [23] applied 
multi-ant algorithm with local search to solve the vehicle 
routing problem, which enhanced the solution accuracy by 
comparing and exchanging the global optimal solution of 
each colony.

According to the above references, multi-colony algo-
rithms can balance the convergence speed and search abili-
ties of the ACO better than the single colony algorithms. 
However, the interaction mechanism among sub-colonies is 
relatively simple, which leads to the adaptability of multi-
colony algorithm underperformance. To deal with these 
issues, some cross-discipline methods, such as game the-
ory or information theory, are applied to improve the per-
formance of the multi-colony algorithm. Yang et al. [24] 
introduced game theory to control the coordination among 
heterogenous populations and improved the stability of the 
algorithm. Li et al. [25] applied the information entropy to 
adapt the communication among populations more accu-
rately. In this paper, we focus on balancing the relation-
ship between the convergence speed and the diversity of 
the algorithm. And from the above theories, the multi-ant 
colony algorithm based on pheromone fusion mechanism of 
the cooperative game is proposed to solve large-scale TSP 
instances. The main contributions and innovations of this 
research are as follows.

Firstly, the pheromone fusion mechanism that regulates 
the pheromone distribution of each sub-colony is introduced 
to realize the information exchange among multiple popu-
lations effectively. It fuses the pheromone matrix of other 
subpopulations while remains the original population infor-
mation, which improves the efficiency of communication. 
Thus, the diversity of the algorithm is enhanced.

Secondly, the cooperative game model is proposed to help 
the population select appropriate communication objects by 
finding the Pareto optimal combination. If the Pareto optimal 
combination belongs to the cooperative union, the profit dis-
tribution strategy will be applied, otherwise, the pheromone 
smoothing mechanism can be triggered. In the profit distri-
bution strategy, the profits will be distributed into members 
reasonably by adding the pheromone on the public paths 
among populations to accelerate the convergence speed of 
the algorithm. In the pheromone smoothing mechanism, the 
pheromone matrix will be reinitialized to help the algorithm 
jump out of the local optimum effectively.

Finally, the information entropy is introduced to control 
the communication frequency, which is called adaptive com-
munication strategy. In this strategy, the information entropy 
is used to evaluate the diversity of the population, and we 
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control the communication frequency among populations 
by measuring their information entropy state to improve the 
adaptability of the algorithm.

In addition, the contents of this paper are as follows: 
Sect. 2 introduces ACS, MMAS algorithm and informa-
tion entropy briefly. Section 3 reports he working principle 
of CGMACO, including adaptive communication strategy, 
pheromone fusion mechanism and cooperative game model. 
Section 4 analyses the performance of proposed algorithm 
with different strategies and compares CGMACO with the 
traditional ant colony algorithm and other intelligent algo-
rithms. Section 5 summarizes and prospects this research.

2 � Related Work

2.1 � Ant Colony System

Ant colony system (ACS) was proposed by Italian scholar 
M. Dorigo in 1996 [5]. It introduced a special state transition 
rule called pseudo-random proportionality rule. This rule 
allows each ant to choose its path in a roulette mode with a 
probability of 1-q0, where q0 is a parameter between [0,1]. 
The state transition formula is as follows.

where the �ij represents the pheromone value from city i to 
city j (vertex (i, j)); �ij = 1∕dij denotes the heuristic informa-
tion on the vertex (i, j) which dij is the cost of the vertex (i, 
j); allowed stores a set of cities that the ant k is not visit; � 
and � are two weight parameters determining the confluence 
of pheromone value and heuristic information. In addition, 
S = argmax(�ij ⋅ �ij

�) is another transition formula that the 
ants positioned city i move to city j when the random num-
ber q is lower than q0.

After finishing a transition from city i to city j, each ant 
applies a local pheromone update rule to decrease the attrac-
tion of the edge (i, j). The formula is as follows:

where 0 < 𝜉 < 1 is a pheromone evaporation rate; 
�0 = 1∕(n ⋅ ln) is the initial pheromone level, where n is the 
city number and ln is the tour length created by the nearest 
neighbour heuristic algorithm.

When all ants complete tour construction, only the glob-
ally best tour is allowed to add pheromone which called 
global pheromone updating rule. The formula is written as:

(1)Pk
ij =

�

�� ij⋅�ij
�

∑

l∈allowed�
�
il⋅�il

�
if j ∈ allowedk

0 else

(2)�ij ← (1 − �) ⋅ �ij + � ⋅ �0

(3)�ij ← (1 − �) ⋅ �ij + � ⋅ Δ�bsij

where 0 < 𝜌 < 1 is pheromone evaporation rate; 
Δ�bsij = 1∕Lgb is the number of increasing pheromone, and 
Lgb is the length of the best tour.

2.2 � Max–Min Ant system

In order to solve the easy stagnation of the traditional ant 
colony algorithm, Stützle proposed the Max–Min ant system 
(MMAS) [6]. In MMAS, the pheromone is updated by alter-
nating iteration-best tour with best-so-far tour in the early 
run time, and the updating rule is defined as same as formula 
(3). What’s more, the pheromone trail of each path is limited 
to the specified range [ �min,�max ]. If 𝜏ij < 𝜏min , then �ij = �min ; 
if 𝜏ij > 𝜏max , then �ij = �max . And it also reinitializes the pher-
omone matrix to avoid the stagnation. The maximum and 
minimum values of pheromones are set as follows:

where n is the city number; Lgb is the length of the iteration-
best tour.

2.3 � Information Entropy

Entropy was originally used to measure the disorder state of 
thermodynamic system in the field of physics. Later, Ameri-
can scholar Shannon introduced it into the field of informa-
tion theory and put forward the conception of information 
entropy. For now, information entropy has not only improved 
greatly in theory [26–28], but also achieved good results 
in many practical applications [29–31]. And it shows the 
effectiveness of information entropy as a measure of discrete 
system. The formula is as follows:

where X is the solution of the problem, and P (x) is the prob-
ability of x, and 

∑

x∈XP(x) = 1.

3 � Proposed Algorithm

In this research, a heterogeneous multi-colony ant colony 
algorithm based on cooperative game theory is proposed to 
balance the convergence and the diversity of the algorithm. 
Based on regarding each subpopulation as an independent 
agent and the premise of individual rationality, cooperative 
evolution is realized by game decision mechanism among 
subpopulations and Fig. 1 shows the interactive model. 

(4)�max = (1∕�) ⋅ (1∕Lgb)

(5)�min = �max∕(2n)

(6)E(P) = −
∑

x∈X
P(x)logp(x)
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And this part is organized as follows. Section 3.1 intro-
duces the self-adaptive communication strategy based on 
information entropy. Section 3.2 provides the pheromone 
fusion strategy in detail. Section 3.3 is dedicated to apply-
ing the cooperative game theory to the multi-ACO algo-
rithm. Section 3.4 is the algorithm description.

3.1 � Self‑adaptive Communication Strategy

For multi-colony algorithm, it is necessary to have an 
appropriate method to control the interaction frequency 
of various subpopulations. With the running of algo-
rithm, there will be more and more unbalanced distribu-
tion among various pheromone matrices. Thus, interaction 
with each other is needed to increase the diversity. Accord-
ing to the part 2.3, the information entropy is applied to 
measure the diversity of the algorithm so as to control 
the communication frequency more accurately, which the 
formula is as follows:

where Pi(t) is the proportion that the i-th tour trail selected 
by n ants when M ants generate m paths in this iteration, 
E(Pt) is the information entropy of the population in t-th 
iteration which demonstrates that if the tour difference of the 
population is higher, the information entropy of the popu-
lation will be larger, and vice versa. In another word, the 
higher information entropy, the better diversity of the popu-
lation. Therefore, by comparing the information entropy 
of each subpopulation with the set threshold, the commu-
nication frequency among populations can be controlled 
more accurately, and thus, the adaptability of interaction is 
improved.

(7)Pi(t) = n∕m

(8)E(Pt) = −
∑m

i=1
Pi(t)logpi(t)

3.2 � Pheromone Fusion Strategy

In this part, the pheromone fusion strategy is proposed to 
increase the diversity of the population when the population 
falls into local optimum. If E(pi) < E∗(P) , where the E∗(P) 
is the threshold parameter, we will consider that the diversity 
of this population is poor. Under this circumstance, commu-
nicating with other populations is needed to be adopted. In 
this paper, communication strategy is the pheromone fusion 
which is realized by using the weighted coefficients of infor-
mation entropy. The formula is as follows:

where Phi is the pheromone matrix of population i, Phj is 
the pheromone matrix of population j; Wj is the pheromone 
contribution of population j to population i, which the for-
mula can be written as follows:

where E(Pj) is the information entropy of the population j.

3.3 � Cooperative Game Model

3.3.1 � Cooperative Game in Multi‑ACO

In order to improve the performance of the pheromone 
fusion mechanism proposed above further and make full 
use of the heterogeneous populations, we build the coopera-
tive game model based on cooperative game theory. In the 
model, two decisions that cooperation (C) or defection (D) 
allows subpopulations to select when they receive signals 
that need to communicate. In this paper, the cooperation and 
defection rules are given by (11)

The formula (11) illustrates that if the population j 
chooses to participate in cooperation (C), the weight coef-
ficient is wj; if the population j chooses to defection (D), 
the weight coefficient wj is 0. And the different phero-
mone matrices obtained by those selections are shown in 
Table 1. Therefore, there are three types of alliance structure 

(9)Phi ← (1 −
∑n−1

j≠i
wj) ⋅ Phi +

∑n−1

j≠i
wj ⋅ Phj

(10)wj =
E(pj)

∑n

j=1
E(pj)

(11)wj =

{

wj if pj is cooperation

0 if pj is defection

P3

Pn-1

P1

P2
lower entropy

Population

pheromone fusion

cooperation game

Fig. 1   Dynamic interactive game model

Table 1   The pheromone matric 
under cooperative game

C (Pj) D (Pj)

C (Pk) Ph11 Ph12

D (Pk) Ph21 Ph22



1661Arabian Journal for Science and Engineering (2022) 47:1657–1674	

1 3

including that full union structure which all colonies cooper-
ate such as Ph11 in Table 1, sub-union structure which not 
all colonies are cooperative such as Ph12 and Ph21 in Table 1 
and single-player structure which all colonies are not coop-
erative such as Ph22 in Table 1.

In addition, there are three basic parts of the game theory 
including players, strategy sets and the payoff of each strat-
egy. In this paper, the players are the subpopulations, and 
the pheromone matrices in Table 1 denote the strategy sets. 
Meanwhile, we define Vi, which is given by (12), as the cor-
responding payoff of strategy i to select the best pheromone 
matrix for the lower information entropy subpopulation.

and f (pi) =
E(pi)

E(p)gb
 , Ai =

Lgb

Li
where E(p)gb represents the 

value of global optimal information entropy in all strategies, 
and E(Pi) denotes the information entropy of strategy i; Lgb 
is the global optimal path, and Li is the current optimal solu-
tion under strategy i. From the equal (12), the larger value 
of Ai denotes the higher solution quality of the strategy and 
the higher f(Pi) reflects the better population diversity. 
Therefore, the higher value of the payoff Vi is, the better 
solution quality would be.

3.3.2 � Profit Distribution Strategy

When the maximum payoff V belongs to the cooperative 
union, the payoff distribution strategy is proposed to distrib-
ute the payoff obtained by the union to the participants rea-
sonably. In another hand, if the profit of cooperative union is 
higher than non-union, the population will choose coopera-
tion under the premise of individual rationality. And in this 
case, in order to maintain the stability of the cooperative 
alliance, it is necessary to distribute the profits reasonably 
among the members of the union. As we known, a reason-
able distributed mechanism can promote participants to take 
part in the union more actively and make the alliance struc-
ture more stable, thus, they can obtain a higher collective 
profit. In this paper, we define the increasing profits after 
cooperation game as the pheromone to reward the common 

(12)Vi = f (pi) ⋅ Ai

paths among participants, which the formula is given by 
(13)-15 and the public path is shown as in Fig. 2.

where ��prof it is the increasing profits of the colony after 
cooperative game which denotes the payoff of the union,  
Vbefore is the profit of the population without pheromone 
fusion, Vnew is the maximum profit in all unions after phero-
mone fusion, and Lnew is the length of new tour created by 
cooperation game; ��k

prof it
 is the profit of kth population, and 

E(pk) is the information entropy of the kth colony in the 
union.

From the formula (13) and (14), we can see that the pub-
lic path between lower entropy population and other partici-
pant populations will be rewarded added pheromone in the 
union, which makes the cooperative profits higher than non-
cooperation, thus it can ensure the effectiveness of coopera-
tion and enhance the collective rationality of the group. In 
addition, the path selected by many populations will also 
belong to the optimal tour largely [6]. Therefore, reward-
ing the pheromone to those paths can narrow the useless 
research of the ant colony and accelerate the convergence 
speed of the algorithm. And the formula (15) is the phero-
mone updating rule of the population k on public paths.

3.3.3 � Pheromone Smoothing Mechanism

What’s more, a rare situation that the payoff of non-coop-
eration is higher needs to be considered. This means that 
the profits created by the pheromone fusion mechanism 
are less than these under non-fusion mechanism. In this 
case, we first judge whether the population finds a better 
solution. And the pheromone matrix of the population 

(13)Δ�profit =
Vnew − Vbefore

Lnew

(14)Δ�k
profit

=
E(pk)

∑

k∈KE(pk)
⋅ Δ�profit

(15)�k
public

= (1 − �) ⋅ � + � ⋅ Δ� + Δ�k
profit

Fig. 2   Public path

2 1 3 4 5

1 2 3 4 5

6 1 3 4 5

6

6

2

Population i:

Population j:

Population k:
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would not be changed when a better solution is found, 
which denotes that the population has better potential, 
otherwise, it shows that the pheromone fusion mechanism 
is invalid and the algorithm has been stagnant. To deal 
with this issue, the pheromone smoothing mechanism 
(PSM) is introduced to help the population jump out of 
the local optimum, which the formula is as follows:

where � i
min

 and � i
ij
 are the minimum concentration of phero-

mone and the value of pheromone on edge (i, j) in population 
i, respectively. And if the population i is the ACS, the � i

min
 is 

equal to �0 . Otherwise, it is equivalent to �min in MMAS. The 
formula (16) reflects a novel reinitialization pheromone 
method that the larger gap between the pheromone value on 
the path and the minimum pheromone trail is, the more 
pheromone evaporation will be. However, the edges with 
minimum pheromone would not be volatilized causing that 
the pheromone matric reduces to �min with different degrees. 
Thus, it can reduce the maximum pheromone trail while 
would not lost the information of suboptimal path.

3.4 � Algorithm Description

Informally, the algorithm proposed in this research can be 
described as follows: When one population happens that its 
entropy is lower than the threshold value, this population will 
launch the cooperative game model right now, and other popu-
lations will choose cooperation or defection due to pheromone 
fusion mechanism by equal (9)-equal (11) to create the strat-
egy sets shown in Table 1. Then, this population with lower 
information entropy will produce the payoff matrix, which is 
shown in  following Table 2, based on the different pheromone 
matrices in Table 1.

where V11 is the payoff under the full union structure, V12 
and V21 are the payoff under the sub-union structure, and V22 
is the payoff under the single union structure. Thus, the Pareto 
optimality of this game is:

Next, we start to judge which union is the Pareto optimality. 
If the Vpareto = V22 , which means the pheromone fusion mech-
anism is failure, the pheromone smoothing mechanism will be 
applied to help the algorithm get rid of local optimum, other-
wise, the execute profit distribution strategy is introduced to 

(16)� i
ij
=

� i
min

+ � i
ij

2

(17)Vpareto = max(V11,V12,V21,V22)

speed up the convergence of the algorithm. And  algorithm 1 
and Fig. 3 are the framework and flowchart of the proposed 
algorithm respectively, which is shown as follows in detail.

Table 2   The payoff matrices of 
cooperative game

C(Pj) D(Pj)

C(Pk) V11 V12

D(Pk) V21 V22

Path construction

start

Pheromone fusion

Population entropy
is low?

Cooperation game
model

If the cooperation
union is higher

distribute profits
to members of the

union

Find new soution?

Pheromone smoothing

yes

no

no

Calculate the payoff
for each Union

If non-cooperation
union is higher

Initialize the parameters

N>NC_max

N=N+1

yes

no

end

yes

Fig. 3   The flow chart of CGMACO algorithm
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4 � Experiment and Simulation

In this part, Sect. 4.1 is the parameters setting in ACS, 
MMAS and E(P)*, which E(P)* is the threshold value of the 
information entropy. Section 4.2 analyses the performance 
of the different strategies we have proposed. Section 4.3 
compares the proposed algorithm with the conventional 
ACO algorithms. Section 4.4 is the experimental com-
parison between CGMACO and the algorithms including 

Table 3   Experimental factors 
and levels of ACS

α β ρ ζ q0

Level 1 1 2 0.1 0.1 0.6
Level 2 2 3 0.2 0.2 0.7
Level 3 3 4 0.3 0.3 0.8
Level 4 4 5 0.4 0,.4 0.9

Table 4   Orthogonal test scheme 
and test results of ACS

No α β ρ ζ q0 Result

1 1 2 0.1 0.1 0.6 22,598.7
2 1 3 0.2 0.2 0.7 22,422.6
3 1 4 0.3 0.3 0.8 22,363.5
4 1 5 0.4 0.4 0.9 22,353.7
5 2 2 0.2 0.3 0.9 22,433.9
6 2 3 0.1 0.4 0.8 22,450.8
7 2 4 0.4 0.1 0.7 22,446.4
8 2 5 0.3 0.2 0.6 22,462.0
9 3 2 0.3 0.4 0.7 23,023.6
10 3 3 0.4 0.3 0.6 22,568.6
11 3 4 0.1 0.2 0.9 22,430.9
12 3 5 0.2 0.1 0.8 22,625.7
13 4 2 0.4 0.2 0.8 22,654.4
14 4 3 0.3 0.1 0.9 24,702.8
15 4 4 0.2 0.4 0.6 22,503.3
16 4 5 0.1 0.3 0.7 22,384.5

Table 5   Analysis of test results of ACS

Ki(i = 1, 2, 3,4) represents the sum of experimental results at each 
level; ki(i = 1, 2, 3,4)  represents the average of each level; Max and 
Min represent the maximum length and the minimum length, respec-
tively; Range represents the difference between the maximum and the 
minimum; Scheme represents each factor
The optimal parameter of ACS algorithm is: 
� = 1, � = 4, � = 0.1, � = 0.3, q0 = 0.8

α β ρ ζ q0

K
1

89,738.6 90,710.6 89,864.9 92,373.6 90,132.5
K
2

89,793.1 92,144.8 89,985.7 89,969.8 90,277.1
K
3

90,648.7 89,744.1 92,551.8 89,750.6 90,094.5
K4 92,244.9 89,825.9 90,023.0 90,331.4 91,921.3
k
1

22,434.7 22,677.6 22,466.2 23,093.4 22,533.1
k
2

22,448.3 23,036.2 22,496.4 22,492.5 22,569.3
k
3

22,662.2 22,436.0 23,138.0 22,437.6 22,523.6
k
4

23,061.2 22,456.5 22,505.7 22,582.8 22,980.3
Max 23,061.2 23,036.2 23,138.0 23,093.4 22,980.3
Min 22,434.7 22,436.0 22,466.2 22,582.8 22,523.6
Range 626.5 600.2 678.1 510.6 456.7
Scheme Level 1 Level 3 Level 1 Level 3 level3
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other improved ACO algorithms and swarm intelligence 
algorithms. Moreover, the experimental platform is the 
MATLAB R2019b in Windows 10 environment, the CPU, 
with 16 GB RAM memory capacity, is Intel(R) Core (TM) 
i7-10700F, and the experiments are applied to execute based 
on different scale TSP instances, each instance runs for 20 
times independently.

4.1 � Parameters Setting

The first experiment of this part is to set the appropriate 
parameters of ACS and MMAS. In order to improve the 
performance of the proposed algorithm, we adopt the 
orthogonal tests that have four levels and sixteen param-
eter combinations to set the appropriate parameter for each 
colony. Besides, kroB100 instance is selected to carry out 
in the orthogonal experiment, and each combination of the 
parameters experiment is executed 20 times independently 
to ensure the reliability of the experiment. Tables 3, 4 and 5 
are the experimental results of ACS, and Tables 6, 7 and 8 
denote the results of MMAS.

The second experiment of this part is to select the suit-
able entropy threshold for CGMACO. Information entropy 
threshold (E(P)*) is also an important parameter in this 
research. If E(P) * is too large, the communication fre-
quency of subpopulations would be higher, which will 
make the multi-population degenerate into a single popula-
tion. And if it is set too small, the insufficient interaction 
among sub-colonies would also decrease the diversity of the 
algorithm. In this research, we select the suitable value of 
E(P)* through the experiment based on four TSP instances 
such as kroA100, kroA200, lin318, att532. And Fig. 3 illus-
trates those specific experiments data. As it clears in it, the 
results have shown that the smallest fitness evaluation func-
tion value can be obtained under the parameter E(P)* = 4. 
Therefore, we set the parameter E(P)* = 4 in the following 
experiments (Fig. 4).

From the above experimental results, the final setting 
results of the algorithm parameters are shown in following 
Table 9, which the ρ denotes the global pheromone evapora-
tion rate, ζ is the local pheromone evaporation rate, and M 
represents ant number.

4.2 � Strategy Analysis

In this part, we analyse the effectiveness of three strategies 
proposed above including adaptive communication strategy 
based on information entropy, pheromone fusion strategy 
and pheromone smoothing mechanism. Strategy-1(S-1) is 
the algorithm that has pheromone fusion strategy and phero-
mone smoothing mechanism but does not use information 
entropy. Strategy-2 (S-2) is the algorithm that retains adap-
tive communication strategy and pheromone smoothing 

Table 6   Experimental factors 
and levels of MMAS

α β ρ

Level 1 1 2 0.1
Level 2 2 3 0.2
Level 3 3 4 0.3
Level 4 4 5 0.4

Table 7   Orthogonal test scheme 
and test results of MMAS

* Note: result represents the 
average value after 20 tests

No α β ρ Result

1 1 2 0.1 22,942.8
2 1 3 0.2 22,416.8
3 1 4 0.3 22,384.1
4 1 5 0.4 22,310.7
5 2 2 0.2 23,107.7
6 2 3 0.1 22,461.1
7 2 4 0.4 22,585.6
8 2 5 0.3 22,429.4
9 3 2 0.3 24,285.2
10 3 3 0.4 23,135.1
11 3 4 0.1 22,767.8
12 3 5 0.2 22,670.9
13 4 2 0.4 24,852.2
14 4 3 0.3 23,500.7
15 4 4 0.2 23,147.3
16 4 5 0.1 22,864.5

Table 8   Analysis of test results of MMAS

Ki(i = 1, 2, 3,4) represents the sum of experimental results at each 
level; ki(i = 1, 2, 3,4)  represents the average of each level; Max and 
Min represent the maximum length and the minimum length, respec-
tively; Range represents the difference between the maximum and the 
minimum; Scheme represents each factor
The optimal parameter of MMAS algorithm is: � = 1, � = 5, � = 0.1

α β ρ

K
1

22,513.6 23,797.0 22,759.0
K
2

22,645.9 22,878.4 22,835.7
K
3

23,214.7 22,721.2 23,149.8
K
4

23,591.2 22,568.8 23,220.9
k
1

22,513.6 23,797.0 22,759.0
k
2

22,645.9 22,878.4 22,835.7
k
3

23,214.7 22,721.2 23,149.8
k
4

23,591.2 22,568.8 23,220.9
Max 23,591.2 23,797.0 23,220.9
Min 22,513.6 22,568.8 22,759.0
Range 1077.6 1228.2 461.9
Scheme Level 1 Level 3 Level 1
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mechanism but does not use pheromone fusion mechanism. 
Strategy-3 (S-3) represents the algorithm that has adaptive 
communication strategy and pheromone fusion strategy but 
does not use pheromone smoothing mechanism. In addi-
tion, in order to make the experimental algorithm run nor-
mally, we use fixed algebra communication strategy in S-1, 
here, we select it as 200 iterations and exchange the optimal 
solution between colonies in S-2. In experiment, kroB100, 
kroA200 and fl417 TSP instances are selected and analysed 
with three aspects including optimal solution error rate, 
worst solution and average solution. And each instance runs 

Fig. 4   Adjustment of the entropy threshold

Table 9   The parameter setting 
of the algorithm

Parameter ACS MMAS

α 1 1
β 4 (5)
ρ 0.1 0.1
ζ 0.3 –
q0 0.8 –
M 20 20
Iteration 2000 2000
E(P)* 4 4
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20 times, 2000 iterations each time. The experimental results 
are shown in Table 10 and Fig. 5.

As we can see in the results, the performance of S-2, 
which the algorithm without pheromone fusion mechanism, 
is worst, while CGMACO, which the algorithm with all 
strategies, is best. And S-1 and S-3 have their own advan-
tage on different instances. This is because the pheromone 
fusion mechanism can effectively take full advantage of the 
heterogeneous population and improve the diversity of the 
algorithm, due to regulating the pheromone distribution of 
each subpopulation. While the communication efficiency 
among subpopulations is greatly reduced without this mech-
anism, which it has been confirmed in experiments, thus the 
accuracy of the solutions reduces. The results of the algo-
rithm without information entropy strategy and pheromone 
smoothing mechanism are better than the algorithm without 
pheromone fusion mechanism, but the quality of the solution 
is still lower than that of CGMACO.

4.3 � Comparison with Traditional ACO Algorithm

In the first phase of the experiment, we compare CGMACO 
with traditional ACO algorithms. And Table 10 reveals the 
performance of proposed algorithm with ACS and MMAS 
based on 22 TSP instances. The evaluation criterions in 
experiment mainly include the best solution, the worst solu-
tion, mean solution, error rate and the standard deviation, 
which the error rate and standard deviation formula are as 
follows:

where LACO represents the optimal solution of each algo-
rithm, and Lopt represents the standard optimal solution of 
the known test set.

where dev denotes the standard deviation, N represents the 
number of times the algorithm runs, and Li is the solution 
obtained by the algorithm in the i-th experiment.

As it clears in Table 11, in small-scale instances with 
city’s scale from 51 to 200, both CGMACO and conven-
tional ACOs can achieve better results in the error rate, but 
CGMACO has lower average solution and standard devia-
tion than ACS and MMAS due to the cooperation among 
multi-populations, which proves that CGMACO has bet-
ter stability than comparison algorithms. Moreover, more 
flexible interaction mechanism based on the self-adaptive 
communication strategy makes the information transmis-
sion among sub-colonies more adaptive, which can greatly 
diversify the solutions of algorithm. As shown in Table 11, 

(18)error =
LACO − Lopt

Lopt
× 100%

(19)dev =

√

1

N

∑N

i=1
(Li − L)2
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in middle-scale instances, such as tsp225, pr264 and a280, 
CGMACO gains the standard optimal solution, but the 
comparison algorithms do not get. Although our algorithm 
would not obtain the optimal solution in lin318, the error rate 
remains within 1%, which is more superior to the 1.81% and 
2.42% obtained by ACS and MMAS, respectively. With the 
increase in city scale from fl417 to rl1304, the error rate of 
traditional ACOs is exceedingly more than 1% and gradually 
rising. While attributed to the pheromone fusion mechanism, 
we proposed in this research, the pheromone distribution of 
each colony can be regulated appropriately and the informa-
tion exchanged among subpopulations becomes more effec-
tive, which makes the improved algorithm still control the 
error rate within 1%. Besides, the cooperative game model 
can further promote the efficiency of communication among 
sub-colonies, helping that CGMACO possesses lower mean 
solution and standard deviation solution and still enables 
strong stability in large-scale instances.

Figure 6 illustrates the obvious improvement of conver-
gence speed and solution accuracy of the proposed algo-
rithm. According to the population profits distribution strat-
egy in CGMACO, high-quality solutions can be selected in 
the early algorithm stage which guides more ants to explore 
around the optimal solution and avoids much useless search, 
while ACS and MMAS have to seek the whole search space 
to complete the evolution causing that it is hard to conver-
gence. As Fig. 6 shown, CGMACO has faster convergence 
than conventional ant colony algorithms. And in the later 
stage, due to the excessive accumulation of pheromones, 
single population ACOs easily fall into stagnation. How-
ever, with the help of pheromone smoothing mechanism, the 
pheromone matric is reinitialized helping CGMACO jump 
out of local optimum effectively. Taking rl1304 instance as 
an example, as shown in Fig. 6f, CGMACO can still obtain 
new better solution at about 1100 and 1600 iteration in terms 
of this mechanism. In a word, the CGMACO algorithm has 

faster convergence than ACS and MMAS without losing 
high-quality solutions.

Figure  7 demonstrates the optimal tour found by 
CGMACO in the simulate experiment.

4.4 � Comparison with Other Algorithms

In the second phase of the experiment, we compare 
CGMACO with DBAL [32] and DSMO [33]in detail under 
error rate column, average solution and standard deviation 
solution. According to Table 12 and Fig. 8, it can conclude 
that the improved algorithm has strong competitiveness 
with comparison algorithm. In the experiment, we select 
the instances with city’s scale from 51 to 1000. Both in 
small-scale TSP instances and large-scale TSP instances, 
CGMACO outperforms DSMO under three evaluation crite-
rions, but CGMACO and DBAL have their own performance 
advantages in different TSP instances. For example, in 
lin318, the factors including error rate, average solutions and 
standard deviation in DBAL (0.1%, 42,268.1 and 128.24) are 
better than them in CGMACO (0.23%, 42666.1 and 181.32), 
respectively; however, our proposed algorithm is superior 
to DBAL in pr1002. In general, under the synergy of the 
pheromone fusion mechanism and cooperative game model, 
the efficiency of coordination among sub-colonies has been 
improved greatly. As we can see in Table 12, among 13 TSP 
instances experiments, CGMACO outperforms DBAL with 
8 instances including eil51, st70, eil76, eil101, kroA100, 
pr264, pr439 and pr1002, which proves the excellent per-
formance of CGMACO.

In the third phase of the experiment, we compare the 
CGMACO with other optimization algorithms. The com-
parison optimization algorithms mainly have single ant 
colony algorithms that include HAACO [12], PACO-3opt 
[34], DEACO [35], HMMA [36], multi-ant colony algo-
rithms such as JCACO [22], NACO [24], LDTACO [25] 
and other swarm intelligence algorithms that include hybrid 

Fig. 5   Results comparison in different strategies



1668	 Arabian Journal for Science and Engineering (2022) 47:1657–1674

1 3

Table 11   Performance compare 
CGMACO with ACS and 
MMAS

Instances Optimal Algorithm Best Worst Mean Error% Dev

eil51 426 ACS
MMAS
CGMACO

426
426
426

435
432
427

428.61
428.10
426.55

0.00
0.00
0.00

2.18
2.04
0.51

eil76 538 ACS
MMAS
CGMACO

538
538
538

551
552
541

544.93
542.20
538.60

0.00
0.00
0.00

4.16
4.71
1.09

eil101 629 ACS
MMAS
CGMACO

630
630
629

650
653
638

639.51
642.30
632.05

0.16
0.16
0.00

7.04
6.52
2.96

kroA100 21,282 ACS
MMAS
CGMACO

21,282
21,282
21,282

21,835
21,945
21,302

21,450.62
21,396.30
21,286.95

0.00
0.00
0.00

157.83
166.59
8.57

kroB100 22,141 ACS
MMAS
CGMACO

22,270
22,220
22,141

22,420
22,580
22,237

22,366.41
22,320.31
22,163.40

0.58
0.36
0.00

43.41
91.42
33.60

ch130 6110 ACS
MMAS
CGMACO

6162
6121
6110

6348
6359
6220

6255.00
6188.40
6152.00

0.85
0.18
0.00

58.16
37.54
21.55

ch150 528 ACS
MMAS
CGMACO

6548
6528
6528

6778
6641
6608

6600.50
6578.30
6553.00

0.31
0.00
0.00

54.02
29.55
13.65

kroA150 26,524 ACS
MMAS
CGMACO

26,765
26,665
26,524

27,945
27,251
27,056

27,267.20
27,010.80
26,717.25

0.91
0.53
0.00

332.13
177.04
157.52

kroB150 26,130 ACS
MMAS
CGMACO

26,244
26,196
26,130

27,269
27,034
26,417

26,699.11
26,443.91
26,292.15

0.44
0.25
0.00

302.76
213.36
72.56

rat195 2323 ACS
MMAS
CGMACO

2331
2340
2330

2373
2385
2348

2352.05
2353.50
2338.60

0.34
0.73
0.30

13.30
13.56
4.73

d198 15,780 ACS
MMAS
CGMACO

15,970
16,065
15,839

16,420
17,117
16,159

16,153.93
16,545.25
15,964.60

1.20
1.81
0.46

120.69
319.41
83.19

kroA200 29,368 ACS
MMAS
CGMACO

29,536
29,460
29,368

30,290
30,184
29,628

29,828.00
29,639.00
29,478.55

0.57
0.31
0.00

242.34
185.09
63.85

kroB200 29,437 ACS
MMAS
CGMACO

29,816
29,766
29,437

30,701
30,957
29,833

30,348.87
30,195.95
29,640.80

1.29
1.12
0.00

261.93
401.21
106.68

tsp225 3916 ACS
MMAS
CGMACO

3931
3923
3916

4061
4033
3970

3997.70
3984.35
3940.40

0.38
0.18
0.00

39.42
31.62
15.30

pr264 49,135 ACS
MMAS
CGMACO

49,198
49,135
49,135

51,702
51,927
49,245

49,734.35
49,715.00
49,167.95

0.13
0.00
0.00

671.45
786.85
36.04

a280 2579 ACS
MMAS
CGMACO

2594
2587
2579

2712
2683
2621

2636.65
2624.75
2595.89

0.58
0.31
0.00

36.48
27.75
13.93

lin318 42,029 ACS
MMAS
CGMACO

42,790
43,046
42,146

43,586
44,879
43,052

43,277.01
43,614.45
42,662.10

1.81
2.42
0.28

221.68
447.74
181.32

fl417 11,861 ACS
MMAS
CGMACO

12,031
12,006
11,916

12,404
12,363
12,178

12,185.91
12,174.15
11,991.15

1.43
1.22
0.46

100.58
94.02
51.83

pr439 107,217 ACS
MMAS
CGMACO

108,309
107,929
107,572

116,846
114,244
109,309

110,905.95
110,826.90
108,477.40

1.02
0.66
0.33

2402.69
1682.36
524.90
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ant colony particle swarm optimization algorithm called 
PSO-ACO-3opt [2], Discrete Bat Algorithm DBAL [32], 
Discrete Spider Monkey Optimization DSMO [33], Discrete 
Water Cycle Algorithm DWCA [37], Artificial Bee Colony 
algorithm ABC[38], Discrete Symbiotic Organisms Search 
algorithm DSOS [39] and Improved Discrete Bat Algorithm 
IBA [40]. Tables 12 and 13 show the specific experiment 
data, which the best is the optimal solution obtained by each 
algorithm and the error is the error rate column defined by 
equal (18). And the “-” in the table denotes that the compari-
son algorithm does not test the instance.

As we can see in Table 13, the results demonstrate that 
our proposed algorithm can find the standard optimal solu-
tions in all small-scale TSP instances, which outperforms 
the comparison algorithms such as LDTACO, DSMO, 
DEACO and PACO-3opt. Moreover, in Table 14, CGMACO 
is also superior to the recent algorithms. In tsp225 and a280 
instances, CGMACO can still obtain the standard optimal 
solution, while DSMO, NACO, JCACO would not get. 
And in fl417, pr439 and p654 instances, the superiority of 
CGMACO has been confirmed obviously, which the error 
rate CGMACO obtained is significantly lower than the com-
parison algorithms. These satisfactory experimental results 
are mainly ascribed to the strong search ability improved by 
cooperative game based on the pheromone fusion mecha-
nism. Specifically, under the pheromone fusion mechanism, 
more useful information can be explored. And due to the 

cooperative game model, the beneficial pheromone distribu-
tion can be generated in subpopulations. These two methods 
can take full use of the advantage of heterogeneous popu-
lations. In short, our proposed algorithm, CGMACO, has 
strong competitiveness with the state-of-art algorithms and 
can obtain higher quality solutions, especially for large-scale 
TSP instances.

5 � Conclusion

In this paper, we have proposed a novel ant colony algo-
rithm, so-called multi-ACO based on pheromone fusion 
mechanism of cooperative game, to solve travelling sales-
man problems. In multiple populations, we select two ACS 
colonies and one MMAS colony. Two ACS subpopulations 
form the homogenous population, which can better amplify 
the convergence speed of ACS. In addition, we also add one 
MMAS subpopulation to form a heterogeneous population, 
which can effectively enhance the diversity of the ACS. The 
advantages of multiple populations complement to ensure 
the solution quality of the algorithm.

In addition, the pheromone fusion mechanism is applied 
to regulate the pheromone distribution of each subpopu-
lation. It fuses the pheromone matrix of other subpopula-
tions based on retaining the original population informa-
tion, which can exchange the information among multiple 

Table 11   (continued) Instances Optimal Algorithm Best Worst Mean Error% Dev

att532 86,729 ACS
MMAS
CGMACO

88,976
92,041
87,541

93,426
98,446
90,284

90,438.85
94,588.40
88,794.40

2.60
6.12
0.94

887.57
1626.73
459.54

p654 34,643 ACS
MMAS
CGMACO

35,032
36,257
34,762

37,318
37,923
35,539

35,476.70
36,996.80
35,157.85

1.12
4.66
0.34

535.75
518.65
207.25

rl1304 252,948 ACS
MMAS
CGMACO

264,904
279,232
254,199

277,443
303,688
261,890

270,350.80
288,417.80
260,248.50

4.73
10.39
0.49

3657.79
7138.96
2521.41
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(a) eil51 (b) eil101

(c) lin318 (d)pr439

(e) P654 (f) rl1304

Fig. 6   Comparison the convergence of different algorithms



1671Arabian Journal for Science and Engineering (2022) 47:1657–1674	

1 3

(a) eil51             (b) eil101             (c) lin318

(d) pr439 (e) p654        (f) rl1304

Fig. 7   Optimal tour found by CGMACO

Table 12   Compare CGMACO with DBAL and DSMO

TSP instance Optimal DBAL (2021) DSMO (2020) CGMACO

Error Average Std Error Average Std Error Average Std

eil51 426 0.00 426.70 0.55 0.67 436.96 4.73 0.00 426.55 0.51
Berline52 7542 0.00 7542.00 0.00 0.02 7633.60 85.4 0.00 7542.00 0.00
eil76 538 0.00 539.10 1.47 3.84 572.70 7.56 0.00 538.61 1.09
kroA100 21,282 0.00 21,287.11 9.02 0.07 22,024.30 508.89 0.00 21,286.95 8.57
kroB100 22,141 0.00 22,164.30 36.86 0.75 22,707.91 259.83 0.00 22,163.40 33.60
eil101 629 0.00 632.15 3.32 3.02 674.40 10.97 0.00 632.05 2.96
pr152 73,682 0.00 73,723.00 62.19 0.76 76,526.77 1663.08 0.00 73,983.85 195.45
kroA200 29,368 0.00 29,424.55 61.26 3.79 31,828.60 652.32 0.00 29,478.55 63.85
kroB200 29,437 0.00 29,483.60 46.89 4.34 31,781.60 487.39 0.00 29,640.8 106.68
pr264 49,135 0.00 49,175.90 92.06 – – – 0.00 49,167.95 36.04
lin318 42,029 0.10 42,268.10 128.24 4.97 45,460.30 660.47 0.35 42,662.10 181.32
pr439 107,217 0.36 107,903.25 166.58 4.56 116,379.20 2462.82 0.33 108,477.90 524.9
pr1002 259,047 4.21 271,473.05 734.10 – – – 3.16 268,619.8 698.22
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Fig. 8   The average solution in 
each algorithm

Table 13   Compare proposed 
algorithm with other algorithms 
in small-scale TSP instances

Algorithm Instance eil51 Berline52 st70 eil76 kroA100 eil101 kroA150 kroA200

Proposed Best 426 7542 675 538 21,282 629 26,524 29,368
Algorithm Error% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DBAL (2021) Best 426 7542 675 538 21,282 629 – 29,368

Error% 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00
LDTACO (2021) Best 426 – – 538 21,282 629 26,524 29,380

Error% 0.00 – – 0.00 0.00 0.00 0.00 0.04
DSMO (2020) Best 428 7544 677 558 21,298 648 27,591 30,481

Error% 0.67 0.02 0.30 3.72 0.07 3.02 4.02 3.79
HAACO (2020) Best 426 7542 675 538 21,282 629 – 29,483

Error% 0.00 0.00 0.00 0.00 0.00 0.00 – 0.39
DEACO (2020) Best 426 7542 675 541 21,282 629 26,572 29,368

Error% 0.00 0.00 0.00 0.52 0.00 0.00 0.18 0.00
ABC (2019) Best 427 7542 675 538 21,282 629 – 29,450

Error% 0.23 0.00 0.00 0.00 0.00 0.00 - 0.28
PACO-3opt (2018) Best 426 7542 676 538 21,282 629 – 29,368

Error% 0.00 0.00 0.15 0.00 0.00 0.00 – 0.00
DWCA (2018) Best 426 7542 675 543 21,282 639 – –

Error% 0.00 0.00 0.00 0.9 0.00 1.5 – –
DSOS (2017) Best 426 7542 675 542 21,282 640 – 29,477

Error% 0.00 0.00 0.00 0.74 0.00 1.75 – 0.37
IBA (2016) Best 426 7542 675 539 21,282 634 – –

Error% 0.00 0.00 0.00 0.19 0.00 0.79 – –
PSO-ACO-3opt (2015) Best 426 7542 676 538 21,301 631 – 29,468

Error% 0.00 0.00 0.15 0.00 0.09 0.32 – 0.34
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populations more effectively. The experimental results show 
that the pheromone fusion mechanism has been proved to 
be effective and it can fully exploit the characteristics of 
each subpopulation and complement advantages among the 
heterogeneous sub-colonies.

The adaptive communication strategy and cooperative 
game model are used to further control the pheromone 
fusion mechanism. The former method based on information 
entropy can make the communication frequency among pop-
ulations more adaptively, and the latter can help the popula-
tion select appropriate communication objects by evaluating 
the payoff of each union. From the experiment in large-scale 
TSPs, it illustrates that the improved algorithm can improve 
the accuracy of solution without affecting the convergence 
speed of the population and balance the convergence speed 
and the diversity of the algorithm effectively.

In the future, more types of heterogeneous populations 
can be used in the solution construction and more phero-
mone fusion mechanisms can be designed to regulate the 
pheromone distribution among populations. In addition, 
except for the evaluation criteria under information entropy 
in this paper, more methods based on statistics or machine 
learning can be also introduced to control the interaction 
frequency of the population. Finally, the game mechanism 
we proposed in this research also has some certain practical 
value in the application of ant colony algorithm.
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