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Abstract
Vibration analysis is an effective approach to evaluate hob wear status and diagnose hob faults. However, the extraction 
of vibration signal features is susceptible to noise interference. To solve this problem, a method combining grey relational 
analysis (GRA) and variational mode decomposition (VMD), named GVMD, is proposed in this paper. In our method, the 
mode number K, the most important parameter of VMD, can be adaptively determined by GRA. After VMD decomposi-
tion, GRA is again used to distinguish noise-dominant modes and signal-dominant modes, in which noise-dominant modes 
are processed by soft thresholding method. Then, the processed noise-dominant modes and signal-dominant modes are 
reconstructed to obtain the denoised signal, and signal features can be accurately extracted. In experiments, simulation 
signals, hob wear vibration signals and hob broken tooth vibration signals are used to evaluate performance of GVMD and 
other methods. The results demonstrate that GVMD achieves better results than other methods. GVMD can eliminate noise 
interference and effectively extract signal features.

Keywords  Hob vibration signal · Denoising · Feature extraction · VMD · GRA​

1  Introduction

Because of the sensitivity of vibration signals, time–fre-
quency analysis of mechanical vibration signals has become 
a successful technique [1]. The discontinuity of hob teeth 
causes inevitable vibration in hobbing. Therefore, vibration 
analysis is an effective approach to evaluate hob wear status 
and diagnose hob faults. However, during the acquisition 
process, vibration signals are easily contaminated by noise, 
which interferes with the extraction of signal features [2–4]. 
Thus, denoising is necessary for signal feature extraction.

Mechanical vibration signals are non-stationary [5]. 
For such signals, traditional wavelet-based methods have 
achieved good results [6–8]. However, the selection of 
wavelet base function has an important impact on wavelet-
based methods [9]. After wavelet-based methods, Huang 
[10] proposed a new signal decomposition method: empiri-
cal mode decomposition (EMD). Lots of researchers have 
explored its application in practice [11–13]. But EMD has 

the problem of mode mixing. To suppress mode mixing, 
Wu and Huang [14] improved EMD and proposed ensemble 
empirical mode decomposition (EEMD). EEMD has been 
widely used in noise removing and feature recognition, such 
as in literatures [15–17]. Nevertheless, EMD and EEMD are 
both empirical algorithms and lack a complete mathematical 
theory [18]. In 2014, Dragomiretskiy et al. [19] proposed 
variational mode decomposition (VMD) with the rigorous 
mathematical theory. VMD is an adaptive, quasi-orthogonal 
and completely non-recursive decomposition method for 
non-stationary signal. It transforms signal decomposition 
into a variational solution problem and decomposes a signal 
into a series of modes with limited bandwidth and centre fre-
quency [20–22]. Previous studies have already indicated that 
VMD has better decomposition effect and stronger robust-
ness than EMD and EEMD [20, 23]. In recent years, the 
application of VMD in signal denoising and signal feature 
extraction has become a research hotspot. In these studies, 
researchers mainly focus on two core issues. (1) Determina-
tion of the mode number K. K is the most important param-
eter of VMD. (2) Selection and processing of modes after 
VMD decomposition. In literature [24], VMD and wavelet 
threshold were combined for denoising and baseline drift 
removal of MEMS hydrophone signals. K was determined 
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to be 7 according to a priori test. Correlation coefficients 
between all modes and the original signal were calculated. 
Then, the modes were selected and processed to obtain the 
denoised signal according to the correlation coefficients. In 
literature [25], K was fixed at 12 according to a priori test. 
After VMD decomposition, the soft thresholding method 
was used to denoise surface electromyography signals. In 
literatures [26–28], K was determined according to the cen-
tre frequency observation method or the researcher’s experi-
ence. Both methods were empirical. In literature [29], K was 
set to be the same as the number of components of EMD. 
In addition, in literatures [24, 30, 31], the correlation coef-
ficient, as a classical method, was applied to the selection of 
modes after VMD decomposition. Through the above review 
of the literatures related to VMD, we can find that: (1) most 
of the existing studies determine K by the empirical method 
or the priori test method. However, the empirical method 
will make the determination of K interfered with human fac-
tors. The priori test method has limitations and is not neces-
sarily applicable to other types of signals. For literature [29], 
there is no evidence that the number of EMD components 
is suitable for VMD. (2) Like the applications of EMD and 
EEMD, many researchers apply the correlation coefficient 
method to VMD to select modes. But the criteria for judging 
the correlation based on the correlation coefficient are differ-
ent, which makes the selection result subjective.

In this paper, grey relational analysis (GRA) is applied 
to VMD for the first time to solve the determination of K 
and the selection of modes. GRA is one of the core con-
tents of the grey theory which is proposed by Deng [32, 
33]. GRA distinguishes the correlation between sequences 
according to the geometric shape of the data sequence [34]. 
Through GRA, the factor sequences that are strongly associ-
ated with the target sequence can be selected from all factor 
sequences. In the field of mechanical engineering, GRA was 
mostly used to optimize the production process. In literature 
[35], the application of GRA realized the optimal selection 
of surface inclination angle and tool’s overhang to mini-
mize the vibrations and cutting forces during precise ball 
end milling of hardened steel. Literature [36] used GRA to 
solve the complex correlation between multiple parameters 
and then optimized the cutting speed, feed speed and cutting 
depth of milling. In literature [37], GRA was used to opti-
mize the key parameters of electrochemical machining. In 
literature [38], researchers used GRA to evaluate the risk of 
lathe machining. In addition, GRA was also widely applied 
to other fields, such as energy efficiency assessment [39–41], 
structural optimization design [42, 43] and image denoising 
[34]. From the above reviews, it can be found that there is no 
research on applying GRA to signal processing.

In this paper, GRA and VMD are combined and named 
GVMD. The original signal is first decomposed multiple 

times by VMD with different K. Then, the modes obtained 
by each decomposition are reconstructed to obtain multi-
ple reconstructed signals corresponding to the different 
K. GRA is used to analyze the correlation between these 
reconstructed signals and the original signal. The K cor-
responding to the reconstructed signal that has the strong-
est correlation with the original signal is considered to be 
the optimal K. After VMD decomposition, GRA is used 
again to select noise-dominant modes. These noise-dominant 
modes are processed by the soft thresholding method and 
then reconstructed with other modes to obtain the denoised 
signal. Finally, signal features can be accurately extracted 
from the denoised signal.

The rest of the paper is organized as follows. Section 2 
briefly introduces the principles of VMD and GRA. Sec-
tion 3 describes the steps of the proposed method GVMD. 
Then, simulation signals are used to verify the effectiveness. 
Section 4 analyzes the application of GVMD in engineering, 
including hob wear features extraction and hob broken tooth 
features extraction. Finally, conclusions are given in Sect. 5.

2 � Theoretical Basis of VMD and Grey 
Relational Analysis

2.1 � VMD

VMD is an adaptive signal decomposition method. It decom-
poses a signal into a specific number of modes uk by con-
structing and solving a variational problem. Each mode is 
compact around a centre frequency �k . The detailed descrip-
tion of VMD can be found in [19]. Only the main concepts 
of VMD are given here. The flowchart of VMD is shown 
as in Fig. 1.

(1)	 To determine uk and �k , a constrained variational prob-
lem is first constructed as shown in Eq. (1).

	   where 
{
uk
}
 is the k th mode. 

{
�k

}
 is the k th centre 

frequency. �t is the partial derivative of t  . �(t) is the 
unit impulse function. ∗ represents convolution. f  is 
the original signal.

(2)	 The introduction of the quadratic penalty term � and 
Largrangian multipliers � makes Eq. (1) an uncon-
strained variational problem shown as Eq. (2).
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(3)	 Initialize 
{
û1
k

}
 , 
{
�1
k

}
 , 𝜆̂1 , and n = 0 . Then, uk and �k are 

updated, respectively, by Eqs. (3) and (4).

(4)	 The Largrangian multiplier 𝜆̂ is also renewed by Eq. (5) 
after the update of modes and centre frequencies.

	   where � is the tolerance parameter of noise.
(5)	 Iteration is stopped and K modes are finally obtained 

until the Eq. (6) is satisfied.
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where � is the given discriminant accuracy.

2.2 � Grey Relational Analysis

GRA is used to analyze the correlation between different 
sequences. In practical applications, grey relational degree is 
calculated as the typical parameter of GRA. By comparing 
grey relational degrees, the degree of influence of different 
factor sequences on the target sequence can be evaluated. The 
following is the process of GRA. Figure 2 shows the flowchart 
of GRA.

(1)	 Represent the sequence to be calculated as si.

	   when i = 0,s0 represents the target sequence; 
i = 1, 2,⋯ , si represents factor sequences. n represents 
the element in the sequence, n = 1, 2,⋯ , N.

(2)	 Original sequences are subjected to polarity unification 
and averaging to make sequences comparable. Corre-
sponding sequences obtained are marked as s(0)

i
 and s(1)

i

.

	   where si(0)(n) and si(1)(n) are the n th element in the 
sequences si(0) and si(1).

(7)si =
(
si(1), si(2),⋯ , si(n),⋯ , si(N)

)

(8)s
(0)

i
(n) = si(n) +

|||min
(
si(n)

)|||

(9)s
(1)

i
(n) =

s
(0)

i
(n)

1

N

∑N

n=1
s
(0)

i
(n)

Fig. 1   The flowchart of VMD

Fig. 2   The flowchart of GRA​
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(3)	 Calculate grey relational coefficient sequence �i 
between the target sequence and factor sequences.

	   where �i is the grey relational coefficient sequence 
between the i  th factor sequence and the target 
sequence, i = 1, 2,⋯ . �i(n) is the n th element in the 
sequence �i . � represents the resolution coefficient, usu-
ally � = 0.5.

(4)	 Finally, calculate grey relational degrees between the 
target sequence and factor sequences.

in Eq.  (11) i = 1,2,⋯ , �i represents the grey relational 
degree between the i th factor sequence and the target 
sequence, �i ∈ [0,1] . � represents the weight coefficient, usu-
ally � = 1.

3 � Proposed Method GVMD

A signal containing noise is decomposed to obtain several 
modes. These modes can be divided into two categories: noise-
dominant modes and signal-dominant modes. Noise-dominant 
modes should be selected and processed first. Then, the pro-
cessed noise-dominant modes and signal-dominant modes 
are reconstructed to obtain the denoised signal. In this paper, 
GVMD is proposed to solve two key problems in the process 
of signal denoising. (1) Determination of the mode number K 
in VMD. (2) Selection of noise-dominant modes.

In this and subsequent sections, the performance of GVMD 
will be compared with other methods. These methods include 
(1) VMD-AllST [25]: after VMD decomposition, all modes 
are processed by soft thresholding method. (2) VMD-CorST 
[24]: after VMD decomposition, the modes are selected by 

(10)
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correlation coefficient method and then processed by soft 
thresholding method. (3) EEMD-AllST [17]: after EEMD 
decomposition, all modes are processed by soft thresholding 
method. (4) Wavelet-ST: classical wavelet soft thresholding 
method.

3.1 � Determination of the Mode Number K in VMD

The mode number K is the most important parameter in 
VMD, which greatly affects the performance of VMD. Too 
few modes will lead to incomplete signal decomposition, while 
too many modes will cause additional modes to be introduced 
into the decomposition result. The main steps of GVMD to 
determine K are as follows.

(1)	 Since the mode number of EMD is self-adaptive, the 
original signal is first decomposed by EMD to obtain 
the mode number K’.

(2)	 [K’ − 3, K’ + 3] is taken as the range of the mode num-
ber K for VMD. The original signal is decomposed 
multiple times with different K.

(3)	 The modes of each decomposition are reconstructed to 
obtain the reconstructed signal, respectively.

(4)	 Grey relational degrees are calculated between the 
original signal and the reconstructed signals by GRA, 
respectively. The K corresponding to the largest grey 
relational degree is selected as the optimal K.

It should be noted that other parameters in VMD except K 
are generally set according to reference [19].

A simulation signal is used to verify the determination 
method of K. In rotating machinery, the pure vibration signal 
mainly contains periodic impulse components and harmonic 
components. The periodic impulse component has the feature 
of short duration in time domain and wide bandwidth in fre-
quency domain, while the harmonic component has the feature 
of long duration in time domain and narrow bandwidth in fre-
quency domain [21]. Therefore, in the frequency domain, the 
periodic impulse component appears as a frequency group, 
while the harmonic component appears as a single frequency.

(12)
⎧⎪⎨⎪⎩

s1 = 3e−�t sin
�
2�fn1t

�
+ 3e−�t sin

�
2�fn2t

�
+ 3e−�t sin

�
2�fn3t

�
s2 = sin

�
2�frt

�
+ 1

s3 = 0.3 sin
�
2�f1t

�
+ 0.3 sin

�
2�f2t

�
+ 0.3 sin

�
2�f3t

�
+ 0.3 sin

�
2�f4t

�
s = s1 × s2 + s3

Table 1   Grey relational degree 
of each VMD decomposition

K 5 6 7 8 9 10 11

Grey relational degree 0.8827 0.8417 0.9004 0.8995 0.8704 0.8641 0.8359
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In Eq. (12), s1 represents three periodic impulse compo-
nents; � = 100 is the decay factor; fn1 = 250 Hz , fn2 = 350 Hz

, fn3 = 450 Hz are resonant frequencies. s2 represents the 
rotation component; fr = 20 Hz is the rotation frequency. s3 
represents four harmonic components; their frequencies are 
f1 = 50 Hz , f2 = 100 Hz , f3 = 150 Hz , f4 = 200 Hz . s rep-
resents the combined signal. s1 × s2 represents modulation.

The EMD mode number is K� = 8 . Therefore, the range 
of the mode number K in VMD is [5, 11]. The grey relational 
degree of each VMD decomposition is calculated according 
to the above steps, as shown in Table 1. It can be seen that 
K = 7 corresponds to the maximum grey relational degree. 
Finally, it can be determined that the simulation signal s should 
be divided into 7 modes. These 7 modes in time domain and 
in frequency domain are shown in Fig. 3. As a comparison, 
Fig. 4 displays the VMD decomposition when K = K’ , which 
refers to reference [29]. Generally speaking, if there is no over-
decomposition or under-decomposition, the decomposition 

result can be considered to be ideal. Over-decomposition 
means that a frequency component is decomposed into two 
modes. On the contrary, under-decomposition means that two 
frequency components appear in the same mode. In Fig. 3, 
each mode contains only one frequency component and all 
frequency components in the simulation signal can be accu-
rately obtained. But there is over-decomposition in Fig. 4. 
fn2 - frequency group is decomposed into mode u6 and mode 
u7 . The results confirm the effectiveness of using GVMD to 
determine K.

3.2 � Selection of Noise‑Dominant Modes

After decomposing the original signal into K modes, 
GVMD is used to identify the noise-dominant modes. The 
highest frequency mode is considered as the mode with 
the most noise, i.e. the Kth mode uK [17, 44]. Therefore, 
grey relational degrees between uK and other modes can 

Fig. 3   K determined by proposed method
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be calculated. The stronger the correlation with uK means 
the higher the noise level of the mode. The main steps of 
GVMD to select noise-dominant modes are as follows.

(1)	 Calculate grey relational degrees between the last mode 
uK and other modes.

(2)	 u
K

 and the modes with grey relational degrees greater 
than their average are selected as noise-dominant 
modes. The remaining modes are considered to be 
signal-dominant modes.

(3)	 The noise-dominant modes are processed by soft 
thresholding method to remove noise components while 
retaining useful information, as shown in Eq. (13).

(4)	 The processed noise-dominant modes and the signal-
dominant modes are reconstructed to gain the denoised 
signal. Then, signal features can be extracted.

where und(t) and und(t) represent the noise-dominant mode 
and processed noise-dominant mode, respectively. sign(⋅) 
represents the symbolic function. T is the thresholding value, 
T = �

√
2 lnN , � = median

(||und(t)||
)
∕0.6725 , N is the length 

of und(t).
Noise is added to the simulation signal constructed in 

Sect. 3.1 to obtain the noisy simulation signal. The noise 
level of the signal is quantitatively evaluated by signal-to-
noise ratio ( SNR ). The higher SNR means the lower noise 
level of the signal. SNRin represents SNR of the input sig-
nal and SNRout represents SNR the output signal, i.e. the 

(13)

und(t) =

{
sign

(
und(t)

)(||und(t)|| − T
) ||und(t)|| ≥ T

0 ||und(t)|| < T

Fig. 4   K equal to EMD mode number
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denoised signal. Their calculation methods are shown as 
Eqs. (14) and (15).

where xp represents the pure signal. xn represents the 
noisy signal. xd represents the denoised signal.

SNRin is set to 0  dB in this case. Through GVMD, 
K = 10 is determined. The grey relational degrees of 
modes are calculated as shown in Table 2. u6 , u7,u8,u9,u10 

(14)SNRin = 10 log

� ∑N

i=1
xp(i)

2

∑N

i=1

�
xn(i) − xp(i)

�2
�

(15)SNRout = 10 log

� ∑N

i=1
xp(i)

2

∑N

i=1

�
xd(i) − xp(i)

�2
�

are selected as noise-dominant modes. The performance 
of GVMD is compared with the competitive methods. 
Figure 5 shows the pure signal, the noisy signal and the 
denoised signals in the time domain. GVMD achieves the 
highest SNRout , reaching 4.1143 dB. Because the other four 
methods cause the loss of the pure signal. The SNRout of 
these four methods are lower than that of GVMD. Further-
more, the signals in the frequency domain are displayed in 
Fig. 6. The frequency domain distribution conforms to the 
conclusions obtained from the time domain waveforms. 
While removing noise components, GVMD completely 
retains the frequency components of the pure signal. But 
the competitive methods cause the loss of some frequency 
components.

Table 2   Grey relational degrees of modes

Modes u
1

u
2

u
3

u
4

u
5

u
6

u
7

u
8

u
9

Grey relational degree with u
10

0.7889 0.7714 0.7586 0.7662 0.7888 0.8525 0.8147 0.8559 0.8414

Fig. 5   Simulation signal in time domain
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4 � Engineering Application Analysis

In this study, two kinds of experiments were carried out 
to collect vibration signals: hob wear experiment and hob 
broken tooth experiment.

The focus of this paper is to denoise the collected vibra-
tion signals and extract effective features. Next, the proposed 
method GVMD will be applied to the collected vibration sig-
nals. Its performance will be compared with the competitive 
methods. Evaluation indicators for these methods include: 
signal waveforms, SNR , and frequency components.

It should be pointed out that because pure components 
of the real signal cannot be obtained, SNR of the real signal 
is an estimated value, unlike the simulation signal. How-
ever, this estimate of SNR is still significant to compare the 
denoising effect of different methods on the real signal [3]. 
Equation (16) gives the calculation of SNR of the real signal.

where x(i) is the original signal. x̂(i) is the denoised 
signal.

4.1 � Hob Wear Features Extraction

To evaluate the hob wear status, vibration signals of the 
entire life cycle of the hob in actual production were col-
lected. A total of 3692 workpieces were machined in this 
life cycle. The scene of the hob wear experiment is shown 
in Fig. 7. The experimental equipment mainly included a 
dry-cutting hobbing machine, an acceleration sensor and a 
data recorder. Tables 3 and 4, respectively, list equipment 
models and experimental conditions.

Three samples are selected for analysis from the front, 
middle and back segments of the 3692 sets of data, which 

(16)SNR = 10 log

� ∑N

i=1
x(i)2

∑N

i=1
(x(i) − x̂(i))2

�
Fig. 6   Simulation signal in frequency domain
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are marked as Sample-F, Sample-M, Sample-B. According 
to GVMD, the mode number K and noise-dominant modes 
of the three samples can be determined, which are listed in 
Table 5. The noise-dominant modes are processed accord-
ing to Eq. (13) and then reconstructed with other modes to 
obtain the denoised signal. The original signal and denoised 
signals are shown in Fig. 8. Comparing the denoising results, 
it is obvious that time-domain waveforms of GVMD are the 

closest to original signals. Moreover, these waveforms of 
GVMD are smoother than original signals. GVMD ensures 
the integrity of the original signal components as much as 
possible while reducing noise. The highest SNR achieved 
by GVMD in the three sample signals strongly proves this 
point. In comparison, the performance of other methods is 
significantly worse than GVMD. VMD-CorST and Wavelet-
ST cause loss of original signal components. This phenome-
non is particularly serious in VMD-AllST and EEMD-AllST. 
The waveforms of VMD-AllST and EEMD-AllST are very 
sparse and have small amplitude. Accurate denoising results 
and comparative analysis must be further explored in the 
frequency domain.

In this experiment, the rotation speed of the hob spindle 
is 680 r/min, so the rotation frequency is 11.3 Hz. When the 
hob meshes with the gear, a periodic cutting force acts on the 
hob along the axis direction. This will generate the meshing 
frequency ( fm ), which is determined by the rotation speed of 
the hob spindle and the number of hob heads. Furthermore, 
the existence of hob grooves causes intermittent cutting of 
the hob, so a periodic cutting force acts on the hob along 
the tangential direction. This will generate the hobbing fre-
quency ( fh ), which is determined by the rotation speed of the 
hob spindle and the number of hob grooves. fm and fh can be 
calculated by Eqs. (17) and (18), respectively.

where n is the rotation speed of the hob spindle. zh is the 
number of hob heads. zg is the number of hob grooves. From 
the data in Table 4, it can be calculated that fm = 22.7 Hz, 
fh = 158.7 Hz.

In hobbing, the amplitude of the rotation frequency is 
much smaller than that of fm and fh . In the frequency domain 
analysis of this section and the next section, the rotation 

(17)fm =
n × zh

60

(18)fh =
n × zg

60

Fig. 7   Hob wear experiment Hobbing machine

Data recorder

Hob Gear

Acceleration senor

Table 3   The model of the equipment

Equipment Model

Dry-cutting hobbing machine CHMTI YDZ3126CNC-CDR
PCB acceleration sensor 352C34
PCB signal conditioner 480C02
HIOKI data recorder 8861–50
PCB cables 003C20/003D20

Table 4   Experimental conditions

Processing parameter Value

Modulus 3.5
Number of hob heads 2
Number of hob grooves 14
Diameter of hob 80 mm
Length of hob 180 mm
Rotation speed 680 r/min
Sampling frequency 10,000 Hz

Table 5   Mode number K and noise-dominant modes in hob wear 
experiment

Sample-F Sample-M Sample-B

K 14 11 9
Noise-

dominant 
modes

u
5
,u

7
,u

8
,u

9
,u

10

,u
11

,u
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frequency will not be marked. fm and fh are frequencies 
specific to hobbing. Therefore, fm and fh as well as their 
harmonics ( 2fm, 3fm,… ;2fh, 3fh,… ) will be analyzed as the 
feature frequencies of the hob. Other frequencies that have 
nothing to do with the rotation frequency, fm and fh are con-
sidered noise frequencies.

Figure 9 shows the envelope spectra of the three sample 
signals before and after denoising. It can be observed that 
in envelope spectra of original signals, feature frequencies 
and noise frequencies are mixed together. Feature frequen-
cies cannot be effectively extracted. According to Fig. 9, 

(a)

(b)

Fig. 8   Denoised signal waveforms in hob wear experiment: a Sample-F b Sample-M c Sample-B
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performance of different methods is evaluated as follows. 
(1) After denoising by GVMD, noise frequencies in enve-
lope spectra of the three sample signals have been removed 
and feature frequencies have been effectively retained. In 
addition, modulation sidebands are more obvious, indicat-
ing that there are steady-type faults in the hob spindle. (2) 
VMD-AllST and EEMD-AllST over-process the original 
signals, resulting in lower frequency amplitude than that 
of the other methods. Thus, feature frequencies cannot be 
obtained obviously. (3) In VMD-CorST, fm-related frequen-
cies are extracted. But fh-related frequencies are not eas-
ily obtained. (4) For Sample-F and Sample-B, fm-related 
frequencies and fh-related frequencies can be obtained in 
Wavelet-ST. But for Sample-M, fm-related frequencies are 
not obvious. Overall, the frequency amplitude of Wavelet-ST 
is smaller than that of GVMD.

4.2 � Hob Broken Tooth Features Extraction

A broken tooth hob was used for machining experiment. 
The equipment of this experiment mainly included: a broken 
hob, a dry-cutting hobbing machine, an acceleration sen-
sor and a data recorder, as shown in Fig. 10. The important 
parameters of the hob and sampling frequency are shown in 
Table 6. Vibration signals were collected under three dif-
ferent working conditions. Table 7 shows the details of the 
working conditions.

Next, the mode number K and noise-dominant modes 
under the three working conditions are calculated accord-
ing to GVMD, which are listed in Table 8. Figure 11 displays 
denoised signal waveforms by different methods. Obviously, 
the denoising effect of VMD-AllST and EEMD-AllST is 
very poor. These two methods seriously over-process the 
original signals, causing the loss of a large amount of origi-
nal signal components. Moreover, these two methods sig-
nificantly reduce the amplitude of the signals. These factors 
cause the SNR of VMD-AllST and EEMD-AllST to be much 
lower than that of other methods. VMD-CorST causes the 
loss of a part of original signal components. In condition 1 
and condition 2, the SNR of VMD-CorST is acceptable. But 
in condition 3, the SNR is not good. GVMD and Wavelet-ST 
are the two most effective methods. But overall, the time-
domain waveform of GVMD is smoother than that of Wave-
let-ST. Moreover, the SNR of GVMD is also higher than that 
of Wavelet-ST in all three conditions. Furthermore, envelope 
spectra of various methods will be further analyzed.

The feature frequency of the broken teeth hob needs to be 
determined first. The absence of hob teeth results in a change 
in the frequency of the cutting force, which produces the 
feature frequency of the broken teeth hob ( fb ). The calcula-
tion of fb is shown in Eq. (19).

(19)fb =
n × (zg − zb)

60

(c)

Fig. 8   (continued)
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(a)

(b)

Fig. 9   Denoised signal envelope spectra in hob wear experiment: a Sample-F b Sample-M c Sample-B
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where n is the rotation speed of the hob. zg is the number 
of hob grooves. zb is the number of broken teeth, zb = 1 in 
this experiment. fb and its harmonics ( 2fb,3fb,⋯ ) should be 
extracted as feature frequencies in envelope spectra. Accord-
ing to the Sect. 4.1, there is no doubt that the meshing fre-
quency ( fm ) and its harmonics ( 2fm,3fm,⋯ ) should also be 
retained in envelope spectra as feature frequencies. Table 9 
gives calculation results of fm and fb under the three work-
ing conditions.

(c)

Fig. 9   (continued)

Fig. 10   Hob broken tooth experiment

Table 6   Parameters of the hob and sampling frequency

Parameter Value

Modulus 3
Number of hob heads 3
Number of hob grooves 17
Sampling frequency 10,000 Hz

Table 7   Three different working conditions

Condition 1 Condition 2 Condition 3

Rotational speed (r/min) 690 690 730
Feed speed (mm/r) 1 2 1

Table 8   Mode number K and noise-dominant modes in hob broken 
tooth experiment

Condition 1 Condition 2 Condition 3

K 9 10 14
Noise-domi-

nant modes
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Envelope spectra before and after denoising under the 
three working conditions are shown in Fig. 12. In envelope 
spectra of original signals, feature frequencies and noise 

frequencies coexist. After comparing and analyzing the 
effects of different methods, we summarize as follows. (1) 
VMD-AllST and EEMD-AllST seriously over-process origi-
nal signals, causing their frequency amplitude to be much 
lower than that of other methods. The feature frequencies are 

(a)

(b)

Fig. 11   Denoised signal waveforms in hob broken tooth experiment: a Condition 1 b Condition 2 c Condition 3
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buried in other frequencies. (2) In VMD-CorST, fm-related 
frequencies are extracted. By comparison, fb-related fre-
quencies are less obvious. (3) In Wavelet-ST, the feature 
frequencies are effectively extracted. But noise frequencies 
are not completely removed. (4) Overall, the performance of 
GVMD is better than other methods. Not only noise frequen-
cies are completely removed, but feature frequencies are also 
effectively extracted.

5 � Conclusion

In engineering, the feature extraction of the vibration signal 
is susceptible to noise interference. This paper proposes a 
method combining GRA and VMD, named GVMD, to solve 

this problem. GRA is used to determine the mode number 
K which is an important parameter in VMD. K can be adap-
tively determined by GRA, which overcomes shortcomings 
of traditional methods that are easily affected by human fac-
tors. After VMD decomposition, GRA is used to analyze the 
correlation between the highest frequency mode and other 
modes to identify noise-dominant modes and signal-domi-
nant modes. Finally, noise-dominant modes are processed 
and reconstructed with other modes to obtain the denoised 
signal.

The performance of GVMD has been evaluated and com-
pared with other methods (VMD-AllST, VMD-CorST, Wave-
let-ST, EEMD-AllST). In the analysis of simulation signals, 
GVMD determines the mode number K effectively. Compared 
with other methods, GVMD completely retains the frequency 
components of the signal while removing noise. Furthermore, 
the feature extraction results of hob vibration signals are 
analyzed. VMD-AllST and EEMD-AllST are prone to over-
process original signals. VMD-CorST can only obtain part of 
the signal features. Wavelet-ST can effectively extract signal 
features in some cases, but cannot completely remove noise. 
In contrast, GVMD achieves the best results. GVMD can com-
pletely remove noise and effectively extract signal features.

(c)

Fig. 11   (continued)

Table 9   Calculation results of f
r
 and f

b
 under the three working con-

ditions

Condition 1 Condition 2 Condition 3

f
m
/Hz 34.5 34.5 36.5

f
b
/Hz 184 184 194.7
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(a)

(b)

Fig. 12   Denoised signal envelope spectra in hob broken tooth experiment: a Condition 1 b Condition 2 c Condition 3
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