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Abstract
Wind energy is one of the world’s leading promising renewable energy sources, due to that there is a prediction that wind gen-
eration systems will provide maximum power supply and have good integration with the electric grid. To fulfill the increasing 
power demand, wind power generation systems need more advanced, novel, and robust control approaches to achieve a more 
stable operation of the controller and to improve the overall efficiency of the system. This paper presents an optimal design and 
tuning of fuzzy logic controllers (FLC) for a 1.5-MW doubly fed induction generator (DFIG), grid-connected, wind energy 
conversion system (WECS) using intelligent methodologies such as particle swarm optimizer (PSO), the gray wolf optimiza-
tion (GWO), moth-flame optimizer (MFO), and multi-verse optimizer (MVO). FLC scaling factors are optimized for both 
dc-link voltage controller and current regulators of the grid-side converter and rotor-side converter of the back to back of DFIG 
wind turbine. A multi-objective optimization methodology is proposed which aims to minimize the steady-state errors of these 
controllers to improve the dynamic operation of the DFIG wind energy system subjected to variable wind speed conditions. 
Finally, a comparison is carried out between the different optimization techniques for FLC using PSO, GWO, MFO, and MVO, 
also between the proposed optimized controller and PI controller. The main contribution of this study is that it proposes a new 
control methodology for a DFIG-based WECS. This strategy is to optimize multi-input multi-output MIMO-FLC scaling fac-
tors by applying PSO, GWO, MFO, and MVO algorithms to control the d-q component of rotor and stator currents to control 
the active and reactive power of the DFIG. The operation of the proposed controller is tested under variable wind speed to 
investigate the DFIG behavior in case of transition from low to high gust and it is found by comparing the different techniques 
that the best-optimized controller is MFO-FLC which gives a very good behavior under variable wind speed conditions.

Keywords  Doubly fed induction generator · Wind energy conversion system · Particle swarm optimizer · Fuzzy optimal 
control · Multi-objective optimization · Gray wolf optimizer · Moth-flame optimizer · Multi-verse optimizer

Abbreviations

WECS & Multi‑objective Optimization
Pw	� Mechanical power
Vds,Vqs	� d, q Stator voltages

Ids, Iqs	� d, q Stator currents
�ds, �qs	� d, q Stator flux
Vdr,Vqr	� d, q Rotor voltage
Ids, Iqs	� d, q Rotor current
�ds, �qs	� d, q Rotor flux
Rs, Rr	� Stator and rotor resistances
�s,�r	� Stator and rotor speed
Ls, Lr, Lm	� Stator, rotor, and mutual 

inductances
Lls, Llr	� Stator and rotor leakage 

inductances
x	� Decision variables’ vector
F(x)	� Vector of the objective functions
g(x)	� Constraints ≤ 0
Ps, Qs	� Stator active and reactive power
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Vdc	� DC link voltage
Cp	� Wind turbine coefficient
�	� Tip speed ratio
�	� Pitch angle
r	� Rotor radius
�	� Air density
�	� Wind speed
s	� Slip ratio
w1,w2,w3,w4, andw5	� Weighting factors

Optimization Techniques

1 � PSO

pbest	� Better past position
gbest	� Global best position
vk
i
	� Current velocity

Xk
i
	� Current position

i	� The particle
k	� No. iteration
c1 , c2	� Acceleration constants

GWO
�	� Alpha
�	� Beta
�	� Delta
��⃗A, ��⃗C	� Coefficient vectors
�⃗X(t)	� Position vector
���⃗XP(t)	� Prey position vector
��⃗r1 , ��⃗r2	� Random vectors
�⃗a	� Linear components decreased 

from two to zero

MFO
Mi, Fj	� J-th flame and the i-th moth
B	� Variability of the model
Z	� A random number within the 

range of [-1, 1]
Di	� Di i-th moth distance with j-th 

flame
N	� Maximum number of flames
l	� Current iteration
T 	� Maximum iterations

MVO
Wmax,Wmin	� Maximum and minimum 

wormhole
TDR	� Traveling distance rate for each 

universe
Iter, Itermax	� Current and maximum number of 

iterations
x
j

i
	� Jth parameter of the universe

rl	� A random number between [0, 1]
Ui	� Ith universe

1  Introduction

The current vision of the world is directed toward renew-
able energy sources, in which wind power is one of the most 
essential and promising sources and has advanced rapidly 
over the last three decades. because it is clean, cost-effective, 
renewable, and friendly to the environment contributing to 
the reduction of C02 emissions [1, 2]. With the rising use of 
renewable energy resources especially wind, it is expected 
at the end of 2021 that wind capacity installed worldwide 
will be reached over 800 GW [3, 4]. The main differences 
between WECS technologies are in the design of the control-
ler and machine control. There are currently three types of 
wind energy systems for large wind turbines [5]. Firstly, fixed 
speed WECS operating with a narrow speed range around the 
synchronous speed is directly tied to the grid. This type of 
squirrel-cage induction generator (SCIG) is used. Nowadays, 
SCIG is used at constant speed in many WECS productively 
and systematically, due to their rugged nature, low cost, low 
maintenance, and ductility. High stress and mechanical stress 
on the system, larger gearbox requirements, absence of volt-
age support to the grid, and absence of effective aerodynamic 
improvement are the drawbacks of the system [6, 7, 8]. The 
second type is a variable speed WECS that employs a full-
scale power converter with a rating equal to the generator’s 
rating. The final category is a variable speed WECS, in which 
variable speed operation is carried out over a wide range of 
speeds. In this type of WECS, either a SCIG or asynchro-
nous generator can be used. This type of WECS provides 
a smoother grid connection, increased controllability, reac-
tive power compensation, and maximum power extraction by 
utilizing back-to-back power converters [6, 7, 8]. A Doubly 
fed induction generator (DFIG) is a wound rotor machine 
with stator windings connected to the three-phase constant-
frequency grid and rotor windings connected to a reduced 
capacity back-to-back converter rated at 20–30% of the gen-
erator’s rating. In the case of PMSG-based WECS, the rating 
converters of the back-to-back connection are close to the 
generator’s maximum rating. Due to that, the power losses 
in the converter are lower compared with systems where the 
converters have to handle the full power resulting in total 
efficiency improvement. At low and variable wind speeds, 
DFIG outperforms PMSG in on-shore applications. PMSG 
is preferable to DFIG for off-shore applications due to its 
lower maintenance requirements and constant wind speed, 
because PMSG losses are reduced. Accordingly, DFIG is 
the most used in variable speed wind turbines [9]. Due to 
that, the power losses in the converter are lower compared 
with systems where the converters have to handle the full 
power resulting in total efficiency improvement. The DFIG-
based WECS represents a conceptual control problem as the 
dynamic model in such systems is nonlinear and has a large 
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number of variables. The control of the back-to-back convert-
ers has a significant impact on the dynamics of the DFIG 
wind turbine especially the rotor currents. As the rotor cur-
rent increases to keep the terminal voltage of the generator 
and the rotating speed of the DFIG rotor, the current in the 
GSC also increases to preserve the dc-link voltage constant. 
Therefore, the overshoots of the currents flowing through 
the converter can stress the operation of the back-to-back 
converters [10]. The DFIG-based wind turbine controllers 
also face another important challenge in ensuring they have 
enormous parameters, which are necessary to be optimized 
for a good operation and interaction with the wind turbine. 
Therefore, for the stability of the closing-loop control sys-
tem and sufficient transient response, good tuning of the 
controls must be guaranteed [11]. A lot of methodologies 
are proposed in the literature to solve the control problem of 
DFIG-based WECS. Many of these researches are worked 
on the decoupled control of the active and reactive power. 
Moreover, most DFIG control methodologies are based on 
the conventional proportional integral (PI) method. But, these 
methods do not consider the dynamics of wind energy sys-
tems based on DFIG since these systems are nonlinear and 
complex [12]. Currently, several research studies have been 
presented a system consisting of a wind turbine operating 
in response to wind speed changes, a doubly fed induction 
generator (DFIG) connected directly to the grid by the sta-
tor and fed by a power converter on the rotor side. Vector 
control is used to control active and reactive power between 
the stator of the (DFIG) and the grid independently, which 
is accomplished using traditional PI, fuzzy logic, and fuzzy 
self-tuning PI controllers [13]. These controllers generate the 
reference rotor voltages needed to ensure that active and reac-
tive power meets their target values and MATLAB is used 
to model and simulate the system [14]. In [14], the author 
combines the conventional PI and fuzzy logic controllers to 
control the DFIG wind turbine. In [15], a classical PI mode 
vector control for a DFIG drive is used to control the output 
variables, which are the stator active and reactive power of 
the DFIG injected into the grid, and variable speed control 
of wind turbines is being investigated to maximize energy 
extraction from the wind. Simulation studies are carried out 
to validate the proposed PI controller’s performance in the 
presence of random wind fluctuations and reactive power 
variations. It should be noted that changes in wind speed at 
power control have a negative impact on the system’s per-
formance. This controller lacks high-performance dynamic 
characteristics and is not completely resistant to wind vari-
ations. In this regard, intelligent control approaches such as 
artificial neural network control and fuzzy logic control are 
now being considered as a promising alternative to tradi-
tional control methods in the control of complex nonlinear 
plants with unstructured dynamical uncertainties. A model 
of fuzzy logic control for a doubly fed asynchronous machine 

is presented in [16], which compared classical PI controllers 
with fuzzy logic controllers. While [17] proposes a fuzzy 
logic controller for a variable speed DFIG wind turbine 
implemented using MATLAB software. It also showed that 
the fuzzy control is more robust and suitable replacement of 
the conventional PI controller to a higher performance DFIG 
system. In [18], a control method is used with DFIG based on 
fuzzy controller. It showed from results that fuzzy controller 
is more accurate control performance and more fast dynamic 
response with almost no steady-state error when compared 
with a system using conventional PI controller. In [19], an 
adaptive fuzzy controller is used to approximate the unknown 
system nonlinearities and cope with the model uncertainties 
that occur in the DFIG-base WECS model and the tracking 
error dynamics. In [20], a fuzzy controller is investigated to 
improve the dynamic performance of the delivered power. An 
intelligent fuzzy inference system is used to control the speed 
and the stator power of DFIG. It showed the superiority of 
the fuzzy controllers against the conventional PI controller in 
the stator power transient and steady-state responses. It also 
presented a fuzzy gain tuner of the PI controller in the vector 
control scheme of the GSC, while [21] proposed a methodol-
ogy that uses particle swarm optimization (PSO) for optimiz-
ing the parameters of PI controllers of a wind turbine (WT) 
with DFIG. Optimal tuning of PI controller gains for a DFIG 
wind energy system is presented in [22]; the optimization 
is carried out using PSO and Gray wolf optimizer (GWO).

Previous researches showed that the PI controller is the 
most common type of automatic controller, but it is not the 
best one. These controller’s coefficients are difficult to be 
tuned for nonlinear plants with unpredictable parameter 
variations. This control technique necessitates automati-
cally tuning the controller parameters based on the nature 
of the process. There are some constraints to tuning a PI 
controller. These constraints can be overcome by tuning 
the PI controller with intelligent techniques such as fuzzy 
logic, artificial neural networks, adaptive neuro-fuzzy infer-
ence systems, and genetic algorithms. Although fuzzy logic 
is used to adapt the PI controller to achieve better system 
performance, however, the conventional control technique 
does not provide the expected results [13]. Besides, fuzzy 
controllers cannot adapt to changes in their environment or 
operating conditions. Then, to improve and maintain control 
performance in a wide range of changing conditions, some 
form of adaptation that updates the controller parameters 
is required [19]. And depending on what was cleared, this 
study presents a new optimized fuzzy control method for 
variable speed grid-connected DFIG-based WT. Optimized 
fuzzy logic controller (OFLC) coefficients play an important 
role in the accuracy of the response and lower power errors; 
optimization algorithms can be used for the automatic 
adjustment of these coefficients. Among these intelligent 
techniques, PSO, GWO, MFO, and MVO can be applied to 
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optimize the fuzzy controller parameters because of their 
advantages such as wide solution space, ease of discover-
ing global optimum, resistance against becoming trapped 
in local optimum, and ease of implementation are highly 
attractive and available. PSO is previously used for the opti-
mization of the parameters of the SISO fuzzy logic control-
ler proposed for the DFIG controller [19]. GWO, MFO, and 
MVO are proposed in this paper as they are not adopted for 
fuzzy controller optimization in the case of DFIG control.

The main contribution of this study is that it proposes a 
new control methodology for a DFIG-based WECS. This 
strategy is to optimize FLC scaling factors by applying PSO, 
GWO, MFO, and MVO algorithms. Two FLC units are pro-
posed; the first one is the FLC unit to control the dc-link 
voltage (Vdc) of the back-to-back converter. This controller 
has a single-input single-output (SISO) fuzzy membership 
function and is applied to adjust the Vdc according to the 
grid requirements and gives a good behavior under variable 
wind speed with smooth & stable transition from low to high. 
The other FLC is a multi-input multi-output (MIMO) control-
ler to control the d-q component of rotor and stator currents 
to control the active and reactive power of the DFIG. The 
advantage of this MIMO-FLC used as the current controller 
is the using of one fuzzy controller for both GSC and RSC 
controllers instead of four fuzzy controllers as mentioned 
in previous literature which in consequence minimizes the 
time execution and gives better results with optimization 
techniques resulting in better overall performance. The opera-
tion of the proposed controller is tested under variable wind 
speed to investigate the DFIG behavior in case of transition 
from low to high gust and it is found that the optimized fuzzy 
logic controller (OFLC) has a better performance than the PI 
controller and a big improvement is achieved.

The rest of this paper is organized as follows: Sect. 2 
introduces WECS basics. In Sect. 3, modeling and control 
of the DFIG are presented. The proposed fuzzy logic con-
trol design is presented in Sect. 4. Results and discussion 
are provided to validate the effectiveness of the proposed 
controller in Sect. 5. Finally, Sect. 6 contains the conclusion 
and future work.

2 � Wind Energy Conversion System

A simplified diagram of a DFIG-based WECS system con-
nected to the electric grid is presented in Fig. 1. The aer-
odynamic system of the DFIG wind turbine is capable of 
operating over a wide range of wind speed profiles to achieve 
optimal efficiency. This variable speed technology allows 
the wind turbine to harvest the maximum energy; at low 
wind speeds, the turbine speed is optimized to extract the 
maximum power. Also, it reduces the mechanical stresses 
on the turbine during wind gusts. The wind turbine produces 
the maximum mechanical energy which is proportional to 
the wind speed using speed power tracking curves. Another 
advantage of DFIG technology is that the power electronic 
converter can be adjusted to deliver or absorb reactive 
power, hence eliminating the need for allocating capaci-
tor banks. The DFIG-based WECS consists of a wind rotor 
(turbine blades), a wound rotor induction generator, and 
AC/DC/AC IGBT-based PWM power electronic converters 
[23, 21]. The AC/DC/AC back-to-back converters as stated 
before need only to manage a fraction of the full power, 
typically 30% of the nominal power. Therefore, the losses 
in the power electronic converters can be reduced, and also 
the cost is lowered due to the partial rating. The rotor is fed 
through the AC/DC/AC converter, while the stator is directly 
connected to the 50 Hz power grid. A back-to-back voltage 
source converter is used to generate sinusoidal AC output 
voltages with controllable magnitude and frequency. It con-
sists of two converters: RSC and GSC. A dc-link capacitor 
is placed between these two converters, and in that case, 
the GSC objective is to maintain the voltage variation of 
this dc-link small. Via controlling the RSC, it is possible to 
control the speed of the DFIG wind turbine, the torque, and 
the active and reactive power at the stator terminals.

An expression is usually used to describe the mechani-
cal power (Pw) captured by a 3-blades horizontal axis wind 
turbine [24, 25, 26]:

(1)Pw =
1

2
Cp(�, �)�r

2�3�

Fig. 1   Configuration of WECS
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where r is the radius of rotor blades in m, � is the wind speed 
in m/s, � is the air density in kg/m3, Cp is the wind turbine 
coefficient of performance, and it is dependent on � and the 
blade’s pitch angle � . � is the ratio of the turbine’s blade tip 
speed to the wind velocity. The power coefficient Cp defines 
the aerodynamic efficiency of the wind turbine rotor.

3 � Modeling and Control of the DFIG

The dynamic model of the stator and rotor voltages and 
fluxes for the DFIG in the d-q reference frame can be 
expressed by the following equations [21, 24–26]:

where Rs , Rr , Lls , and Llr are the stator and rotor windings 
resistances and the leakage inductances, respectively, Lm is 
the mutual inductance, V  , I , � are the voltage, current, and 
flux in coordinates d-q (subscripts s and r denote stator and 
rotor, respectively), �s and �r are the speeds of stator and 
rotor currents, and s is the machine slip ratio.

To simplify the control, for grid-connected DFIG system, 
considering negligible stator resistance Rs while the stator 
flux is constant, therefore �ds = �s and �qs = 0 , then the 
stator voltage and flux equations can be simplified as [24]
[25][26]:

The stator active and reactive power can be expressed as 
follows [24–26]:

(2)
[
Vds

Vqs

]
= Rs

[
Ids

Iqs

]
+

d

dt

[
�ds

�qs

]
+ �s

[
0 −1

1 0

][
�ds

�qs

]

(3)
[
Vdr

Vqr

]
= Rr

[
Idr

Iqr

]
+

d

dt

[
�dr

�qr

]
+ s�s

[
0 −1

1 0

][
�dr

�qr

]

(4)s(slip ratio) =
�s − �r

�s

(5)

⎡⎢⎢⎢⎣

�ds

�qs

�dr

�qr

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

Ls 0

0 Ls

Lm 0

0 Lm
Lm 0

0 Lm

Lr 0

0 Lr

⎤
⎥⎥⎥⎦

⎡⎢⎢⎢⎣

Ids
Iqs
Idr
Iqr

⎤⎥⎥⎥⎦

(6)Ls = Lls + Lm

(7)Lr = Llr + Lm

(8)Vds =
d�ds

dt
= 0

(9)Vqs = Vs = �s�ds

To keep the dc-link voltage constant irrespective of the 
grid-side voltage, the GSC is used to control the dc-link volt-
age of the back-to-back converters; a feed-forward decou-
pled control is used to control the active and reactive power 
exchange between the grid and the GRC [27]. The control 
is performed using a synchronous reference frame (d-axis) 
aligned to the grid voltage. Hence, the q-axis component of 
the grid voltage, Vq , will be zero. The objective is to main-
tain the dc-link voltage at a predetermined constant value 
by controlling Id , while the other objective is to control the 
reactive power by adjusting Iq . This controller includes also 
an inner current loop that regulates the magnitude and phase 
of the GSC voltage signal (∆Vd, ∆Vq) as shown in Fig. 2.

The RSC controller, as shown in Fig. 3, is adjusted to 
regulate the generator speed and the reactive power at the 
point of interconnection with grid terminals. The d-axis of 
the rotating reference frame is aligned with the positive-
sequence component of the stator voltage using a phase-
locked loop (PLL) [27]. The three-phase phase-locked loop 
is an error feedback signal system and its main function is to 
transfer the signals from natural reference frame components 
(abc) to the direct and quadrature (d-q) reference synchro-
nous frame components and vice versa to perform decoupled 
power control as shown in Fig. 4. The d-axis reference rotor 
current Idr_ref  is obtained by dividing the reference torque 
(Tem) by a scaled value of the flux. Then, the actual Idr 
current component is compared to Idr_ref  and the error is 
reduced to zero through a current regulator. The objective 
of the Volt-Var regulator shown in the figure is to control 
the voltage at the point of interconnection of the WECS 
with the grid by generating Iqr_ref  that must be injected in 
the rotor through RSC to control the reactive power. Then, 
the same current regulator is used to regulate the actual Iqr 
component to its reference value. The output of the current 
regulator is the voltage-controlled signals (∆Vdr, ∆Vqr) that 
will be generated by RSC. This controlled voltage signal is 
converted to the abc reference frame using the PLL to gener-
ate the switching pulses of the two back-to-back converters.

In this work, OFLC is used to evaluate system perfor-
mance as presented in Fig. 4. OFLC is an intelligent con-
trol technique that controls complicated systems based on 
analogizing human way by fuzzy optimization thinking, so 
this applies fuzzy sets and fuzzy logic inference knowledge. 
Because OFLC control is marked by the benefits of good 
performance and robustness, it is not necessary to know the 
mathematical model of the system. OFLC is one of the best 

(10)Ps = −
Lm

Ls
Vs Iqr

(11)Qs =
V2

�sLs
−

Lm

Ls
Vs Idr
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tools for formally describing, controlling, and applying a 
human’s heuristic knowledge about how to control systems 
[28]

4 � Proposed Fuzzy Logic Controllers Design

FLC contains three functional blocks: fuzzification, fuzzy 
rule base, and defuzzification [29]. There are two input 
signals to the FLC, the error E(t), and the variation of the 

error which are translated by gain factors to obtain the out-
put of the FLC (two input gains (Ke, Kde), one output gain 
(Ku)); the fuzzy controller structure is represented in Fig. 5. 
The triangular membership function is the most practically 
encountered FLC application. The triangular MF is formed 
by using straight lines. These straight lines of MFS have a 
simplicity advantage. And it is recommended to use triangu-
lar MF with 50% overlapping, followed by a tuning process 
in which the left and/or right spread and/or overlapping can 
be adjusted and keep doing this until getting a satisfying 

Fig. 2   Block diagram of the 
GSC controller

Fig. 3   Block diagram of the 
RSC controller

Fig. 4   Block diagram of DFIG based on OFLC
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result [30]. Depending on that the number of MF has a big-
ger impact since it decides how long it takes to compute. 
As a result, in this study, the best model for achieving the 
best efficiency can be calculated by varying scaling factors 
of MFs [31]. There are two main fuzzy controllers. One of 
them is SISO-FLC with 7 triangular membership, and the 
other is MIMO-FLC with 5 triangular membership. The rea-
son for choosing 7 MFs for the voltage controller is that it 
produces better results than the 5 MFs due to the formation 
of more accurate fuzzy rules (49 rule) for the single-input 
single-output controller. For the second current controller, 
the 5 MFs are chosen as the controller, in that case, deals 
with a large number of rules as it is a multi-input multi-
output controller with 4 inputs and 4 outputs with a total 
number of rules 100 (25*4). Consequently, it affects the 
computation time; however, the 5 MFs give accurate results 
for the current controller. Also in this study, Mamdani fuzzy 
inference system is used as it has more intuitive and easier 
to understand rule bases.

In this paper, FLC is used to control the behaviors of the 
DFIG wind turbine. There are two main fuzzy controllers; 
the first controller is used to replace the DC voltage regu-
lator of the GSC controller. This controller is treated as a 
conventional FLC which has two inputs—error and change 
of error—summed as a single input and has a single output 
so this FLC is denoted as SISO-FLC. To control the dc-link 
voltage (Vdc) of the back to back, a reference value Vdcref 
is compared to Vdc to compute the error E(t) as indicated in 
Eq. 12, the variation of the error (∆E) which is translated by 
gain factors to obtain the output (∆U) of the FLC, and the 

7 triangular membership used for the inputs and the output 
as shown in Fig. 6 are negative big (NG), negative medium 
(NM), negative small (NP), zero (EZ), positive small (PP), 
positive medium (PM), and positive big (PG). A 7 × 7 rule 
matrix was constructed to form 49 cells as represented in 
Table 1.

The second controller is MIMO-FLC to control the d-q 
component of rotor and stator currents. This FLC is pro-
posed to represent the two current regulators of GSC and 
RSC. The proposed FLC has 8 inputs; 4 to obtain the errors 
e1(t), e2(t), e3(t), e4(t), and 4 to measure the change of errors 
∆e1(t), ∆e2(t), ∆e3(t), ∆e4(t), which are translated by gain 
factors to obtain the outputs ∆Vd, ∆Vq, ∆Vdr, ∆Vqr of 
the FLC. Figure 7 presents the functional block diagram of 
the proposed MIMO—FLC. The 5 triangular membership 
used for the inputs and the outputs is shown in Fig. 8. As 
mentioned earlier that the number of MFs affects the com-
putation time and this MIMO-FLC contains 100 rules, so 5 
MFs are used to reduce the computation time of the current 
controller. MFs are defined as big negative (BN), negative 
(N), zero (Z), positive (P), and big positive (BG). Table 2 
indicates the fuzzy rule table of MIMO-FLC, every two 
inputs have 25 rules, and the total number of rules is 100.

4.1 � Multi‑objective Optimization

A multi-objective optimization problem includes a set of 
parameters (decision variables), a set of objective functions, 

(12)E(t) = Vdcref − Vdc

Fig. 5   Fuzzy controller struc-
turer

Fig. 6   Membership functions 
for the inputs E(t), ∆E(t), and 
the output ∆U(t)
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and a set of constraints. In this work, the main objectives 
are to minimize the steady-state errors (input to FLC) of dc-
link voltage and d-q components of rotor and stator currents 
compared to reference values [32][33].

(13)F(x) = min
(
f1(x), f2(x), f3(x), f4(x), f5(x)

)

Subject to:

where x is the decision variables’ vector, and F(x) is the 
vector of the objective functions. The constraints g(x) ≤ 0 
determine the set of feasible solutions.

(14)g(x) =
(
g1(x), g2(x), g3(x), g4(x), g5(x) ≤ 0

)

Table 1   Fuzzy rule table of 
SISO-FLC

E(t) ∆E(t)

NG NM NP EZ PP PM PG

NG NG NG NG NG NM NP EZ
NM NM NM NP NP NM EZ PP
NP NG NG NM NP EZ PP PM
EZ NG NM NP EZ PP PM PG
PP NM NP EZ PP PM PG PG
PM NP EZ PP PM PG PG PG
PG EZ PP PM PG PG PG PG

Fig. 7   Block diagram of the proposed MIMO—FLC

Fig. 8   Membership functions 
for the inputs e(t), ∆e(t), and 
∆u(t)
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In this work, the set of objective functions to be mini-
mized can be written as Eqs. 15–20; as shown in the follow-
ing equations, the error objectives are calculated according 
to the integral time absolute error (ITAE) formula [21] [34]:

This problem is treated as multi-objective. All func-
tions mentioned in equations from 15 to 20 are summed as 
follows:

where w1,w2,w3,w4, andw5 are weighting factors where 
their summation is equal to 1. These weighting factors are 
selected based on trial and error to get the best results, so 
the optimization is performed for many runs to get the best 
results. The optimal value for w1 is 0.4 and 0.15 for w2 to 
w5 , respectively.

4.2 � Fuzzy Optimal Control

Optimal tuning of fuzzy FLC using intelligent techniques as 
PSO, GWO, MFO, and MVO is presented in Fig. 9 which 
illustrates the flowchart of the control algorithm. The pro-
posed strategy aims to optimize the scale factors by these 
algorithms to adjust vdc according to grid requirements and 
achieve the best results with the best performance regarding 
the step response of controllers (minimum overshoot and 
better settling time with minimum s.s error).

(15)f1(x) = ∫ t ×
|||
(
Vdcref − Vdc

)|||dt

(16)f2(x) = ∫ t ×
|||
(
Idref − Id

)|||dt

(17)f3(x) = ∫ t ×
|||
(
Iqref − Iq

)|||dt

(19)f4(x) = ∫ t ×
|||
(
Idrref − Idr

)|||dt

(20)f5(x) = ∫ t ×
|||
(
Iqrref − Iqr

)|||dt

(21)
Min F(x) = w1 ∗ f1(x) + w2 ∗ f2(x) + w3 ∗ f3(x)

+ w4 ∗ f4(x) + w5 ∗ f5(x)

In the following subsection, the PSO, GWO, MFO, and 
MVO optimization techniques are presented.

4.2.1 � PSO Algorithm

The PSO was introduced by Kennedy and Eberhart [35]; 
it is a nature-based optimization algorithm inspired by the 
social behavior of birds. The main advantages of the PSO 
algorithm are that it is simple and has high robustness and 
can be used in a variety of applications with minor modifica-
tions and easy implementation. It has a strong computational 
efficiency when compared with other mathematical and heu-
ristic optimization algorithms. It can quickly converge to 
the optimization value. It is simple to combine it with other 
algorithms to improve its performance.

The particle swarm depends on a set of operators, called 
particles, and each particle is considered as a solution to 
the optimization problem. In the solution space, the swarm 
particle (i) is modeled during iteration k with position vector 
Xk
i
 and velocity vector vk

i
 . The quality of the particle swarm 

position at a specified point is determined by the value of 
the fitness function. This particle memorizes its better past 
position as pbesti , while the global best position attained 
by all particles in the swarm is denoted as gbest . The speed 
of each particle is then adjusted according to the particle’s 
flight experience and other experienced particles; position 
and velocity vectors, in that case, are updated according to 
the following equations [36][37]:

where vk
i
 is the current velocity of particle i at iterationk , 

while vk+1
i

 is the updated velocity of the particlei , w is the 
inertia weight.c1 , c2 are two acceleration positive constants, 
Xk
i
 is the current position of particle i at iteration k , Xk+1

i
  is 

the updated position of particle i at iteration k , while rand1i
,rand2i are random numbers [0 and 1]. The optimization is 
sustained until the stopping criterion is met, i.e., reaching 
the predefined maximum iteration number.

4.2.2 � GWO Algorithm

GWO algorithm is first introduced by Mirjalili [38]. GWO 
theory is based on the hunting process of the gray wolf. Gray 
wolves usually prefer to live and hunt together in packs. (The 
average pack size consists of 5–12 wolves.) Search and hunt-
ing behavior can be discussed in the following steps:

•	 When gray wolves find a victim, they begin to follow, 
chase, and then approach him.

(22)
vk+1
i

= wvk
i
+ c1rand1i

(
pbesti − Xk

i

)
+ c2rand2i

(
gbest − Xk

i

)

(23)Xk+1
i

= Xk
i
+ vk+1

i

Table 2   Fuzzy rule table of 
MIMO-FLC

e(t) ∆e(t)

BN N Z P BP

BN BN BN N N Z
N BN BN N Z BP
Z N BN Z BP P
P BP Z P BP BP
BP Z P P BP BP
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•	 When the prey ran away, the gray wolves chase after, 
circling, and harassing it until it stops moving. Finally, 
the gray wolves attack the prey.

Considering the social hierarchy of gray wolves, the 
mathematical model will be defined as follows: The fittest 
solution is called alpha ( � ) as the leader in the gray wolves 
pack, the second-best solution is called beta ( � ) as the sub-
ordinate wolves in the gray wolves pack, and the third-best 
solution is named delta ( � ). All other nominee solutions are 
all considered omegas ( � ). All omegas will be led by these 
three gray wolves ( � , � , and � ) during the searching and 
hunting optimization methodology.

The iterations start at ( t = 1 ) when the prey is found. After 
that, the wolves � , � , and � will lead, follow, and finally circle 
the prey. The encircling behavior will be described in the 
following equations using two coefficient vectors �⃗A, ��⃗C [38]:

(24)��⃗D =
|||��⃗C. ���⃗XP(t) −

�⃗X(t)
|||

where t  is the current iteration, �⃗X(t) is the position vector 
of the gray wolf, while ���⃗XP(t) indicates the position vector 
of the prey.

The coefficient vectors ��⃗A and ��⃗C can be calculated as:

where �⃗a components are linearly decreased from two to zero 
throughout iterations and ��⃗r1 , ��⃗r2 are random vectors [0, 1].

The hunting process of gray wolves (for � , � , and � 
wolves) can be modeled mathematically as the following 
equations:

(25)�⃗X(t + 1) = ���⃗XP(t) +
�⃗A.
(
��⃗D
)

(26)�⃗A = 2 �⃗a.��⃗r1 − �⃗a

(27)��⃗C = 2.��⃗r2

����⃗D𝛼 =
||| ���⃗C1.

���⃗X𝛼 −
�⃗X
|||

Start

Compute  the 
inflation rate of 
the all universe

Update TDR and 
WEB

corresponding to 
Eq. (33, 34)

Update no. of 
flams

Calculated  D 
corresponding to Eq . 

31

Updated S (Mi, Fj) 
corresponding to Eq.  (29-

31)

Update Xα,
Xβ, Xδ

Update the position 
of search agents 

and coefficients a, 
A, C

 Eq. (22-28)

Update position 
& velocity of 
each particle

Update pbest(position 
best) & gbest(global 

best)
Eq. (20, 21)

Implement the 
rouletted wheel based 

on Eq. 35

 Stopping 
criterion? 

print optimal fuzzy input/output gains 

End

Initial values of scaling factors and membership function 

i=1Calculate the fitness of each particle for the 
multi-objective problem

f1(x), f2(x), f3(x), f4(x),f5(x)

Caculated the degree of 
membership

Compute the fuzzy rules and 
update membership

Inference

Deffuzzification

Input: PSO parameters(position &velocity), GWO parameters (position 
ofα, β, δ, and ω), MFO parameters (no. of flames), MVO parameters 

(position & max no. of inflations rate of all universe), Max No. of Iterations
Input: Control parameters ( d-q components of currents for Rotor &Stator 

and DC-link voltage)

Run Simulink

i=i+1

PSO GWO MFO MVO

No

Yes

Fig. 9   Fuzzy optimal control flowchart
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where ���⃗X1,
���⃗X2 , and ���⃗X3 are the position vectors of α, β, and 

δ wolves.
After obtaining the three best solutions, other search 

agents will be forced to update their positions according to 
the best leading solutions and calculate the fitness function 
value until the stopping criterion is met.

The proposed GWO has demonstrated superior charac-
teristics such as high-quality solutions, stable convergence 
characteristics, high computational performance, and quick 
coverage to the optimal solution [39].

4.2.3 � MFO Algorithm

The MFO is a nature-inspired algorithm that is originally 
proposed by S. Mirjalili [40]. Its advantages include sim-
plicity, flexibility, robustness, speed in searching, and easy 
hybridization with other algorithms [41]. The moths are 
insects that look like a butterfly family and they have special 
ways of roaming at night called transverse orientation used 
for their navigation which depends mainly on moonlight. In 
this way, the moth flies in a mechanism to preserve a fixed 
angle relative to the moon which is considered a very effec-
tive way to travel long distances in a straight line. MFO steps 
can be summarized as[40]:

•	 The MFO algorithm is initialized by generating moths 
randomly within the search space.

•	 After that, it calculates the position of each moth (i.e., 
the fitness values), then adopting the best position by a 
flame.

•	 Then, the moths’ positions are updated using a spiral 
movement function to achieve the best positions labeled 
by a flame:

(28)����⃗D𝛽 =
||| ���⃗C2.

���⃗X𝛽 −
�⃗X
|||

����⃗D𝛿 =
||| ���⃗C3.

���⃗X𝛿 −
�⃗X
|||

���⃗X1 =
���⃗X𝛼 +

���⃗A1.
(
����⃗D𝛼

)

(29)���⃗X2 =
���⃗X𝛽 +

���⃗A2.
(
����⃗D𝛽

)

���⃗X3 =
���⃗X𝛿 +

���⃗A3.
(
����⃗D𝛿

)

(30)X⃗(t + 1) = X⃗1 + X⃗2 + X⃗3

/
3

(31)Mi = S
(
Mi,Fj

)

where Mi,Fj are the j-th flame and the i-th moth, b is the 
variability of the model of the logarithmic maturation pat-
tern, z is a random number within the range of [− 1, 1], and 
Di represents the i-th moth distance with j-th flame.

•	 Updating the number of flames according to the follow-
ing formula:

where N stands for the maximum number of flames, l indi-
cates the current iteration, while T denotes the maximum iter-
ations. Finally, it updates the new best moths’ positions and 
repeats the previous steps until the stopping criterion is met.

4.2.4 � MVO Algorithm

A multi-verse optimizer (MVO) is first introduced by Mir-
jalili; it produces very competitive results and outperforms 
the best algorithms in the literature. Mirjalili showed that the 
results of the real-world case studies also show MVO’s abil-
ity to solve real-world problems with unknown search spaces. 
[42]. Otherwise, for other biologically inspired optimization 
techniques, the MVO theory is based mainly on astrophysics. 
The multi-verse theory explains how the big bang creates an 
infinite number of universes and how these universes interact 
with each other through different types of holes known as a 
wormhole, black hole, and white hole. In MVO, each solution 
is equivalent to a universe and each variable in the solution 
is considered as an object in that universe. Each solution has 
an inflation rate, which is proportional to the corresponding 
fitness function value [42][43]. The inflation speed of a uni-
verse is very important to the suitability for life. The steps of 
the MVO algorithm can be summarized as follows:

•	 Initialize the positions of the universes
•	 Input minimum and maximum of wormhole existence 

probability and calculate according to:

•	 While iteration < max iteration
•	 Calculate the traveling distance rate for each universe

(32)S
(
Mi,Fj

)
= Di*e

bz*cos(2�z) + Fj

(33)Di =
|||Fj −Mi

|||

(34)flame_no = round
(
N − l*

N − l

T

)

(35)WEP = Wmin + Iter*

(
Wmax −Wmin

Itermax

)

(36)TDR = 1 −
Iter

(
1∕p

)

Iter

(
1∕p

)

max
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•	 Update the position of universes and sort universes 
according to Roulette wheel selection

•	 Check elitism and find the best universe

where Wmin , Wmax are the minimum and maximum num-
bers taken as 0.2, 1 [42], Iter , Itermax are the current and 
maximum number of iterations, respectively, and p is the 
precision of exploitation over iterations. xj

i
 indicates the 

j-th parameter of the universe, Ui denotes the i-th universe, 
NI(Ui is a normalized inflation rate of the i-th universe, rl 
is a random number between [0, 1], and xj

i
 indicates the j-th 

parameter of the universe.
The pseudocodes of the PSO, GWO, MFO, and MVO 

optimization techniques are presented in Appendix 2. The 
algorithm’s parameters are also presented in Appendix 3.

5 � Results and Discussion

Simulation is carried out for a grid-connected WECS based 
on 1.5 MW DFIG. (The parameters of the 1.5 MW DFIG-
based WECS under stud are presented in Appendix 1 obtained 
from MATLAB environment.) For this purpose, the dynamic 
model of the proposed grid-connected WECS and its associ-
ated MIMO-FLC is presented. Furthermore, the simulation 
of the system is performed using MATLAB/SIMULINK and 
SIMPOWERSYSTEM toolbox to validate the performance of 
the optimized controllers. In this system, the stator is directly 
connected to the power grid, while the rotor’s terminals are 
connected to the grid through a back-to-back converter and 
the control procedure can be defined as follows:

•	 The control of dc-Link voltage and current regulators 
of the grid and rotor-side converter of the DFIG wind 
turbine is carried out using the fuzzy logic controller.

(37)x
j

i
=

{
x
j

k
r1 < NI(Ui)

x
j

i
ri ≥ NI(Ui)

•	 The input and output scaling factors of the fuzzy con-
trollers are optimized using different techniques (PSO, 
GWO, MFO, and MVO).

•	 A comparison between different optimization methods 
for optimal tuning of fuzzy controllers using PSO, GWO, 
MFO, and MVO is provided to choose the best meth-
odology that gives the minimum error and more stable 
operation. Also, a comparison is provided between the 
proposed optimized controller and the PI-based control-
ler.

The obtained results can be discussed as follows:
Table 3 illustrates the optimized input–output scaling 

factors of the FLC for the dc-link voltage and rotor–stator 
currents.

Figure 10 shows the convergence curves of the fitness 
function value for the PSO, GWO, MFO, and MVO opti-
mization techniques, respectively. It can be noted from the 
figure that the MFO has the best mean objective function 
value and it has higher convergence speed and accuracy 
when compared with the other three optimization algo-
rithms. Figures 11 and 12 represent the optimized surface 

Table 3   Optimized FLC gains of voltage and current regulator

Gains Fuzzy-PSO Fuzzy-GWO Fuzzy-MFO Fuzzy-MVO

GSC (dc-Link voltage)
Ke .4041 1 .4149 .0943
Kde .4126 1.6125 2 1.0019
Ku 3.6580 1.0739 2.6594 2.8889
GSC (current regulator)
Keg .1034 .0933 .1228 .0863
Kdeg 1.9747 1.9793 1.9994 1.6409
Kug 3.8565 3.9546 3.3931 3.5681
RSC (current regulator)
Ker .0076 .0012 .0081 .0101
Kder .4345 .0716 .4581 .5642
Kur .4566 2.7564 .4623 .3562

Fig. 10   Convergence curves of 
different optimization tech-
niques
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area curve of the fuzzy controller for the dc-link voltage 
controller and grid-side and rotor-side current controllers, 
respectively.

Figure 13 shows the dc-Link voltage with PI and with 
optimized fuzzy-PSO, fuzzy-GWO, fuzzy-MFO, and fuzzy-
MVO which illustrates that the GSC controller will strive 
to keep the dc-link voltage as constant as possible. Table 4 
clarifies the step response for the different fuzzy optimized 
controllers

It is clear from Fig. 13 and Table 4 that fuzzy-MFO has 
the minimum overshoot for dc-link voltage while preserving 
rising time and settling time at reasonable values. It is also 
obvious that PI has the worst step response with a 31.66% 
overshoot and a settling time of 0.1562 s. Although PSO 

Fig. 11   Optimized surface area curve of fuzzy controller for the dc-
link voltage controller

Fig. 12   Optimized surface area curve of fuzzy controller for grid-side and rotor-side current controllers

Fig. 13   dc-link voltage of the back-to-back converter
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gives better rising and settling times, the overshoot is higher 
than that of the MFO.

GWO and MVO give higher overshoot values than MFO 
and PSO while keeping the settling time and rising time at 
reasonable values.

Figures 14, 15, 16, and 17 represent the d-q components 
of rotor and stator currents in the case of PI and optimized 
fuzzy. It is clear from the figures that the optimized fuzzy 
controller gives a better response with minimum steady-state 
error and better settling time. It can be seen from the figures 
that the performance of different optimized controllers in 
the case of the current controller is slightly different, while 
MFO has the best performance. Although it has a high over-
shoot for some parameters, it has a very stable steady-state 
response compared to other algorithms.

Table 5 concludes the step response of the PI and fuzzy 
current controllers. It is clear from the table that MFO has 
the best step response for the grid-side current controller; 
it has better overshoot (49%), rise time, and settling time 
for the d-component of grid-side current; however, it brings 
higher overshoot for the q-component of grid-side current 
as shown in Fig. 15, but it has better rise time and settling 
time and also has a better steady-state response. So, most 
of the step response parameters for the GSC controller are 
better in the case of MFO-FLC. For the rotor-side controller, 
most controllers have very near results regarding the step 
response, the PI is the worst, and other techniques are almost 
the same; there is no priority of one of the optimized con-
trollers than the other, but regarding Fig. 10 and the steady-
state response of the MFO-FLC, it has the minimum settling 
time and steady error over all other controllers. So, regarding 
the step response results and also referring to Fig. 10 which 
presented the convergence curve of fitness function values, 
it can be concluded that MFO has the better performance.

Figure 18 depicts the active and reactive power of DFIG 
wind turbines during an increase in wind speed (wind speed 
has a step change from 10 m/s to 15 m/s at time = 10 s). The 
power curve is determined according to the best-optimized 
controller which is MFO fuzzy. The reactive power control is 
adjusted to be zero as indicated in Fig. 18, i.e., the wind tur-
bine generates only active power. Before the change in wind 
speed (at 10 m/s), it is observed that the active power output 
is below the rated power as the rated wind speed of that tur-
bine is 12 m/s. During the transition in wind speed from low 
to high, the reactive output power is kept constant. However, 
the change in wind speed caused the real power controller to 
change the real power output to a slightly higher value than 
the rated value only for a few seconds, and then, the output 
is once again lowered to a rated real power (1.5 MW). The 

Table 4   Step response of voltage controller

Response Optimization technique dc-link voltage

Rise time (sec) PI 9.8918e−08
PSO 1.2826e−09
GWO 1.6056e−09
MFO 2.2951e−09
MVO 5.4788e−09

Overshoot percentage PI 31.6661
PSO 9.1322
GWO 11.0161
MFO 7.8307
MVO 17.7037

Settling time (sec) PI 0.1562
PSO 0.0614
GWO 0.0620
MFO 0.0652
MVO 0.0913

Fig. 14   d-component of the stator current
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behavior of the model, in that case, is consistent with that of 
real DFIG-WECS as expected. From the obtained results, it 
is obvious that the optimized fuzzy controllers give a very 
good behavior under variable wind speed with a smooth and 
stable transition from low to high.

6 � Conclusion

This paper presented an optimal tuning of fuzzy control-
lers for a 1.5-MW DFIG wind energy system connected to 
the grid using intelligent techniques as PSO, GWO, MFO, 

and MVO to optimize fuzzy controller parameters for both 
GSC and RSC. Control of active power was done by RSC 
through Idr and Iqr and keep dc-link voltage constant via 
GSC through Id and Iq, respectively. In this work, MIMO-
FLC and multi-objective optimization algorithms are used 
to control the d-q component of rotor and stator currents. 
These techniques with the proposed MIMO-FLC improved 
the system performance; e.g., (less computation time, mini-
mum overshoot, and better settling time with minimum 
steady-state error). The PI controller results are compared 
with fuzzy-PSO, fuzzy-GWO, fuzzy-MFO, and fuzzy-MVO 
to adopt the best-optimized FLC. In comparison with the 

Fig. 15   q-component of the stator current

Fig. 16   d-component of the rotor current
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Fig. 17   q-component of the rotor current

Table 5   Step response of 
current controller

Response Optimization 
technique

GSC Current controller RSC Current controller

Id Iq Idr Iqr

Rise time (sec) PI 0.0012 0.0016 0.0011 3.0015e−04
PSO 0.0118 6.3374e−04 8.6624e−04 2.3494e−04
GWO 0.0114 6.5031e−04 9.8197e−04 2.3502e−04
MFO 7.8811e−04 6.0991e−04 9.9271e−04 2.3552e−04
MVO 9.5557e−04 7.8032e−04 9.6919e−04 2.3654e−04

Overshoot percentage PI 60.4836 2.6111e + 03 118.4743 578.2753
PSO 53.7638 78.9701 174.8225 303.6127
GWO 53.1882 81.0279 167.2639 273.5895
MFO 49.0948 89.4590 180.2627 319.3117
MVO 56.9923 97.0214 179.0167 341.5040

Settling time (sec) PI 0.2211 0.0624 0.3037 0.6571
PSO 0.1101 0.0047 0.1497 0.6581
GWO 0.1111 0.0173 0.1496 0.6637
MFO 0.1087 0.0033 0.1481 0.6378
MVO 0.1110 0.0043 0.1494 0.6570

Fig. 18   Active and reactive 
power of the DFIG wind turbine
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PI controller, it is depicted that optimization techniques 
exhibit excellent steady-state and dynamic performances of 
controllers by using optimized fuzzy controllers. Also by 
comparing the optimized FLC using different optimization 
techniques, it is found that the fuzzy-MFO controller has the 
best performance regarding the step response of controller, 

convergence speed, and best fitness function value. As future 
work, the control of DFIG-based WECS will be extended 
to be a hybrid renewable energy system including photo-
voltaic (PV) solar arrays and energy storage to investigate 
the behavior of the hybrid PV–wind system and adopt an 
appropriate power management strategy.

Appendix 1: Parameters of the 1.5 MW DFIG‑based WECS

DFIG

Vbase = 575 V     P= 1.5 MW              fbase = 50 Hz

Rs = 0.023 p.u.    Rr  = 0.016 p.u.                  ωbase = 2π fbase = 314 rad/s

Ls = 3.08 p.u.      Lr  = 3.06 p.u.                    Lm = 2.9 p.u.

Hgenerator = 0.685S turn ratio Nr /Ns = 3.43 pole pairs = 3

GSC

Vdcrated = 1150 V      Rg = 0.003 p.u. Lg = 0.3 p.u.

Cdc = 10 mF               Rfilter = 50 mΩ      Cfilter = 1 Mf

Two mass drive train

K Shaft spring constant = 1.11 p.u.      D Shaft mutual damping = 1.5 p.u.

variable speed turbine

ωturbine-base = 1.92 rad/s          ωturbine-initial = 1.2 p.u.                     Hturbine = 4.32 s

gearbox ratio = 65.5 m               Tturbine-initial = 0.83 p.u.                    blade radius = 35

m

H height = 65 m                       λoptimum = 8.1 Cp-nominal = 0.48 p.u.

R1 = 0.1153 Ω/km                 L1 = 1.05 mH/km                    C1 = 11.33 nF/km

R0 = 0.413 Ω/km                    L0 = 3.32 mH/km                    C0 = 5.01 nF/km

Transformer (575V/25 kV)

S= 2 MVA                           R = 0.0017 p.u.                       X = 0.05 p.u

Network

V = 25 KV                         Re = 0.0004 p.u.                        Xe = 0.004 p.u
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Appendix 2: The pseudocodes of the optimization techniques

 

PSO
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Appendix 3: Parameters of the optimization 
algorithms

PSO, GWO, MVO, and MFO 

 

Number of optimized variables = 9 

Max_iteration = 100 

The upper bound = 10 

The lower bound = 0 

For PSO, Number of particles = 45 

For GWO, Number of Search Agents = 45

For MVO, Number of Universes = 45

For MFO, Number of Search Agents = 45
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