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Abstract
The rock porosity is considered a key petrophysical property for the rock due to its great impact on the hydrocarbon reserve 
estimation and petroleum economics. The conventional methods for determining the rock porosity either from the logging 
tools, lab measurements for the cored samples, or using empirical correlations from other parameters are costly, time-con-
suming, or did not provide the required level of accuracy. The new horizon for implementing machine learning techniques 
as a new approach for predicting the rock porosity overcomes all of the above drawbacks. Therefore, the objective of this 
research is to develop a new model based on an artificial neural network (ANN) for predicting rock porosity from only drilling 
parameters that include weight on bit, torque, standpipe pressure, drill string rotation speed, rate of penetration, and pump 
rate. The study used two data sets for building the model (3767 data points) and the second one for validating the developed 
ANN model (1676 data points). ANN model was built and optimized with deep sensitivity analysis for the ANN model 
parameters to achieve strong prediction results. ANN model showed a correlation coefficient (R) between the predicted and 
actual porosity values of 0.97 and 0.92 with average absolute percentage errors (AAPE) of 6.2 and 9.3% for training and 
testing, respectively. The model validation enhanced the high prediction performance as ANN achieved R of 0.95 and AAPE 
of 8.5%. The study provides new contributions as predicting the rock porosity for complex lithology formations (sandstone, 
shale, and carbonate), developing an ANN porosity model with a high level of accuracy, and a newly developed ANN-based 
equation for estimating the porosity from only the surface drilling data.
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Abbreviations
ANN	� Artificial neural network
RF	� Random forest
SVM	� Support vector machines
FL	� Fuzzy logic
FN	� Functional networks
R	� Correlation coefficient
AAPE	� Average absolute percentage error
ML	� Machine learning
GR	� Gamma-ray
WOB	� Weight on bit

RPM	� Rotating speed in revolutions per minute
ROP	� Rate of penetration
Q	� Flow rate
SPP	� Standpipe pressure
T	� Torque
Fitnet	� Function fitting neural network
newff	� Create feedforward backpropagation network
newpr	� Create pattern recognition network
trainbr	� Bayesian regularization
trainoss	� One-step secant backpropagation
trainlm	� Levenberg–Marquardt backpropagation
trainbfg	� BFGS quasi-Newton backpropagation
traingdx	� Gradient descent with momentum and adaptive 

learning rule backpropagation
tansig	� Hyperbolic tangent sigmoid transfer function
logsig	� Log-sigmoid transfer function
hardlims	� Hard-limit transfer function
purelin	� Linear transfer function
softmax	� Softmax transfer function
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tribas	� Triangular basis transfer function
satlin	� Saturating linear transfer function

1  Introduction

The porosity as a rock property can be defined as the ratio 
between the void pore spaces in the rock to the total bulk 
volume for the rock, and hence, it represents the rock 
storage capacity for the petroleum fluids in the reservoir 
rock [1, 2]. The accurate estimation for this parameter is 
very critical as it has a great impact on petroleum reserve 
estimation, petroleum economics, and field develop-
ment plans [3–5]. Many technical methods are followed 
for determining the rock porosity as using the downhole 
logging tools for determining the rock porosity and this 
technique is costly due to the cost of the logging opera-
tion and downhole tools; in addition, it might be affected 
by the hole conditions due to the mud contamination [6, 
7]. The lab measurement is the direct way for determining 
the rock porosity and the most accurate approach [8, 9]; 
however, it takes much time and cost for coring the rock 
sample and lab testing and this technique will not provide 
a complete log for the rock porosity [10, 11].

A recent technique is introduced to the field applica-
tions of rock characterization and rock porosity meas-
urement by employing the drilled cuttings; however, the 
technique required special cuttings size and advanced 
sample preparation [12].

Determining the rock porosity from the logs data 
approach was studied in the literature where the rock 
porosity was obtained based on the sonic log or rock den-
sity [13, 14]. Nuclear magnetic resonance measurement 
was introduced for determining the rock porosity [15]. 
However, such techniques required the logging data or 
lab measurements to determine the rock porosity values 
that required extra cost and time.

1.1 � New Machine Learning Applications for Porosity 
Prediction

The applications of machine learning (ML) techniques pro-
vided huge contributions for dealing with petroleum data 
in different disciplines. ML tools such as artificial neural 
networks (ANNs), fuzzy logic (FL), expert systems, sup-
port vector machines (SVMs), functional networks (FN), 
and case-based reasoning provided high performance and 
accurate prediction results[16]. The implementation of such 
tools contributed to solving many technical problems such as 
estimation and optimization of drilling parameters [17–21], 
predicting and monitoring the drilling fluids properties 
[22–27], reservoir fluid properties [28–33], rock density[34], 
rock permeability estimation [35, 36], and rock strength and 
geomechanical properties [37–41].

The porosity prediction by employing artificial intelli-
gence techniques was studied in the literature as shown in 
Table 1. The table shows the input parameters for predicting 
the rock porosity, rock formation type for the study, and the 
ML techniques that were employed to build the prediction 
model.

Studies among the literature investigated the rock poros-
ity prediction using the well-logging data as density, neu-
tron porosity, sonic time, resistivity log, gamma-ray (GR), 
and stratigraphic information [42–44]; however, these logs 
(input parameters) are not available for all wells and requires 
additional logging operations to acquire the log data. In 
addition, the drilling data were employed for predicting the 
formation porosity using drilling parameters as the rate of 
penetration (ROP), pump rate (Q), drill string rotating speed 
(RPM), standpipe pressure (SPP), torque (T), weight on bit 
(WOB), and mechanical specific energy [45, 46]; however, 
these studies are restricted to certain types of formations. 
As shown in Table 1, drilling data were employed but for 
carbonate formation during drilling horizontal well [45], 
and another study for sandstone and shale formations but 
with incorporating the mechanical specific energy as an 
additional input to the drilling data; furthermore, the model 
accuracy was low with a correlation coefficient between the 
predicted and actual porosity values was 0.6 [46].

Table 1   ML applications for porosity prediction

Input parameters Formation Type Methods Ref

Density, neutron porosity, and sonic compressional time Carbonate ANN, SVM, ANFIS [42]
Deep resistivity, density, neutron porosity, and gamma-ray Sandstone Fuzzy, ANN [43]
GR, bulk density, resistivity, neutron porosity, and sonic travel time plus 

lithofacies and stratigraphic information
Carbonate and unconventional ANN [44]

ROP, Q, RPM, SPP, T, WOB Carbonate ANN [45]
ROP, RPM, WOB, T, depth, SPP, Q, and mechanical specific energy Sandstone and shale ANN [46]
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The novel contributions for this research comprise gen-
erating the formation neutron porosity log from only the 
available surface drilling parameters for complex lithology 
drilled rocks with high accuracy using ANN model. The 
current study predicted the porosity using the collected drill-
ing data during drilling complex lithology formations that 
have carbonate, sand, and shale formations. In addition, the 
study presented a newly developed ANN-based equation for 
easy estimation of the rock porosity from the drilling data. 
The obtained model from this study will help to save the 
operational cost and time to log or measure the rock poros-
ity in the lab.

2 � Methodology for Predicting the Rock 
Porosity

This research proposed an ANN prediction model for the 
rock porosity using the drilling data as inputs. The porosity 
profile was generated with a high accuracy using the devel-
oped ANN model for the whole drilled section that contains 
complex formation. Figure 1 represents the methodology 
flow to provide a robust porosity prediction model starting 
from the data gathering from the drilling sensors, followed 
by data preprocessing that includes data cleaning, remov-
ing the outliers, and data smoothing for removing the noise 
to provide the model input parameters with good quality. 
The next phase is to build and optimize the ANN model 
by training and optimizing processes with the trained algo-
rithm. The model accuracy has to be determined to check the 
accuracy level of the model, and if the accuracy is low, then 
a retraining process should be performed to determine the 
optimum model parameters for high accuracy performance 
for the porosity prediction. Once the accepted accuracy is 

achieved, the model parameters will be saved and the results 
will be reported.

2.1 � Data Description and Statistics

The data in this study were collected during a drilling phase 
that covered the intermediate section for vertical wells. 
The drilled formations contain more than one rock type 
as sandstone, shale, and limestone that can be considered 
complex lithologies. The data covered 3767 readings for all 
the drilling parameters with the neutron porosity log after 
the data cleaning and preprocessing were used for building 
the machine learning model. Another data set of 1670 data 
points was collected from the same drilling phase that was 
employed for validating the developed model. The drilling 
parameters include the surface drilling parameters as the 
weight on bit (WOB) in klb, torque (T) in kft.lbf, standpipe 
pressure (SPP) in psi, drill string rotary speed (RPM) in 
min−1, drilling rate of penetration (ROP) in ft/h, and mud-
flow rate (Q) in gpm.

2.2 � Data Statistics and Analysis

The collected data from the drilling sensors suffered from 
operational measurement and tool errors. And hence, the 
data should be preprocessed for removing the missing meas-
urements, noise, and outliers by using a developed MAT-
LAB code to ensure the data quality for developing the AI 
model. Statistical analysis for the cleaned data shows the 
minimum, maximum, mean, and standard deviation for each 
parameter as shown in Table 2.

From the data statistics, the drilling parameters and poros-
ity indicated the wide range for the data that will enhance 
the prediction capabilities of the developed AI model. The 
statistics show that WOB ranged from 1.5 to 26.7 (klbf), T 

Fig. 1   Methodology layout for building ANN model
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from 4.3 to 11.0 (kft.lbf), SPP from 2140 to 3076 psi, pipe 
speed from 77.9 to 162.5 (1/min), ROP from 26.1 to 119.6 
(ft/h), flow rate ranged from 627 to 854 (gpm), and the tar-
get parameter from 0.055 to 0.429 that covered very tight 
rock class to high porous rock scale. Studying the porosity 
data range and frequency showed that the porosity values 
below 0.2 recorded 44% of the total recorded frequency, 
49% of the total frequencies was recorded for the porosity 
values from 0.2 to 0.3, and only 8% from the total frequency 
was observed for the higher porosity values greater than 0.3. 
Hence, the porosity database covered a wide range of rock 
porosity data that enhances the capability of the prediction 
model.

The relationships between the drilling parameters (model 
inputs) and the rock porosity (model output) show a direct 
linear relationship between the porosity and drilling param-
eters as Q, RPM, WOB, ROP, and T with a correlation coef-
ficient (R) of 0.299, 0.233, 0.151, 0.144, and 0.086, respec-
tively. However, the porosity shows a very weak indirect 
relationship with SPP by R of −0.003. as represented in 
Fig. 2. However, it is worth mentioning that the relationship 
between the porosity and drilling parameters might reveal a 
nonlinear relationship.

2.3 � Building and Evaluating the ANN Model

The artificial neural network tool was utilized for solving 
engineering problems by its processing algorithms based on 
interconnected artificial neurons that mimic the biological neu-
ral networks [47, 48]. Three layers represented the common 

architecture for ANN which are the input, hidden, and output 
layers [49]. Weights and biases are utilized in the ANN struc-
ture to link the layers and affect the network performance [50]. 
Different algorithms are used for model training and control-
ling neuron processing [51]. Many researchers studied extract-
ing empirical correlations from the ANN architecture for 
easier applications in the petroleum industry [52, 53]. Many 
parameters were tested to check the impact on the ANN model 
accuracy as the hidden layer/s number, the neurons number, 
network, training, and transfer functions. Figure 3 shows the 
design of the developed ANN model in this study.

The developed model was evaluated by determining two 
statistical parameters which are correlation coefficient (R) and 
average absolute percentage error (AAPE). R and AAPE are 
calculated as follows:

where N is the number of data points in the dataset, Yi is the 
actual output, Ŷ i is the predicted output.
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YiŶi) − (

∑N

1
Yi)(

∑N

1
Ŷ)
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Table 2   Data statistical analysis WOB (klbf) T (kft.lbf) SPP (psi) RPM (1/min) ROP (ft/h) Q (gpm) �

Minimum 1.5 4.3 2140.2 77.9 26.1 627.0 0.055
Maximum 26.7 11.0 3076.0 162.5 119.6 854.0 0.429
Mean 11.8 7.4 2600.9 128.5 65.8 724.9 0.207
Standard Deviation 7.3 1.8 201.4 15.8 18.2 73.4 0.067

Fig. 2   Correlation coefficient of 
drilling data and rock porosity
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3 � Results and Discussion

This section discusses the obtained results from building 
and optimizing the ANN model for the porosity prediction 
from the drilling data.

3.1 � Model Training and Testing

The data were randomly distributed to training and testing 
sets by 70:30% as 2637 data points for training and 1130 
points for the testing set from all the model data set of 3767 
recordings. Optimizing the ANN model parameters was 
achieved by testing several runs for the model to obtain the 
optimum number of neurons, network function, training 
function, transfer function, and the drilling data as inputs. 
Figure 4 illustrates how the impact of changing the number 
of neurons in the hidden layer on the model results of the 
training and testing processes. Changing the neurons number 
from 15 to 30 showed that increasing the number of neurons 
caused increasing the model performance by increasing R 
and reducing AAPE for training and testing data sets. In 
addition, a sensitivity analysis was performed to check the 
impact of changing network function, training function, 
transfer function, and the drilling parameters as shown in 
Figs. 5, 6, 7, 8, respectively.

The best model parameters were recorded for only one 
hidden layer with 30 neurons, function fitting neural network 
(fitnet) as a network function, Bayesian regularization back-
propagation (trainbr) as a training function, hyperbolic tan-
gent sigmoid transfer function (tansig) as a transfer function, 
and employing all the six drilling parameters. The optimized 
ANN model yielded a high correlation coefficient of 0.97 

Fig. 3   The structure of the ANN porosity model

Fig. 4   The impact of changing 
neurons number on ANN model 
results
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and 0.92 with a low AAPE of 6.2 and 9.3% for training and 
testing data sets, respectively, as shown in Fig. 9.

The obtained results showed a high degree of match 
between the actual and the predicted values for the porosity 
profile for the drilled section of different lithology formation 
types as presented in Fig. 10.

3.2 � Model Validation

In order to ensure the practical application for employing the 
developed model, a different data set from the same field that 
has the same penetrated rocks with complex lithology was 
utilized for validating the developed ANN model. A cleaned 

data set (1670 data points) was employed for validating the 
model, and the obtained results showed a strong prediction 
performance for the porosity log from the surface drilling 
parameters. The validation results showed R of 0.95 and 
AAPE of 8.5% for the ANN model as shown in Fig. 11.

3.3 � A Developed Empirical Correlation for Porosity 
Estimation

A new nonlinear relationship was extracted from the weights 
and biases of the developed ANN model. The ANN model 
equation is proposed to be used by non-AI users. To utilize 

Fig. 5   The impact of chang-
ing network function on ANN 
model results

Fig. 6   The impact of chang-
ing training function on ANN 
model results
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Fig. 7   The impact of changing 
transfer function on ANN model 
results

Fig. 8   The impact of drilling 
parameters on ANN model 
results

Fig. 9   ANN model results. (a) 
training (b) testing
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the new ANN model equation, the input values should be 
normalized to be in the range between -1 and 1 as follows:

where Xinor
 represents the normalized value for variable X , 

Xi is the value of variable X , Ximin is the minimum value of 
variable X , Ximax is the maximum value of variable X.

The minimum and maximum values for all variables that 
are used for data normalization are presented in Table 3.

The proposed ANN equation that can be used for poros-
ity prediction in the normalized form is presented in Eq. 4. 
The equation uses the weights and biases that are shown in 
Table 4.

where �ni is the normalized porosity value, N is the number 
of neurons in the hidden layer, i.e., 30, w1i

 is the weight asso-
ciated with each feature between the input and the hidden 
layers, w2i

 is the weight associated with each feature between 
the hidden and the output layers, b1i is the bias associated 
with each neuron in the hidden layer, and b2 is the bias of 
the output layer.

(3)Xinor
= 2*

(
Xi − Xi min

Ximax − Ximin

)

− 1

(4)�ni =

[
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)

)
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]

+ b2

To convert the obtained normalized � to an actual � 
value, Eq. 5 can be used:

4 � Conclusions

This study presented a novel approach for predicting the 
rock porosity from the drilling data during drilling complex 
lithology formations (sandstone, shale, and carbonate) using 
ANN. Two data sets were employed for building the ANN 
model (3763 data points) and the other set for validating the 
developed model (1670 points). The study findings can be 

withdrawn as follows:

•	 ANN model was optimized as 30 neurons, fitnet as a 
network function, trainbr as a training function, tansig 
as a transfer function, and utilizing all the recorded 
drilling parameters.

(5)� =
�n + 1

5.3476
+ 0.055

Fig. 10   ANN porosity model results for the drilled section. (a) train-
ing (b) testing

Fig. 11   ANN MODEL validation results
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•	 The study results for the model showed R of 0.97 and 
0.92 with AAPE of 6.2 and 9.3% for training and test-
ing, respectively.

•	 Validating the developed ANN model proved the strong 
prediction performance for the model with R of 0.95 
with AAPE of 8.5%.

•	 Furthermore, the study presented a newly developed 
empirical correlation for porosity estimation from the 
drilling parameters in real time.

The porosity estimation in real time using the developed 
ANN model will save cost and time for the porosity deter-
mination in reality by employing either the lab measure-
ments or well logging operations.
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Table 3   Minimum and 
maximum values for data 
normalization

WOB (klbf) T (kft.lbf) SPP (psi) RPM (1/min) ROP (ft/h) Q (gpm) ɸ

Minimum 1.5 4.3 2140.2 77.9 26.1 627.0 0.055
Maximum 26.7 11.0 3076.0 162.5 119.6 854.0 0.429

Table 4   Weights and biases for 
the optimized porosity ANN 
model

w1 b1 w2 b2

WOB (klbf) T (kft.lbf) SPP (psi) RPM (1/min) ROP (ft/h) Q (gpm)

1 2.56 0.72 4.78 −2.79 −2.77 −0.11 1.24 −0.77 −0.49
2 −7.08 5.83 4.77 1.41 −3.39 −1.19 1.10 0.57
3 −1.85 1.63 0.32 −1.51 2.25 0.76 0.07 4.13
4 −1.49 3.78 2.09 −2.11 −1.82 0.77 −1.46 −1.52
5 4.82 −1.73 −5.81 4.77 3.64 3.69 −3.75 0.58
6 −3.01 3.39 0.72 −0.03 −0.48 −0.14 −0.76 3.78
7 2.41 −2.47 −0.16 1.13 −1.69 −0.91 0.18 4.09
8 −3.51 1.15 −4.66 2.26 2.04 −0.26 −1.42 −1.03
9 −2.99 1.47 2.59 −3.75 1.83 3.94 0.31 −0.85
10 −5.20 13.62 15.50 11.16 −8.98 8.88 −7.69 0.28
11 0.08 0.89 1.24 −2.19 −2.93 0.26 −0.92 −2.17
12 5.82 −3.87 5.29 −5.51 −8.05 −5.17 3.27 −0.30
13 −0.74 0.27 1.00 −1.45 −1.93 2.16 0.61 −1.62
14 2.13 0.35 0.96 −0.75 1.48 −0.56 −0.45 0.84
15 −4.36 5.47 1.39 −6.01 0.67 5.67 −1.24 0.75
16 −1.31 3.51 −2.18 2.59 0.09 1.60 0.74 1.06
17 −3.57 3.64 0.36 −3.82 −5.25 6.00 −0.08 0.74
18 −0.89 −0.62 −1.03 1.90 1.56 0.14 0.67 −2.45
19 −5.28 3.86 −0.91 6.30 −2.41 −1.36 0.07 3.54
20 −1.34 0.17 −0.40 −3.11 3.34 −0.25 1.58 −0.84
21 −5.79 4.51 −0.93 6.51 −2.89 −1.41 −0.09 −3.25
22 −1.44 1.35 0.14 −1.50 −1.60 0.06 0.14 1.88
23 2.22 −2.68 −0.08 −0.67 0.74 1.22 1.70 5.88
24 0.08 −11.07 7.34 −2.28 −1.25 7.60 −3.08 0.28
25 −3.12 3.35 0.53 −0.38 −2.39 −1.07 −2.83 3.61
26 14.77 −6.55 −0.92 −5.41 9.16 −4.53 2.70 −0.29
27 1.52 −2.52 1.43 −2.89 1.75 −0.93 1.13 1.44
28 −3.96 −1.74 −0.53 2.46 −8.70 4.80 −3.12 0.39
29 3.38 −3.42 −2.02 1.14 −0.99 0.56 0.10 1.58
30 4.08 −4.41 −1.69 4.87 8.74 −9.72 −0.55 0.70
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