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Abstract
Living beings are subjected to many hazards during their course of life. Owing to high mortality rate, heart disease (HD) is 
among leading hazards for living being. It is world’s one of the critical disease due to its complex diagnosis and expansive 
treatment. It has predominantly affected the health care sector of developing as well as developed countries. Inadequate 
preventive measures, diagnosis shortcomings, inefficient medical support, lack of medical staff and advancements have led 
to severe impacts on developing countries. The paper exhibits state-of-the-art of various intelligent solutions for HD detec-
tion with an empirical analysis of machine learning algorithms on electrocardiogram-based arrhythmia dataset for disease 
detection. A critical investigation is being performed using eight machine learning algorithms, Support Vector Machine, 
K-Nearest Neighbors, Random Forest, Extra Tree, Bagging, Decision Tree, Linear Regression, and Adaptive Boosting, under 
imbalanced and balanced class paradigms. The performance of these algorithms is tested with four metrics namely, precision, 
recall, accuracy, and f1-score. The empirical analysis presents an interesting insight on the structure of dataset. Initially for 
binary class balancing problem majority class have more accuracy than the minority class because model’s training dataset 
is crowded with majority class tuples than minority class. The paper uses Synthetic Minority Over-sampling Technique for 
data balancing. It has not only increased the overall accuracy of the algorithm but also the individual accuracy of the classes. 
Hence, the accuracy of the minority class will not be sacrificed.
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1  Introduction

The heart is an essential organ of the human body, which 
is also known as the human’s engine room. It is a lattice of 
muscles that pumps blood into the human body or in other 
words we can say that it is the central processing area of the 
cardiovascular system [1]. The cardiovascular system is a 
complex network of blood circulation that is composed of 
blood vessels (i.e., arteries), capillaries, and veins [2]. Any 
abnormality or obstruction in healthy blood flow or blood 
circulation may lead to severe and several complexities of 

heart disorders or diseases. These heart disorders or diseases 
are commonly known as cardiovascular diseases (CVDs) and 
are one of the deadliest diseases across the world to date. 
The CVDs have consisted of various diseases such as brain 
vascular diseases, heart diseases, and blood vessel diseases 
[3]. Global Atlas on Cardiovascular Disease Prevention 
and Control of the World Health Organization (WHO) has 
quoted in their report is that CVDs are one of the foremost 
causes of disability and deaths across the globe [4].

However, several reports from WHO have indicated an 
increase in CVD worldwide, which is a very dangerous 
indication for humans. Approximately 17.5 million people 
have died due to CVDs in the year 2012 globally than from 
any other life-threatening diseases [5]. It is also quoted in 
the WHO’s report that around 17.9 million people die from 
CVDs each year which is 31% of all deaths across the world. 
Among these deaths, 85% have died from either heart attack 
or stroke [6].
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CVDs can be categorized into several types and some of 
them have been listed below [7]:

1.	 Coronary Heart Disease: This disease is caused by 
blockage or damage in the main blood vessel.

2.	 Heart Failure: In this condition heart suffers to pump 
sufficient blood.

3.	 Cardiomyopathy: It is a hereditary or acquired heart 
muscle disease.

4.	 Hypertensive Heart Disease: This disease is caused by 
high blood pressure (BP).

5.	 Ischemic Heart Disease: This disease makes heart 
arteries narrow; thus, the minimal amount of oxygen 
and blood reaches into the heart.

6.	 Valvular Heart Disease: This disease is caused by 
defects or damage in any of the heart valves.

7.	 Inflammatory Heart Disease: This disease is caused 
by bacterial or viral infections.

In the medical domain, machine learning plays an impor-
tant role in knowledge extraction and medical data analy-
sis. Its immense handling ability and diverse processing 
capabilities make it a giant player, to deal with the complex 
problem in both real-time and offline scenarios [8–11]. If 
we talk about heart disease detection, the algorithms such 
as Support Vector Machine (SVM), K-Nearest Neighbors 
(KNN), Random Forest (RF), Naive Bayes (NB), Extra Tree 
(ET), Bagging (BAG), Decision Tree (DT), Linear Regres-
sion (LR), Adaptive Boosting (ADB), Linear Discriminant 
Analysis (LDA), Convolutional Neural Network (CNN), 
Quadratic Discriminant Analysis (QDA), Multi-layer Per-
ceptron (MLP), Ensemble Classifiers, Artificial neural net-
work (ANN), Boosting, and so on have been used. Apart 
from this, various hybrid models are also been introduced 
and they have archived great success [12–60].

Accurate diagnosis and prediction are vital issues not only 
for hospitals but also for practitioners. These vital issues 
should be taken care-off while building a smart healthcare 
solution. Development in computing technologies has ena-
bled various facilities for real-time data collection and stor-
age. Thus, a huge amount of health data are collected and 
which is very useful for clinical investigations.

The principal objective of this study is:

•	 To critically analyze and summarize the state-of-the-art 
research articles on heart disease detection over ECG 
datasets.

•	 To critically investigate the empirical analysis of machine 
learning algorithms on imbalance electrocardiogram 
based arrhythmia dataset for heart disease detection.

•	 To find out the impact of class balancing on the perfor-
mance of machine learning algorithms over the imbal-
anced class paradigms.

•	 To give a machine learning-based direction toward 
robotic or smart machine-based solutions for social well-
being.

The rest of this study is as follows. Section 2 exhibits 
state-of-the-art articles present on the detection of heart dis-
eases over ECG datasets. In Sect. 3, a discussion about the 
material and methods used for preliminary study such as 
dataset description, model setup, and statistical analysis have 
been drawn. Section 4 manifests the result of the experi-
mental evaluation. The comprehensive discussion about the 
empirical analysis is conferred in Sect. 5. In the last Sect. 6, 
the concluding comments with the anticipated scope have 
been described.

2 � Related Work

The emergence of IoT encourages researchers to work in the 
healthcare domain, with massive data coverage and func-
tionalities. It also motivates the big companies to build a 
health-centric solution for the wellbeing of the human. If 
we talk about the algorithmic perspective, massive develop-
ment has been seen in the last couple of decades. From time 
to time various researchers have given the possible solu-
tion toward making the healthcare domain smart, but still, 
there is plenty of scopes are left. Thus, these scopes need 
improvements in both, design and algorithmic perspectives. 
It will not only help in building a smarter world but also for 
making the healthcare domain to new heights by enabling 
the robotics-based smarter solution.

The state-of-the-art articles on heart disease detection 
over the ECG dataset have been shown in Table 1 [12–60].

In Table 1, various state-of-the-art articles on heart dis-
ease detection over the ECG dataset have been shown. This 
table gives a quick inside of the state-of-the-art methods 
with respect to year, research objectives, used methods, 
dataset and their types, accuracy of the methods, and their 
respective references. It is clear from pieces of the litera-
ture that there are plenty of machine learning algorithms 
such as Support Vector Machine (SVM), K-Nearest Neigh-
bors (KNN), Random Forest (RF), Naive Bayes (NB), 
Extra Tree (ET), Bagging (BAG), Decision Tree (DT), 
Linear Regression (LR), Adaptive Boosting (ADB), Lin-
ear Discriminant Analysis (LDA), Convolutional Neural 
Network (CNN), Quadratic Discriminant Analysis (QDA), 
Multi-layer Perceptron (MLP), Ensemble Classifiers, Arti-
ficial neural network (ANN), Boosting, and various hybrid 
models have been used for the classification of the heart 
disease [12–60]. These methods are applied either on the 
ECG signals or numerical datasets. It is evident from the 
literature that this is an active area of research with the 
plenty of opportunities. Thus, there is still a lot of scopes 
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Table 1   The state-of-the-art on heart disease detection over the ECG dataset

Year Research objective Used method Dataset used Dataset type Methods 
accuracy 
in %

References

ECG signals Integer/real

2012 Recognition of Heart 
Failure

SVM + GA Sinus Rhythm + CHF2DB ✓ 98.79 [12]

Cardiac Health Diagnosis PCA MIT-BIH ✓ 98.11 [13]
Screening of Coronary 

Artery Disease
Fuzzy Based Approach Data of Medical Research 

Institute
✓ 84.2 [14]

Recognition of Heart 
Failure

SVM + UCMIFS Feature 
Selector

Sinus Rhythm ✓ 97.59 [15]

2013 Prediction of Coronary 
Artery Disease

Adaptive Prediction 
Model

Personal Health Record ✓ 69.22 [16]

Risk Prediction of Con-
gestive Heart Failure

CART​ BIDMC + RR Interval 
Dataset

✓ 93.35 [17]

Classification of Heart 
Disease

Nonlinear Delay Differen-
tial Equations

PhysioNet ✓ 97 [18]

Detection of Congestive 
Heart Failures

C4.5 Decision Tree BIDMC Database ✓ 99.86 [19]

2014 To improve the Heart Fail-
ure Assistant System

Machine Learning 
Approach

Cardiac Data of St. Maria 
Nuova Hospital

✓ 84.7 [20]

Detection of Congestive 
Heart Failures

KNN MIT-BIH ✓ 100 [21]

Prediction of Heart 
Disease

Fuzzy Classifier Personal ECG Data ✓ 93.34 [22]

2015 Prediction of Heart 
Disease

Firefly based Method SPECTF + UCI ✓ 82.6 [23]

Prediction of Clinical Risk Neural-inspired Learning 
Approach

Honolulu’s Heart Dataset ✓ 73.6 [24]

Sudden Death Detection 
due to Cardiac Illness

Discrete Wavelet Trans-
formation

Sinus Rhythm + MIT-BIH ✓ 98.68 [25]

Prediction of Heart 
Disease

C5.0 Decision tree UCI ✓ 93.02 [26]

2016 Prediction of Heart 
Disease

Rule-based Classifier Cleveland Dataset ✓ 86.7 [27]

Risk Prediction of Heart 
Failure

ANN + Fuzzy_AHP Cleveland Dataset ✓ 91.1 [28]

Medical Decision Support 
System

Weighted Multilayer 
Classifier

Cleveland Dataset ✓ 86.2 [29]

Sudden Death Prediction 
due to Cardiac Illness

SVM + kNN + DT Sinus Rhythm + MIT-BIH ✓ 94.7 [30]

Risk Prediction of Heart 
Failure

CPXR (log) with Proba-
bilistic Loss Function

Personal Health Record ✓ 91.4 [31]

Prediction of Heart 
Disease

ANN classifier UCI ✓ 85.31 [32]

Congestive Heart Disease 
Diagnosis System

Logistic Regression with 
Loss Function

Sinus Rhythm ✓ 97.83 [33]

Congestive Heart Disease 
Diagnosis System

Random Forest Classifier PTB + BIDMC CHF ✓ 100 [34]

Classification of Clinical 
Dataset

Neural Network Classi-
fier + Back Propagation 
Algorithm

UCI ✓ 86.66 [35]

2017 Detection of Heart Disease kNN + GA Z-Alizadeh’s Aani Dataset ✓ 93.85 [36]

Diagnosis of Coronary 
Artery Disease

SVM STDB Dataset ✓ 99.2 [37]

Prediction of Coronary 
Artery Disease

Decision Trees Approach Personal Health Record ✓ 94 [38]
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Table 1   (continued)

Year Research objective Used method Dataset used Dataset type Methods 
accuracy 
in %

References

ECG signals Integer/real

Recommendation System 
for Heart Disease 
Patients

SVM + RF + MLP POF Hospital ✓ 97.8 [39]

Detection of Congestive 
Heart Disease

Probabilistic Pattern Rec-
ognition Method

PhysioNet ✓ 98.8 [40]

Prediction of Congestive 
Heart Disease

Dual Tree-Based Discrete 
Wavelet Transformation

BIDMC CHF + MIT-BIH ✓ 99.86 [41]

Recommendation System 
for Heart Disease 
Patients

Naive 
Bayes + ANN + Least 
Square SVM

Tunstall’s ✓ 94.83 [42]

Risk Assessment of Myo-
cardial Infarction

Fuzzy Classifier UCI ✓ 90.5 [43]

2018 Prediction of Paroxysmal 
Atrial Fibrillation

Genetic Algorithm Atrial Fibrillation Dataset ✓ 87.7 [44]

Diagnosis of Chronic 
Heart Failure

Least Square SVM Personal Health Record ✓ 95.39 [45]

Prediction System for 
Heart Failure

Recurrent Neural Network Cerner’s Health Dataset ✓ 82 [46]

Recommendation system 
for Intensive care

RBF SVM + LKF SVM Personal Health Record ✓ 87.9 [47]

Recognition System for 
Cardiac Health

Evolutionary Neural 
Network

MIT-BIH ✓ 98.85 [48]

EEG Signal Identification 
System

LSTM PhysioNet ✓ 99.85 [49]

Classification of Heart 
Sound

CNN PhysioNet + UoC-murmur ✓ 84.6 [50]

Prediction of Chronic 
Heart Failure

Random Forest Personal Health Record of 
Intensive Care

✓ 82.1 [51]

Classification of Heart 
Murmurs

Deep Neural Network PhysioNet ✓ 97 [52]

Risk Prediction of Heart 
Failure

Sequential Data Modeling Personal Health Record of 
Intensive Care

✓ 66.55 [53]

2019 Prediction of Heart 
Disease

NB + KNN + SVM UCI ✓ 86.6 [54]

Prediction of Heart 
Disease

Multi-layer Perceptron 
Classifier

UCI ✓ 93.39 [55]

Prediction of Heart 
Disease

Logistic Regression UCI ✓ 86.89 [54]

Prediction of Cardiovascu-
lar Disease

ANN + SVM UCI ✓ [56]

Prediction of Cardiovascu-
lar Disease

SVM + LR + Boost-
ing + RF + KNN

UCI ✓ [57]

Detection of Heart Disease SVM + Random Over 
Sampling Method

Framingham Dataset ✓ 99 [58]

Prediction of Heart 
Disease

DT + SVM Personal Health Record ✓ 100 [59]

Prediction of Heart 
Disease

Random Forest UCI ✓ 97.56 [60]

SVM Support Vector Machine, KNN K-Nearest Neighbors, RF Random Forest, NB Naive Bayes, DT Decision Tree, LR Linear Regression, LDA 
Linear Discriminant Analysis, CNN Convolutional Neural Network, MLP Multi-layer Perceptron, LSTM Long Short-Term Memory, GA Genetic 
Algorithm, ANN Artificial Neural Networks, CART​ Classification and Regression Tree, PCA Principal Component Analysis
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to find out the more effective methods with clear interpre-
tations. Keeping this into our mind, we have presented the 
empirical examination of the state-of-the-art algorithms.

3 � Materials and Methods

This section talks about the material and methods used for 
the preliminary study. It is consisting of the three subsec-
tions which discuss dataset description, model setup, and 
statistical parameters, respectively.

3.1 � Data

For this empirical investigation, two open-source Elec-
trocardiogram (ECG) datasets have been used. The first 
dataset has been extracted from PhysioNet’s repository 
under the MIT-BIH arrhythmia database [61]. This data-
set has been recorded using the nine electrodes (E1-E9) 
mounted on various locations of the human body. The 
second dataset has been extracted from the UCI (Univer-
sity of California-Irvine) repository named Heart Disease 
Data (consist of four data repositories Cleveland, Hungary, 
Switzerland, and the VA Long Beach) which is also an 
arrhythmia dataset (Coronary Artery Disease) [62]. This 
dataset has been recorded using the thirteen parameters 
i.e., AGE, SEX, CP, TRESTBPS, CHOL, FBS, REST-
ECG, THALACH, EXANG, OLDPEAK, SLOPE, CA, and 
THAL. The first dataset (PhysioNet’s arrhythmia Dataset) 
is consists of 74,501 instances of 9 attributes whereas the 
second dataset (UCI’s Arrhythmia Dataset) contains 403 
instances of 14 attributes.

In Figs. 1 and 2, the visualization of the PhysioNet’s 
arrhythmia dataset and UCI’s arrhythmia dataset has been 
exhibited, respectively. Both the datasets have been used 
for heart disease detection purposes.

The class-wise distribution of the PhysioNet’s arrhyth-
mia dataset (based on nine attributes) and UCI’s arrhyth-
mia dataset (based on thirteen attributes) has been exhib-
ited in Tables  2 and 3, respectively. These tables are 
consisting of the class-wise classification of all the liable 
attributes based on minimum range, maximum range, 
mean and standard derivation.

In Figs. 3 and 4, the histogram of the PhysioNet’s and 
UCI’s arrhythmia dataset has been shown. This histogram 
visualization will very helpful to understand the dataset 
distribution in the form of their spread and shape over a 
real-time sample (signal/data). This information will be 
extremely beneficial for further investigation.

3.2 � Model Setup

The empirical analysis setup of machine learning algo-
rithms for the electrocardiogram-based arrhythmia dataset 
has exhibited in Fig. 5.

This critical analysis is consisting of six fundamental 
steps.

•	 In the initial step, the ECG-based arrhythmia dataset 
(from PhysioNet and UCI repositories) is supplied as 
input.

•	 In step 2, the cleaning of the dataset is performed for 
the elimination of the missing values and unusual 
objects.

•	 The class balancing using the Synthetic Minority Over-
sampling Technique (SMOTE) is performed in step 3.

•	 In the next step 4, the class balanced preprocessed data 
are fed as an input to the several machine learning algo-
rithms (i.e., SVM, KNN, RF, ET, BAG, ET, DT, LR, 
and ADB) with a tenfold class validation method.

•	 The statistical interpretation-based evaluation of the all 
used machine learning algorithms has computed in step 
5.

•	 In the last step 6, the output of the used machine learn-
ing algorithms is received.

3.2.1 � Data Balancing Using SMOTE

Class imbalance is one of the well-known and vital issues 
which may influence the performance of machine learning 
algorithms. This empirical analysis has been conducted to 
find out the impact of class imbalance on the performance 
of the various machine learning algorithms. From this 
empirical analysis, we have seen that in the binary class 
problem the majority class has more accuracy than the 
minority class because while training the model the more 
samples are from the majority class and only a small bunch 
of samples are from the minority class. Thus, there is a sig-
nificant need for an effective method that could manage the 
issue of class imbalance. In this context, an unsupervised 
technique i.e., SMOTE (Synthetic Minority Oversampling 
Technique) [63, 64] method has been used to deal with the 
class imbalance problem on the ECG-based arrhythmia 
datasets (from PhysioNet and UCI repositories).

Class balancing outcome of PhysioNet’s arrhythmia 
dataset and UCI arrhythmia dataset has been exhibited in 
Tables 4 and 5, respectively. These tables hold the class-
wise aspects of the SMOTE percentage with the total num-
ber of samples at each setting.
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3.2.2 � Hyper‑tuning of Machine Learning Algorithms

Hyper-tuning is one of the best ways to select the hyper-
parameter for machine learning algorithms. With the help 
of this, we can evaluate various hyperparameters under 
various settings to find the best-suited parameter for the 
given problem [65, 66]. Therefore, we have hyper tuned 
each machine-learning algorithm to find out the best 
parameters. These evaluated parameters have been used 
to train the machine learning models.

In Table 6, the hyperparameters with various selection 
criteria have been shown. Based on these selection criteria, 
the best hyperparameters have opted and which have been 
used in the experimental evaluation.

3.3 � Statistical Analysis

To validate the evaluation result of machine learning algo-
rithms, four statistical measures, i.e., precision, f1-score, 
recall, and accuracy, have been utilized. These statistical 
measures have played an important role in establishing the 
accuracy and suitability of machine learning algorithms 
[67]. The mathematical imputation of these statistical meas-
ures has been manifested in Eqs. 1, 2, 3 and 4, respectively.

(1)Precision =
(TP)

(TP + FP)

Fig. 1   Visualization of Physio-
Net’s arrhythmia dataset
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Fig. 2   Visualization of UCI’s 
arrhythmia dataset

Table 2   Attributes description 
of PhysioNet’s arrhythmia 
dataset

Attributes Class 1 Class 2

Range Mean Std. Dev Range Mean Std. Dev

Min Max Min Max

E1 0.139 3.078 0.794 0.214 0.117 2.508 0.529 0.143
E2 0.286 3.128 0.76 0.211 0.25 2.508 0.879 0.285
E3 0.146 4.251 1.069 0.253 0.151 3.036 0.66 0.255
E4 0.157 6.857 1.072 0.317 0.288 5.24 0.706 0.217
E5 -0.98 1 0.904 0.312 -0.98 1 0.241 0.679
E6 -0.98 1 0.905 0.311 -0.98 1 0.233 0.674
E7 0.013 0.96 0.358 0.247 0.08 0.907 0.483 0.204
E8 0.013 0.88 0.165 0.125 0.093 0.88 0.368 0.126
E9 0.013 0.973 0.071 0.07 0.027 0.973 0.307 0.314



1454	 Arabian Journal for Science and Engineering (2022) 47:1447–1469

1 3

Table 3   Attributes description 
of UCI’s arrhythmia dataset

Attributes Class 0 Class 1

Range Mean Std. Dev Range Mean Std. Dev

Min Max Min Max

AGE 35 77 56.601 7.962 29 76 52.497 9.551
SEX 0 1 0.826 0.38 0 1 0.564 0.497
CP 0 3 0.478 0.906 0 3 1.376 0.952
TRESTBPS 100 200 134.399 18.73 94 180 129.303 16.17
CHOL 131 409 251.087 49.455 126 564 242.23 53.553
FBS 0 1 0.159 0.367 0 1 0.139 0.347
RESTECG 0 2 0.449 0.541 0 2 0.594 0.505
THALACH 71 195 139.101 22.599 96 202 158.467 19.147
EXANG 0 1 0.551 0.499 0 1 0.139 0.347
OLDPEAK 0 6.2 1.586 1.3 0 4.2 0.583 0.781
SLOPE 0 2 1.167 0.561 0 2 1.594 0.594
CA 0 4 1.167 1.043 0 4 0.364 0.849
THAL 0 3 2.543 0.685 0 3 2.121 0.466

Fig. 3   Histogram representation of PhysioNet’s arrhythmia dataset
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Fig. 4   Histogram representation of UCI’s arrhythmia dataset

Fig. 5   Setup for experimental 
analysis of machine learning 
algorithms
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where TP, true positive; TN, true negatives; FP, false 
positive, and FN false negatives.

4 � Results

In the process of result finding, a critical analysis has been 
performed using eight machine learning algorithms (i.e., 
Support Vector Machine, K-Nearest Neighbors, Random 
Forest, Extra Tree, Bagging, Decision Tree, Linear Regres-
sion, and Adaptive Boosting) with a tenfold class validation 
method, and which has been shown in Fig. 6.

To understand the correlation among the attributes of the 
arrhythmia dataset of PhysioNet (contains 74,501 instances 

(2)f1 =
2 × (precision × recall)

precision + recall

(3)Recall =
(TP)

(TP + FN)

(4)Accuracy =
(TP + TN)

(TP + TN + FP + FN)
× 100%

of 9 attributes) and UCI (contains 403 instances of 14 
attributes) repositories the correlation coefficient for both 
the dataset has been calculated and shown in Figs. 7 and 8, 
respectively.

This critical investigation has been conducted into two 
parts. In the first part, a critical analysis of the hyper-
tuned result of all eight machine learning algorithms on 
ECG-based arrhythmia dataset (from PhysioNet and UCI 
repositories) has been performed. In the second part, the 
class balancing (using SMOTE) and hyper-tuning both are 
combinedly applied on the same arrhythmia dataset (from 
PhysioNet and UCI repositories), to find out the impact of 
class balancing on results. The performance evaluation of 
all algorithms has been conducted using the four valida-
tion measures i.e., accuracy, recall, f-1socre, and precision. 
This empirical investigation is aimed to find out the impact 
of class balancing on the performance of machine learning 
algorithms which will very helpful in developing a machine 
learning-based direction toward robotic or smart machine-
based solutions for social well-being.

In Tables 7, 8, 9 and 10, the performance evaluation 
result of eight machine learning algorithms under the dif-
ferent validation criteria (cross-validation policy, i.e., 1-fold, 
3-fold, 5-fold, and 10-fold) based on the four performance 

Table 4   Result of class 
imbalance problem using 
SMOTE on PhysioNet’s 
arrhythmia dataset

Dataset SMOTE Per-
centage

Class 1 Class 2 Total Instances

Instances % Instances %

ECG 0 67,570 91.09 6612 8.91 74,182
100 67,570 83.63 13,224 16.37 80,794
200 67,570 77.31 19,836 22.69 87,406
300 67,570 71.87 26,448 28.13 94,018
400 67,570 67.15 33,060 32.85 100,630
500 67,570 63.01 39,672 36.99 107,242
600 67,570 59.35 46,284 40.65 113,854
700 67,570 56.09 52,896 43.91 120,466
800 67,570 53.17 59,508 46.83 127,078
900 67,570 50.05 67,442 49.95 135,012

Table 5   Result of class 
imbalance problem using 
SMOTE on UCI’s arrhythmia 
dataset

Dataset SMOTE Per-
centage

Class 0 Class 1 Total Instances

Instances % Instances %

ECG 0 138 45.54 165 54.46 303
5 144 46.60 165 53.40 309
10 151 47.78 165 52.22 316
15 158 48.92 165 51.08 323
20 165 50 165 50 330
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evaluators (i.e., precision, f1-score, recall, accuracy) for 
ECG-based arrhythmia dataset (from PhysioNet and UCI 
repositories) has been presented.

From this empirical analysis is clear that in the binary 
class balancing problem, the majority class has archived 
more accuracy than the minority class, because while train-
ing the model the more samples are from the majority class 
and only a small bunch of samples are from the minority 
class. But after the class balancing using the SMOTE has 
not only increases the overall accuracy of the algorithm but 
also the individual accuracy of the classes. Therefore, the 
accuracy of the minority class will not be sacrificed.

Table 7 shows the hyper-tuned results of all eight machine 
learning algorithms on the PhysioNet’s ECG-based arrhyth-
mia dataset, whereas Table 8 shows the hyper-tuned results 
of all eight machine learning algorithms after class balanc-
ing. Similarly, Table 9 shows the hyper-tuned results of all 
eight machine learning algorithms on UCI’s ECG-based 
arrhythmia dataset, whereas Table 10 shows the hyper-tuned 
results of all eight machine learning algorithms after class 
balancing.

Table 6   Hyper-parameter 
selection

Prediction model Hyperparameter Parameter selection Best hyper-
parameter 
used

SVM kernel Rbf rbf
C [0.1, 1, 100,200, 1000] 200
Gamma [0.0001, 0.001,0.01 0.005, 0.1, 1, 3, 5] 0.01
Epsilon [0.0001, 0.001, 0.01, 0.05, 0.1, 0.5, 1, 5, 10] 0.001

KNN n_neighbors [1, 2, 5, 7, 10, 15, 18, 21] 2
metric [euclidean, manhattan, minkowski] minkowski
weight [uniform, distance] uniform

RF bootstrap [True, False] True
max_depth [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, None] 110
max_features [auto, sqrt] auto
min_samples_leaf [1, 2, 3, 4] 3
min_samples_split [2, 5, 10] 5
n_estimators [20, 40, 60, 80, 100, 120, 140, 160, 180, 200] 40

ET max_depth [1, 2, 3, None] 3
criterion [gini, entropy] gini
min_samples_leaf [1, 3, 5, 7, 9] 7
max_features [1, 3, 5, 7, 9] 7

Bagging max_features [auto, sqrt] auto
n_estimators [20, 40, 60, 80, 100, 120, 140, 160, 180, 200] 60
bootstrap [True, False] False

ADB n_estimators [20, 40, 60, 80, 100, 120, 140, 160, 180, 200] 40
DT max_depth [1,2,3, None] 3

criterion [gini, entropy] gini
min_samples_leaf [1, 3, 5, 7, 9] 5
max_features [1, 3, 5, 7, 9] 5

LR dual [True, False] False
max_iter [100,110,120,130,140] 110
C [1,1.5,2,2.5,3,3.5] 3

Best 
Classifica�on 

Model

SVM
KNN

RF

BAG

ETDT

LR

ADB
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Fig. 6   Machine learning a quick look
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Fig. 7   Correlation coefficient matrix for PhysioNet’s arrhythmia dataset

Fig. 8   Correlation coefficient matrix for UCI’s arrhythmia dataset
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5 � Discussion

Class-wise performance result of eight machine learn-
ing algorithms (Hyper-tuned vs. Hyper-tuned After Class 
Balancing) under the different validation criteria (cross-
validation policy, i.e., 1-fold, 3-fold, 5-fold, and 10-fold) 
based on the four performance evaluators (i.e., precision, 
f1-score, recall, accuracy) for ECG-based arrhythmia dataset 

(from PhysioNet and UCI repositories) has been presented 
in Figs. 9, 10, 11 and 12.

Figure 9 shows the class 1 result of eight machine learn-
ing algorithms (Hyper-tuned vs. Hyper-tuned After Class 
Balancing) on the PhysioNet’s ECG-based arrhythmia data-
set, whereas Fig. 10 shows the class 2 result of eight machine 
learning algorithms (Hyper-tuned vs. Hyper-tuned After 
Class Balancing) on the PhysioNet’s ECG-based arrhyth-
mia dataset.

Fig. 9   Performance result of 
Class 1 based on hyper-tuned 
versus hyper-tuned after class 
balancing over PhysioNet’s 
arrhythmia dataset
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Similarly, Fig. 11 shows the class 0 result of eight machine 
learning algorithms (Hyper-tuned vs. Hyper-tuned After Class 
Balancing) on UCI’s ECG-based arrhythmia dataset, whereas 
Fig. 12 shows the class 1 result of eight machine learning algo-
rithms (Hyper-tuned vs. Hyper-tuned After Class Balancing) 
on UCI’s ECG-based arrhythmia dataset.

In Fig. 13, the average accuracy with a tenfold cross-
validation policy of eight machine learning algorithms 

(Hyper-tuned vs. Hyper-tuned After Class Balancing) over 
the ECG-based arrhythmia dataset of PhysioNet and UCI 
has been presented.

Fig. 10   Performance result of 
Class 2 based on hyper-tuned 
versus hyper-tuned after class 
balancing over PhysioNet’s 
arrhythmia dataset
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6 � Conclusion

The growing rate of heart illnesses has become a serious 
matter of concern for humans across the globe. This con-
cern got the attention of researchers to reduce the mortal-
ity and morbidity rate of heart diseases across the globe. 
From time to time various researchers have given their 
algorithmic solutions toward the heart data analysis. These 

algorithmic solutions are playing a vital role not only in 
building the smart robotic solution but also in minimizing 
the impact of the diseases by effective decision making. 
This empirical investigation is aimed to critically analyze 
and summarize state-of-the-art articles on heart disease 
detection. Apart from this, we have also performed an 
empirical analysis of machine learning algorithms using 
an electrocardiogram dataset to find out the impact of 
class balancing on the performance of machine learning 

Fig. 11   Performance result 
of Class 0 based hyper-tuned 
versus hyper-tuned after class 
balancing over UCI’s arrhyth-
mia dataset
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algorithms, which will give a machine learning-based 
direction toward robotic or smart machine-based solutions. 
From this experimental analysis is clear that in the binary 
class balancing problem, the majority class has archived 
more accuracy than the minority class because, while 
training the model the more samples are from the majority 
and only a small bunch of samples are from the minority 
class. But after the class balancing using the Synthetic 
Minority Over-sampling Technique (SMOTE) has not only 
increases the overall accuracy of the algorithm but also the 

individual accuracy of the classes. Therefore, the accuracy 
of the minority class will not be sacrificed. Thus, we can 
say that class imbalance is one of the vital issues that have 
to take care of before making medical solutions where are 
things depend on the accuracy of the algorithm.

In the future, this critical analysis will further be 
extended with the algorithmic and data perspective.

Fig. 12   Performance result of 
Class 1 based on hyper-tuned 
versus hyper-tuned after class 
balancing over UCI’s arrhyth-
mia dataset
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