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Abstract
The influence of inclined magnetic field and heat and mass transfer of a hydromagnetic fluid on stretching/shrinking sheet 
with Stefan blowing effects and radiation has been investigated. The elementary viscous equations for momentum, heat and 
mass transfer, which are highly nonlinear partial differential equations, are mapped into highly nonlinear ordinary differ-
ential equations with the help of similarity transformation. The subsequent highly nonlinear differential equation is solved 
analytically. The exact solution of heat and mass transfer appearances is found in terms of the incomplete gamma function. 
The species and temperature boundary conditions are assumed to be a linear function of the distance from the origin. Fur-
ther, the impact of various parameters, such as Chandrasekhar number, thermal radiation, inclined Lorentz force and mass 
transpiration on velocity and temperature summaries, are conferred in detail.

Keywords  Radiation · Stefan blowing effects · Inclined MHD · Differential equation · Analytical solution · Mass 
transpiration

Abbreviations

Symbols
a	� Constant
B0	� Magnetic field (Wm−2)
C	� Species concentration (mol m−3) 
Cw	� Species concentration at the wall (mol m−3)
C∞	� Ambient species concentration (mol m−3)
f	� Similarity variable for velocity

k*	� Mean absorption coefficient (m−2)
NR	�

(

=
16�∗T3

∞

3k∗K

)

 Radiation parameter
p	� Pressure of the fluid
Pr	�

(

=
�

�

)

 Prandtl number

Q	�
(

=
�B2

0

a�

)

 Constant magnetic parameter
qr	� Radiative heat flux
qw	� Surface heat flux from the plate (Wm−2)
Sc	�

(

=
�

D

)

 Schmidt number
T	� Fluid temperature (K)
T∞	� Surrounding fluid temperature (K)
Tw	� Temperature of the surface (K)
u and v	� Velocity components in the x- and y-direction 

(ms−1)
Uw	� Velocity of stretching sheet
vw	� Wall blowing velocity (ms−1)
x and y	� Coordinate systems (m)

Superscript
′	� Differentiation with respect to �

Greek Symbols
α	� Thermal diffusivity of fluid (m2s−1)
β	� Constant
Λ	� Stefan blowing parameter
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�	� Variable
�	� Variable
�	� Blasius similarity variable
�	� Thermal conductivity of fluid (Wm−1K−1)
�	� Similarity variable for temperature
�	� Stretching/shrinking parameter
λ > 0	� Stretching sheet
λ < 0	� Shrinking sheet
�	� Kinematic viscosity of fluid (m2s−1) 
�	� Density of fluid (Kgm−3) 
CP	� Constant pressure specific thermal capacity of 

the fluid (JK−1)
�	� Electrical conductivity of fluid (Sm−1) 
�∗	� Stefan-Boltzmann constant
�	� Inclined parameter of magnetic field
�	� Similarity variable for concentration
Γ	� Incomplete gamma function

1  Introduction

In many engineering applications, Newtonian fluid flow due 
to stretching/shrinking sheet involves the extrusion of plas-
tic sheets and drawing operation of plastic sheets among 
many things [1–3]. For the processes, for example, drying 
and purifying methods, where boundaries are perforated, 
Stefan blowing (wall injection) has significant applications. 
Stephan problem provides the idea of blowing effect, which 
is the major implementation of mass transfer of species. The 
product quality is greatly influenced by heat and mass flow 
between stretching sheet and flow [4].

A novel work on the boundary-layer flow over a continu-
ously stretching sheet was done by Sakiadis [5]. The work 
becomes the inspiration for many researchers and motivated 
them to investigate stretching sheet problems in detail. Exact 
analytical solution for Navier–Stokes was investigated by 
Crane [6] and Fang et al. [7]. Banks [8] presented a simi-
larity solution for stretching sheet using numerical and 
analytical techniques. Magyari and Keller [9] analytically 
evaluated the two-dimensional flow induced by stretching of 
permeable wall, and the exact solutions have been derived. 
Homotopy analysis methods were employed to obtain exact 
analytic solutions [10].

Carragher and Crane [11] theoretically investigated the 
thermal transport for a continuously stretching plate and 
obtained the rate of heat transfer for moderate and large 
Prandtl number (Pr). Grubka and Bobba [12] employed 
power-law distribution for temperature in thermal transport 
in a linearly stretching sheet. Two parameters, namely tem-
perature parameter and Prandtl number, are used to demon-
strate the heat transfer behaviour. Dutta et al. [13] analyti-
cally investigated flow over a continuously stretching sheet 
for temperature distribution. Uniform heat flux was given 

to a stretching sheet, and velocity of sheet directly depends 
on the slit distance. It was found that temperature decreases 
with an increase in Prandtl number.

Other similar work includes [14–16]. Weidman et al. [17] 
and Ishak et al. [18] explored a similar boundary flow over a 
moving surface and found dual solutions. The impact of Bla-
sius flow and Sakiadis flow has been investigated for thermal 
radiation on a viscous boundary layer [19]. A slips model 
is used to investigate hydromagnetics flow and thermal 
transfer over expanding or stretching and shrinking surface 
[20]. Andersson [21–24] reported work related to chemical 
reaction for stretching plate. Pal and Mondal [25] approved 
a numerical examination to study the impact of Soret and 
Dufour, radiation and species on hydromagnetics flow due to 
stretching/shrinking surface in a porous medium. Khan [26] 
numerically reported the impact of homogeneous–hetero-
geneous reactions on the stretching sheet in non-Newtonian 
fluid and found that velocity of viscoelastic fluid is decreased 
with an increase in viscoelastic parameters, λ. Bhattacharyya 
et al. [27] examined the flow of MHD due to a stretching 
sheet with suction and blowing and reported a reduction in 
velocity and surge in concentration was observed with an 
increment in magnetic parameter.

Other studies involve transport of species (or mass trans-
fer and Lorentz forces) [28–30, 44]. Spalding [31] inves-
tigated the mass or species transfer in viscous flow over a 
flat plate, vertical plate and sphere using the Karman–Pohl-
hausen–Kroujiline method. Recently, Mahabaleshwar et al. 
[32–39] and Khan et al. [40–43] have investigated analyti-
cal examination to impact of different fluids with numerous 
parameters MHD/porous media flow.

For the objective of the research, we consider the effect 
of radiation and MHD on Newtonian flow and chemical 
reaction over a stretching/shrinking sheet with Stefan blow-
ing effects. By means of similarity transformation, the flow 
equations are mapped from PDEs to ODEs and solved ana-
lytically. The exact analytic solution of heat and mass trans-
fer characteristics is obtained in terms of the incomplete 
gamma function.

2 � Mathematical Formulation and Physical 
Modelled Equations

Laminar, steady two-dimensional motion in the Cartesian 
coordinate xy-plane on the stretching/shrinking sheet under the 
effect of inclined MHD, Stefan blowing and radiation has been 
investigated. The heat and mass impacts are investigated once 
thermal conductivity varies as a linear function of temperature 
and concentration. The laminar boundary flow is examined in 
the presence of radiation and MHD. A steady magnetic field 
at an angle � to the positive direction of the y-axis has been 
applied. Magnetic Reynolds number is considered to be very 
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small (see Mahabaleshwar 2007, 2008). Further, the concen-
tration and temperature distribution at the sheet and y → ∞ 
are assumed to be constants as Cw,Tw , T∞ and C∞ , respectively.

The familiar Prandtl equations for two-dimensional flow, 
heat and mass equations under the boundary-layer approxi-
mations are stated as follows:

where u and v are the velocity components in the x- and 
y-direction, respectively, p the pressure, C and C∞ the con-
centrations of species and concentration at infinity, respec-
tively, T and T∞ the temperature and temperature at infin-
ity, respectively, and � , � , � , D , CP and � are the density, 
dynamic viscosity, electrical conductivity, mass diffusivity 
coefficient, constant pressure specific heat capacity and ther-
mal conductivity, respectively.

Imposed conditions for these nonlinear governing equa-
tions are:

u = Uw(x) = �ax gives the velocity distribution of sheet. 
In given expression represents the coordinates along the 
direction in which sheet is stretching or shrinking, and � is 
the constant (λ > 0 means stretching, λ < 0 means shrinking 
and � = 0 means surface is permeable).

The Rosseland approach for radiative heat flux is assumed 
by qr (see Mahabaleshwar el al. 2020),

The Taylor-series expansion for the fourth power of tem-
perature can be presented as:

In Eq. (8), neglecting the quadratic terms onwards

(1)
�u

�x
+

�v

�y
= 0,

(2)

�

(

u
�u

�x
+ v

�u

�y

)

= −
�p

�x
+ �

(

�2u

�x2
+

�2u

�y2

)

− �B2
0
sin2 (�)u,

(3)�

(

u
�v

�x
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�v

�y

)

= −
�p

�y
+ �

(

�2v

�x2
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�2v

�y2
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,

(4)u
�C

�x
+ v

�C

�y
= D

(

�2C

�x2
+

�2C

�y2

)

,

(5)�CP

(

u
�T

�x
+ v

�T

�y

)

= �

(

�2T

�x2
+

�2T

�y2

)

−
�qr

�y
,

(6)

y = 0 u = Uw(x) = �ax , v = vw , T = Tw , C = Cw

as y → ∞ u → 0 , T → T∞ , C → C∞.

(7)qr = −
4�∗

3k∗
�T4

�y
.

(8)T4 = T4
∞
+ 4T3

∞

(

T − T∞
)

+ 6T2
∞

(

T − T∞
)2

+ ....

Substituting equation (7) into (9), one can obtain:

Equation (5) is converted into the subsequent equation (10)

Equations (1)–(5) by using dimensionless variables are 
given by

The physical stream function � is defined as follows:

Equation (13) satisfies the conservation of mass. Substitut-
ing Eq. (12a)–(12b) into Eq. (2) is transformed into:

In Eq. (14), the second term specifies the Jacobian.
Substituting Eqs. (14) and (10) into Eq. (12b), the follow-

ing transformed equation with constant coefficient is derived.
The similarity transformation �(x, y) =

�

√

a�
�

xf (�) is 
presented in Eqs. (2)–(5), which is given in the following 
equations:

In these problems, the pressure gradient is negligible.
The appropriate boundary conditions for Eqs. (15) to (17) 

are given by:

where Q =
�B2

0

a�
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√
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parameter, λ > 0 for the stretching sheet, λ < 0 for the shrink-
ing sheet and � = 0 for the fixed surface, Λ represents the 
Stefan blowing due to mass transpiration (suction/injection) 
and  S t e fan  b lowing  ve loc i ty  i s  g iven  by 
vw = −

�√

a�
�

Λ��(0) , Sc =
�

D
 represents the Schmidt num-

ber, Pr = �

�
 represents the Prandtl number and NR =

16�∗T3
∞

3k∗K
 

represents the thermal radiation (Fig. 1).

3 � Methodology for Velocity

The nature of solution in the exact analytical solutions of 
equations (15) is given by,

and

provided that β > 0.
Note that

i)	 The classical Crane (1970) flow is recovered from 
Eq. (15) for Q = 0 , � = 1 and � = 900.

ii)	 The classical Pavlov (1970) flow is recovered from 
Eq. (15) for VC = 0 , � = 1 and � = 900.

iii)	 The Mahabaleshwar et al. (2016) flow is recovered from 
Eq. (15) for � = 1 and � = 900.

(19)f (�) = � −
1

�

{

Q sin2 (�) + �Exp(−��)
}

(20)f�(�) = �Exp(−��)

iv)	 The Fang and Zing (2014) flow is recovered from 
Eq. (15) for Q = 0 , � = 1 and � = 900.

4 � Methodology for Concentration 
and Temperature

Substituting Eq. (19) into Eqs. (16) and (17), the mass and 
temperature equations are transformed, using the relation-
ship � =

Sc

�2
exp (−��)   and � =

Pr

�2
exp(−��) , and are con-

verted to:

subject to the corresponding boundary conditions

The final solutions, after further transformations of Eqs. 
(21) and (22) into incomplete gamma function (Abramow-
itz and Stegun), are given by
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}
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(23)�

(
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�2
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(
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�2

)

= 1, �(0) = �(0) = 0.

Fig. 1   Pictographic representa-
tion of stretching/shrinking 
boundary
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where Γ denotes the incomplete gamma function.
Substituting Eq. (23) into the final solutions of Eqs. (21) 

and (22) in terms of � , one can obtain:

The first derivatives of concentration and temperature 
with respect to Blasius similarity variable are as follows:
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The dimensionless concentration and temperature gradi-
ents at the sheet are given by

Using Eq. (19), where β > 0 represents the root of the 
equation, solve unknown � and satisfy the equation
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Closed-form solutions of Fang and Zing (2014) flow are 
recovered from Eq. (34) for Q = 0 , � = 1 and � = 900.

5 � Results and Discussion

The analysis is facilitated in part by systematic mapping 
of the equations for the velocity, temperature and concen-
trations, leading to a set of nonlinear ODEs. By employ-
ing proper similarity variables, exact analytical solutions 
for momentum, temperature and concentration profiles are 
obtained. One has therefore now understood the physics 

involved in these interesting dynamics, thanks to the various 
plots that are generated herein that elaborate on the problem.

Figure  2 represents the influence of Stefan blowing 
parameters (Λ) on transverse velocity when the stretching 
boundary (λ) is greater than zero. The Schmidt No. (Sc) is 
taken unity, while the magnetic field inclination (τ) is 90°. 
As the Stefan blowing parameter (Λ) is varied between 100, 
5, 1 and 0.1, the transverse velocity (η) is increased. It is 
noted that when the constant magnetic parameter (Q) is 
0, the transverse velocity f (�) is lower than that when the 
constant magnetic parameter (Q) is taken as 5. It is also to 
note that when Q is 0, all the transverse velocity values thus 
obtained are less than zero. Initially, the transverse velocity 

Fig. 2   Influence of Stefan blow-
ing parameter (Λ) on transverse 
velocity

Fig. 3   influence of Schmidt 
number on transverse velocity
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increases when the Blasius similarity variable is increased 
but becomes constant after some value.

Figure 3 represents the effect of Sc on transverse velocity 
when the stretching boundary (λ) is greater than zero. The 
inclined parameter of the magnetic field (τ) is 90°, and the 
Stefan blowing parameter is 15. Here, the Schmidt number 
(Sc) is decreased from 3, 2.5, 1 to 0.1. It is seen that when 
Q is 0 the transverse velocity f (�) is below − 4 ranging 
between − 4 and − 7 and when Q is 1 the transverse veloc-
ity ranges between − 2 and − 4. Similarly, like Fig. 2, the 
transverse velocity f (�) increases initially when the Blasius 
similarity variable (η) is increased but finally becomes a 
constant line.

Figure  4 represents the influence of Stefan blowing 
parameters on transverse velocity when the shrinking bound-
ary (λ) is less than zero. The Schmidt number (Sc) is taken 
as 1, and the ‘Q’ value has been kept constant at 5. The 
inclined parameter of the magnetic field (τ) is 90°. As the 
Stefan blowing parameter (Λ) is varied between 100, 5, 1 
and 0.1, the transverse velocity f (�) is decreased initially. 
The transverse velocity f (�) ranges from 3 to 2 and becomes 
constant eventually.

Figure 5 represents the effect of Sc transverse velocity 
when the stretching boundary (λ) is less than zero. The 
Stefan blowing parameter (Λ) is kept fixed at 15, and the 
inclined parameter of the magnetic field (τ) is 90°. The 

Fig. 4   Influence of Stefan blow-
ing parameter on transverse 
velocity

Fig. 5   Influence of Schmidt 
number on transverse velocity
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constant magnetic parameter (Q) is taken as 5. Now, the 
Schmidt No. (Sc) is decreased from 5, 2, 1 to 0.1 and so does 
the corresponding values of transverse velocity f (�) . It is 
observed that there are no significant changes in the trans-
verse velocity f (�) at higher values of the Blasius similarity 
variable ( �).

Figure 6 represents the influence of Sc on Stefan blowing 
parameters when the stretching boundary (λ) is greater than 
zero. Two sets of curves are obtained with constant magnetic 
parameter (Q) being taken as 0 and 1. The inclined param-
eter of the magnetic field (τ) is 90°. The Schmidt No. (Sc) 
is increased from 0.1, 1, 10 to 100 and so the corresponding 
values of β change. When β is less than 0.5, it is seen that 

the Stefan blowing parameter (Λ) is infinite. And when the 
Stefan blowing parameter (Λ) is 0, the β value is found to 
be infinite.

Figure 7 represents the effect of Schmidt number (Sc) on 
Stefan blowing parameters (Λ) when the stretching boundary 
(λ) is less than zero. For inclined parameter of the magnetic 
field (τ) of 90° and constant magnetic parameter (Q) of 2, the 
curves for these Schmidt numbers (Scs) 0.1, 1, 10 and 100 
are obtained. These obtained curves are somewhat similar 
in nature for inclined parameter of the magnetic field (τ) of 
45° and constant magnetic parameter (Q) of 5.

Figure 8 represents the effect of Schmidt number (Sc) on 
Stefan blowing parameters (Λ) and studying the changes in 

Fig. 6   Influence of Schmidt 
number on Stefan blowing 
parameter

Fig. 7   Influence of Schmidt on 
blowing parameter
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super-linear stretching (λ). The inclined parameter of the 
magnetic field (τ) is 90°. The β value is kept constant at 1. 
The Schmidt No. (Sc) is decreased from 4, 3, 2 to 1, and 
the plot obtained seems to be an exponentially increasing 
graph. As the Schmidt No. (Sc) value decreases, so the rate 
of increase decreases in the curve plot of (Λ) vs (λ). It is 
to note that for constant magnetic parameter (Q) value 1, 
the curves of super-linear stretching (λ) start from 0, while 
for constant magnetic parameter (Q) value 1, the curves 
of super-linear stretching (λ) start from 1. Both the sets of 
curves are somewhat similar.

Figure 9 represents the effect of Sc on Stefan blow-
ing parameters (Λ) by plotting a graph of Stefan blowing 

parameter (Λ) vs Chandrasekhar number (Q) when the 
stretching boundary (λ) is greater than zero with β value 
kept constant at 1. The Schmidt No. (Sc) is increased from 
0.1, 1, 10 to 100, and the plot on Chandrasekhar number 
(Q) obtained seems to be an exponentially increasing graph. 
Two sets of curves are obtained with one value ( � = 1 ) and 
another ( � = 2).

Figure 10 represents the impact of Prandtl number (Pr) 
on heat transfer flux at the wall ( −��(0) ) with the stretch-
ing boundary (λ) greater than 0. The inclined parameter of 
the magnetic field (τ) is 90°. The β value is varied between 
0.2, 0.3, 0.4, 0.5 and 0.6. There are two sets of curves, one 
set with constant magnetic parameter (Q) and radiation 

Fig. 8   Influence of Schmidt 
number on Stefan blowing 
parameter

Fig. 9   Influence of Schmidt 
number on Stefan blowing 
parameter
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parameter (NR) values 0 and 1, respectively, and the other 
set with (Q) and (NR) values 0 and 2, respectively. Both of 
the sets of curves follow a similar pattern. When the Prandtl 
number (Pr) is increased, the thermal flux at the wall −��(0) 
value initially increases, reaches a peak value and then 
decreases. It is to note that when the β value increases, the 
peak point of the graph also increases.

Figure 11 represents the influence of β on wall concen-
tration gradient ( −��(0) ) with respect to Schmidt number 
(Sc) with the stretching boundary (λ) greater than 0. The 
inclined parameter of the magnetic field (τ) is 90°. The β 
value is varied between 0.2, 0.3, 0.4, 0.5 and 0.6. There are 
two sets of curves, one with constant magnetic parameter 
(Q) value 0 and the other set with (Q) value 1. When the Sc 
is increased, the wall concentration gradient ( −��(0) ) value 

initially increases, reaches a peak value and then decreases. 
It is to note that when the β value increases, the peak point 
of the graph also increases.

Figure 12 represents the impact of Pr on heat transfer 
flux at wall ( −��(0) ) with respect to β with the stretching 
boundary (λ) greater than 0. The inclined parameter of the 
magnetic field (τ) is 90°. The Pr value is varied between 
0.6, 0.5, 0.4, 0.3 and 0.2. There are two sets of curves, 
one set with constant magnetic parameter (Q) and radia-
tion parameter (NR) values 0 and 0, respectively, and the 
other set with (Q) and (NR) values 1 and 2, respectively. 
The major portion of the graph follows a linearity (when 
β greater than 1) and keeps on increasing with a constant 
rate of increase. When (Q) and (NR) values are 0 and 0, 

Fig. 10   Influence of � on heat 
transfer flux at wall

Fig. 11   Influence of � on wall 
concentration gradient
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respectively, the curves are steeper when compared with 
the other set of data.

Figure 13 represents the impact of Pr on heat transfer 
flux at wall ( −��(0) ) with respect to β with the stretching 
boundary (λ) greater than 0. The inclined parameter of the 
magnetic field (τ) is 90°. The Pr value is varied between 0.6, 
0.5, 0.4, 0.3 and 0.2. There are two sets of curves, one set 
with constant magnetic parameter (Q) and radiation param-
eter (NR) values 0 and 0, respectively, and the other set with 
(Q) and (NR) values 2 and 2, respectively. When (Q) and 
(NR) values are 0 and 0, respectively, the curves plot indi-
cates an infinite value of heat transfer flux at wall ( −��(0) ) 
with a β around 0 to 1, while these plots drastically change 

orientation and become linear when the β value crosses 2. 
When (Q) and (NR) values are 2 and 2, respectively, the 
curves simply follow a linear pattern after β value crosses 1.

Figure 14 represents the influence of Sc on wall concen-
tration gradient with the stretching boundary (λ) greater than 
0. The inclined parameter of the magnetic field (τ) is 90°. 
The Sc value is varied between 0.6, 0.5, 0.4, 0.3 and 0.2. 
There are two sets of curves, one with constant magnetic 
parameter (Q) value 0 and the other set with (Q) value 1. 
When (Q) value is 0, the curves follow a linear pattern after 
β value crosses 1. And when (Q) value is 1, the linearity is 
followed after β value crosses 1.5.

Fig. 12   Influence of Prandtl 
number (Pr) on heat transfer 
flux at wall

Fig. 13   Influence of Prandtl 
number (Pr) on heat transfer 
flux at wall
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Figure 15 represents the influence of Schmidt number 
on wall concentration gradient ( −��(0) ) with respect to β 
with the stretching boundary (λ) less than 0. The inclined 
parameter of the magnetic field (τ) is 90°. The Sc value is 
varied between 0.6, 0.5, 0.4, 0.3 and 0.2. There are two sets 
of curves, one with constant magnetic parameter (Q) value 
0 and the other set with (Q) value 1. When (Q) value is 0, at 
� = 0 , for all values of Sc, the wall concentration gradient 
( −��(0) ) value is infinite, while, for (Q) value 5 at � = 0 , 
for all values of Sc, the wall concentration gradient ( −��(0) ) 
value is 0. It is to note that, for all taken Scs, below � = 0 , 
the wall concentration gradient ( −��(0) ) value is either 0 or 
negative for both the (Q) values, while when β is greater than 

0 the wall concentration gradient ( −��(0) ) value is either 0 
or positive.

Figure 16 represents the influence of Stefan blowing 
parameter on axial velocity f�(�) with similarity variable (η) 
with the stretching boundary (λ) greater than 0. The inclined 
parameter of the magnetic field (τ) is 90°. The Schmidt No. 
(Sc) value is kept constant at 1. The Stefan blowing param-
eter (Λ) is varied between 0.1, 1, 5 and 100. It is noted that 
the axial velocity f�(�) decreases with an increase in a value 
of similarity variable (η). For (Q) value 0, the axial veloc-
ity f�(�) becomes zero after similarity variable (η) value 6, 
while for (Q) value 5, the axial velocity f�(�) becomes zero 
after similarity variable (η) value 8.

Fig. 14   Influence of Schmidt 
number on wall concentration 
gradient

Fig. 15   Influence of Schmidt 
number on wall concentration 
gradient
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Figure 17 represents the influence of Stefan blowing 
parameter on concentration �(�) with respect to similarity 
variable (η) with the stretching boundary (λ) greater than 0. 
The inclined parameter of the magnetic field (τ) is 90°. The 
Schmidt No. (Sc) value is kept constant at 1. The Stefan 
blowing parameter (Λ) is varied between 0.1, 1, 5 and 100. 
For both the (Q) values, the plot bears resemblance with 
reverse sigmoid function.

Figure 18 represents the influence of Prandtl number (Pr) 
on temperature �(�) with respect to similarity variable (η) 
with the stretching boundary (λ) greater than 0. The inclined 
parameter of the magnetic field (τ) is 90°. The Schmidt 
No. (Sc) value is kept constant at 2. The Stefan blowing 

parameter (Λ) is also kept constant at 5. The Pr value is 
varied between 4, 3, 2 and 1. There are two sets of curves, 
one set with constant magnetic parameter (Q) and radiation 
parameter (NR) values 0 and 0, respectively, and the other set 
with (Q) and (NR) values 4 and 0.1, respectively. In both the 
results, the plots are somewhat similar with minimalistic dif-
ference. There is a slight similarity in this plot with reverse 
sigmoid function.

Figure 19 represents the influence of Stefan blowing 
parameter on temperature �(�) with respect to similarity 
variable (η) with the stretching boundary (λ) greater than 0. 
The inclined parameter of the magnetic field (τ) is 90°. The 
Schmidt No. (Sc) value is kept constant at 2. The Prandtl 

Fig. 16   Influence of Stefan 
blowing parameter on axial 
velocity

Fig. 17   Influence of Stefan 
blowing parameter on concen-
tration
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number (Pr) is also kept constant at 1. The Stefan blow-
ing parameter (Λ) value is varied between 0.1, 1, 5 and 10. 
There are two sets of curves, one set with constant magnetic 
parameter (Q) and radiation parameter (NR) values 0 and 0, 
respectively, and the other set with (Q) and (NR) values 5 and 
0.1, respectively. In both the results, the plots are somewhat 

similar with minimalistic difference. Here, again a slight 
similarity in this plot with reverse sigmoid function is noted.

Figure 20 represents the influence of Schmidt number (Sc) 
on temperature �(�) with respect to similarity variable (η) 
with the stretching boundary (λ) greater than 0. The inclined 
parameter of the magnetic field (τ) is 90°. The Stefan blowing 
parameter (Λ) value is kept constant at 2. The Prandtl number 

Fig. 18   Influence of Prandtl 
number (Pr) on temperature

Fig. 19   Influence of Stefan 
blowing parameter on tempera-
ture
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(Pr) is also kept constant at 1. The Schmidt No. (Sc) value is 
varied between 0.1, 1, 5 and 10. There are two sets of curves, 
one set with constant magnetic parameter (Q) and radiation 
parameter (NR) values 0 and 0, respectively, and the other set 
with (Q) and (NR) values 5 and 1, respectively. In both the 
results, the plots are somewhat similar with minimalistic dif-
ference. Here, again a slight similarity in this plot with reverse 
sigmoid function is noted. Addition, we mention in Table 1 for 
different physical parameters of β.

6 � Concluding Remarks

The Newtonian fluid flow heat and mass transfer of an 
incompressible MHD Newtonian fluid over a stretching/
shrinking sheet exists for different parameters such as the 
Stefan blowing parameter, the Chandrasekhar number, 
inclined angle, the Prandtl number, the wall temperature 
parameter and the radiation parameter. The exact ana-
lytic solution of heat and mass transfer characteristics is 

obtained in terms of the incomplete gamma function. The 
main conclusion derived from the present investigation can 
be drawn as follows:

•	 The temperature increases as the Chandrasekhar num-
ber (Q) parameter increases, but it decreases as the 
Prandtl number (Pr) increases.

•	 Radiation number increases the thermal boundary-layer 
thickness.

•	 Increasing radiation parameter heat diffusion is 
favoured and the temperature increases through the 
laminar boundary layer.

•	 Physical/chemical conditions are better suited for effec-
tive cooling of the boundary-layer flows.

The present results, industrial application, Newtonian 
fluid flow due to stretching/shrinking sheet involves the 
extrusion of plastic sheets, drawing operation of plastic 
sheets.

Fig. 20   Influence of Schmidt 
number on temperature

Table 1   Expression for β for various physical parameters

Related works by other authors Fluids Value of β

Crane 1970, viscous fluid with suction/injection and without MHD, stretching 
sheet

Newtonian � = 1

Pavlov 1974, incompressible viscous fluid with MHD, stretching sheet without 
suction/ injection

Newtonian � =
√

(1 + Q)

Gupta and Gupta1977, viscous fluid with heat and mass transfer with suction/
injection, stretching sheet

Newtonian
� =

−VC+

√

V2
C
+4(1+Q)

2

Present work Newtonian f (�) = � −
1

�

{

Q sin2 (�) + �Exp(−��)
}
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