RESEARCH ARTICLE-CIVIL ENGINEERING

Investigation of Surface Settlement and Wall Defection Caused by Braced Excavation in Spatially Variable Clays Based on Anisotropic Random Fields

Shun Yi^{1,2,3,4} • Jian Chen^{1,2,3,4,5,6} • Juehao Huang^{1,2,3,4} • Jianbin Li⁷ • Yuefeng Qiu^{1,2} • Weijun You⁸

Received: 4 February 2021 / Accepted: 9 June 2021 / Published online: 24 June 2021 © King Fahd University of Petroleum & Minerals 2021

Abstract

This research aims to assess the infuences of the spatial variability of soil parameters on the ground surface and retaining wall deformation induced by braced excavation. A series of anisotropic random felds are generated and used for the fnite diference analysis in this paper. A procedure for automating the Monte Carlo simulation is employed to ascertain the influences of coefficient of variation and scale of fluctuation (SOF) of soil stiffness parameters on the excavation-induced responses. In addition, the efects of horizontal *SOF* and vertical *SOF* are distinguished in the anisotropic framework. The stochastic results indicate that the presented computational framework is efective in the investigation of excavation-induced deformations. Further probabilistic analyses are performed to evaluate the failure probabilities of surface settlement (SS) and retaining wall defection (RWD). This study shows the importance of addressing the spatial variability of stifness parameters for soil and structure problems. A series of modes for SS and RWD are presented with consideration of the efects of weak stifness regions. The efects of vertical *SOF* on excavation-induced deformations are larger than those of horizontal *SOF*. The concept of vertical *SOF* correlation is proposed to explain that the most scattered result occurs when the vertical *SOF* is close to the size of the excavation. The research can provide a benefcial reference for advance warning of failure or hazard when performing probabilistic assessment of excavation-induced deformations.

Keywords Spatial variability · Anisotropic random feld · Surface settlement · Retaining wall defection · Probabilistic analyses

List of Symbols

 \boxtimes Jian Chen chenjian@whrsm.ac.cn Shun Yi

sunyee_123@163.com

- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- ² School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Hubei Key Laboratory of Geo-Environmental Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- ACF Auto-correlation function
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Soft Soil Research Center, Ningbo University of Technology, Ningbo 315211, People's Republic of China
- ⁵ China-Pakistan Joint Research Center on Earth Sciences, Islamabad, Pakistan
- National-Local Joint Engineering Research Center of Underwater Tunnelling Technology, Wuhan 430063, People's Republic of China
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
- ⁸ China Construction Third Bureau First Engineering Co., LTD, Wuhan 430000, People's Republic of China

1 Introduction

With the population of major cities increasing, more underground engineering works are under construction or will be constructed in the near future. Braced excavation has been used widely. During the advance of an excavation, the retaining wall defection (RWD) and surface settlement (SS) are the key reference to evaluate the safety conditions of underground engineering works and prevent the excavation from failure. In general, the maximum RWD and maximum SS caused by excavation are determined using serviceability limit state (SLS) design [\[1](#page-17-0)] and need to satisfy the limiting values specifed by the local regulatory agency. Table [1d](#page-1-0)emonstrates an example of criteria for excavation-induced responses in Shanghai, China, according to the 'Specifcation for excavation in Shanghai metro construction' [[2](#page-17-1)]. Thus, it is necessary to predict the maximum RWD and SS during the design of a braced excavation.

It is acknowledged that the values of soil parameters exert a signifcant infuence on the soil/wall deformation caused

Table 1 Criteria for the limiting values of excavation-induced responses in Shanghai, China [\[2](#page-17-1)]

Excavation pro-	Limiting values of excavation-induced responses			
tection level	Maximum retaining wall deflection	Maximum sur- face settlement	F_s (basal stability)	
I	$\leq 0.14\% H$	$\leq 0.1\% H$	>2.2	
Н	$\leq 0.3\% H$	$\leq 0.2\% H$	\geq 2.0	
Ш	\leq 0.7% H	$\leq 0.5\% H$	>1.5	

H represents the excavation depth; F_s is the factor of safety against basal heave

by excavations. Thus, it is important to describe the soil parameters accurately. Numerous attempts [[3](#page-17-2)[–5](#page-17-3)] have been made to investigate the responses induced by excavations, but limitations exist in these methods in that soils are usually considered as isotropic and homogeneous materials. In reality, uncertainty prevails in geotechnical engineering. Morgenstern [\[6\]](#page-17-4) divided this uncertainty into three categories: parameter uncertainty, model uncertainty, and human factor uncertainty. Among them, research into geotechnical parameters shows that the parameter uncertainty mainly results from the spatial variability. In this regard, Lumb [[7\]](#page-17-5) proposed the concept of 'spatial variability' of soil parameters and demonstrated that the spatial variability is attributed to the diference in material composition during the sedimentation process and the effects of various uncertain external forces later in the period. Vanmarcke [\[8](#page-17-6)] treated soil parameters as a random feld and established a random feld model encompassing spatial variability. Using the random feld model, many studies have been conducted and reported foci include, e.g., foundation settlement [[9\]](#page-17-7), ground movements caused by tunneling [\[10](#page-17-8)], and slope stability [[11,](#page-17-9) [12](#page-18-0)]. Recently, the random feld model is also employed in the feld of braced excavations. Luo et al. [[13\]](#page-18-1) assessed the infuences of soil spatial variability on excavation-induced responses and identifed the possibility of geotechnical and structural failure in engineering design. Ching et al. [\[14\]](#page-18-2) explored the phenomenon of a worst-case scale of fuctuation (*SOF*) in basal heave analysis for excavation in spatially variable clays. Gholampour and Johari [[15\]](#page-18-3) developed a benefcial method for reliability-based analysis of braced excavation considering the uncertainties involved in the soil–structure interaction. Sert et al. [[16\]](#page-18-4) implemented random fnite element modeling (RFEM) to estimate the wall defection and bending moment of the retaining wall with consideration of the spatial variations of the efective friction angle φ' . Lo and Leung [\[17](#page-18-5)] proposed an approach to obtain improved predictions for a braced excavation on the basis of the Bayesian updating of subsurface spatial variability. According to the aforementioned studies on soil parameters spatial variability, some benefcial works have been conducted in relation to excavations: However, it is noteworthy that most existing studies considering soil parameter spatial variability focus on the isotropic spatial variability, which is inconsistent with site conditions. In reality, anisotropic spatial variability prevails in site. In the framework of anisotropy random felds, the horizontal *SOF* of soil parameter variability is diferent from their vertical *SOF* [[18](#page-18-6)–[20\]](#page-18-7). It is necessary to assess the infuences of anisotropic spatial variability on the excavation-induced deformation responses.

In reality, the anisotropy of soft clay has been considered in geotechnical engineering $[21–26]$ $[21–26]$ $[21–26]$ $[21–26]$. Many attempts have been also made for excavation analyses considering the clay anisotropy: n, ground settlement [\[27\]](#page-18-10), wall defection [\[28](#page-18-11)],

earth pressure [[29\]](#page-18-12), and basal heave stability [\[30–](#page-18-13)[32\]](#page-18-14). It is noted that most of these literature adopted the NGI-ADP model [[25](#page-18-15)], which is an anisotropy shear strength for clay using nonlinear stress path-dependent hardening relationship. In this regard, the random feld in the framework of anisotropy structure is rarely reported in the investigations of excavation-induced responses. In addition, with respect to diferent mechanisms of RWD and SS caused by braced excavation, it remains to be described and explained. Meanwhile, the effects of the anisotropy soil on the probability of failure for RWD and SS should also be investigated in the study of braced excavation-induced responses.

In this paper, the effects of soil parameter spatial variability on the deformation assessments of braced excavation are ascertained, with consideration of anisotropic correlation structures. In the framework of Monte Carlo simulation (MCS), the study establishes anisotropy random feld models to evaluate the influences of coefficients of variability (*COVs*) and scales of fuctuation (*SOFs*) on excavationinduced deformations. Probabilistic analyses are conducted on the basis of stochastic calculations to assess the failure of SS and RWD. The study can provide a reference in the feld of reliability-based design braced excavations, with consideration of soil and structural failure.

2 Numerical Method for Modeling Braced Excavations

2.1 Plastic Hardening‑Small‑Strain Model

According to Puzrin et al. [[33\]](#page-18-16) and Burland et al. [[34](#page-18-17)], the strain of soil in engineering works such as tunnels and braced excavations is mainly concentrated within a narrow range of values. Figure [1](#page-2-0) provides the curves of soil stifness decaying nonlinearly with increasing strain [\[35](#page-18-18)]. On a

Fig. 1 Characteristic stifness-strain behavior of soil with typical strain ranges for laboratory tests and structures [[35](#page-18-18)]

logarithmic scale, stifness reduction curves exhibit a characteristic S-shape; the small-strain behavior shall be considered in the study of soil and structure responses induced by excavation. In this regard, the small-strain characteristics have been considered in many studies of braced excavations [[36](#page-18-19)[–38\]](#page-18-20). Thus, the plastic hardening-small-strain model ('PH-SS model') is adopted to simulate the constitutive relationship of clay in this study. The PH-SS model is based on the hardening soil model, which can approximate the observed stress–strain behavior in clays, using Eq. [\(1](#page-3-0)):

$$
\varepsilon_1 = \frac{1}{E_i} \cdot \frac{q}{1 - q/q_a} \tag{1}
$$

where q_a denotes the asymptotic value of the deviatoric stress and E_i is the initial soil Young's modulus at a very low-strain $(< 10^{-6})$. To account for the small-strain characteristic, the initial or very small-strain shear modulus G_0 and the shear strain level $\gamma_{0.7}$ are additionally taken into account in $FLAC^{3D}$ software [\[39](#page-18-21)]. The two parameters can be employed to address the small-strain stifness via Eq. [\(2](#page-3-1)):

$$
\frac{G}{G_0} = \frac{1}{\left(1 + 0.385 \cdot \left| \gamma / \gamma_{0.7} \right| \right)^2}
$$
 (2)

The soil parameters affect the excavation-induced deformation of soil. Hence, significant importance shall be attached to determining parameters of the PH-SS model. Previous research [\[40\]](#page-18-22) was carried out to present a method of determination of parameters for clay layers based on laboratory tests. As an alternative, the empirical equations provided in the reference of $FLAC^{3D}$ Version 6.0 [\[39](#page-18-21)] are used in this study, as shown by Eq. (3) (3) :

$$
9 \cdot E_{oed}^{ref} = 9 \cdot E_{50}^{ref} = 3 \cdot E_{ur}^{ref} = G_0^{ref} \tag{3}
$$

For simplicity, the paper conducts the studies in a single clay layer while ignoring the infuence of soil layering. The clay parameters are listed in Table [2](#page-3-3).

2.2 Numerical Model

Inspired by an example in the literature [\[39\]](#page-18-21), a two-dimensional numerical model for the braced excavation is developed to study the SS and RWD. In reality, the numerical model is pseudo-two-dimensional with a size of 35 m (*x* axis) \times 2 m (*y* axis) \times 20 m (*z* axis). Figure [2](#page-3-4) illustrates the geometry of the numerical model for braced excavations

Fig. 2 Braced excavation model and its size

under plane-strain conditions. Due to the symmetry of the braced excavation cross section, only half of the excavation is used for modeling. The fnal depth of excavation is 6 m from the surface $(H=6 \text{ m})$ and its half-width is 7 m $(B=7 \text{ m})$. It is noted that the geometry of the model $(35 \text{ m} \times 20 \text{ m})$ meets the requirements for minimizing the boundary effect according to the Saint-Venant principle. The diaphragm walls extends to 12 m depth and are braced at the top by horizontal struts at a 2-m interval. With reference to the technical specifcations for a braced excavation, the vehicles and related personnel around the braced excavation are simplifed to a uniform applied pressure of 20 kPa.

The PH-SS model is utilized to simulate the elastoplastic behavior of soil. Additionally, the soil is assumed to be completely without precipitation throughout the area to be excavated. In this regard, the area to be excavated is regarded as being in an undrained state.

The retaining system for a braced excavation typically consists of retaining walls and strut components. In this study, the liner element is used to simulate retaining wall, and the beam element is employed to represent structural components. Only the frst support for braced excavation is considered in the numerical model. It is noted that the equivalent thickness of the wall is 0.51 m with its equivalent Young's modulus being 24 GPa. In addition, the equivalent modulus of internal support is set to 30 GPa. Tables [3](#page-4-0) and [4](#page-4-1) list the parameters of the retaining wall and internal support, respectively.

The average value of the shear strength for interface element between soil and wall is used here. Due to the spatial variability of soil properties, the stifness of the adjacent soils varies with spatial position. In the code in FLAC^{3D}

Table 2 PH-SS model $parameters: soft clay$

Attributes	Density/ $kg \, \text{m}^{-3}$	Young's modulus/ GPa	Poisson's ratio	Equivalent thickness/m
Values	2500	24	0.2	0.51

Table 4 Internal support parameters

[\[39\]](#page-18-21), the normal stiffness K_n and the shear stiffness K_s can demonstrate the deformation performance of the interface element. If both stifnesses are set too low, the interface element will be deformed too much and will penetrate the adjacent soils too much, rendering the simulation results unreasonable. If the values are high, it will cause difficulties in convergence. In this regard, the suggested values of interface stifness are given as follows:

$$
K_n = K_s = 10 \times \frac{K + \frac{4}{3}G}{\Delta z} \tag{4}
$$

where $K + 4G/3$ represents the compression stiffness, K and *G* denote the average values of the soil bulk stifness and shear stiffness, respectively. Δz is the element size on the low-stifness side among the adjacent soil elements.

In this study, the excavations are conducted as follows:

Step 1. Generate the initial stresses in a convergent state; Step 2. Activate the liner element;

Step 3. Excavate the soil of the braced excavation to 2 m below the surface;

Step 4. Activate the beam element;

Step 5. Continue to excavate the soil to 6 m below the surface.

Figure [3](#page-4-2) shows the results of RWD and SS induced by braced excavation in a deterministic framework. For the RWD, it appears convex. The maximum value of RWD is −26.25 mm, about 0.44% of the excavation depth. It is noted that the maximum RWD occurs around the base. Meanwhile, the maximum SS is located 4.5 m away from the wall. The maximum SS is -15.29 mm, about 0.26% of the excavation depth. Based on the calculated results, the ratio between the maximum RWD and SS is 1.72. Additionally, the settlement value extends to the side away from the retaining wall and gradually tends to be stable, while the settlement of soil close to wall is relatively large due to the weight of the retaining wall.

3 Random Finite Diference Method

3.1 Generation of Random Field in Clays

The inherent spatial soil variability is one of the main sources of uncertainty in geotechnical problems because of depositional and post-depositional processes. With an attempt to address the spatial variability of soil properties, Vanmarcke [\[8](#page-17-6)] proposed a method of establishing random felds. One of the efective approaches to generating a random feld is taking the prescribed auto-correlation functions (ACFs) into account using the covariance matrix decomposition method (CMDM) [[41](#page-18-23)]. The method is employed for its simple implementation and high accuracy for a small simulated domain, making it suitable for excavation-induced deformation, herein. In this regard, the CMDM is used in this paper.

In the implementation of CMDM, the mean, coefficient of variation (*COV*), and *SOF* of the soil parameters shall

Fig. 3 Deformation induced by braced excavation in a deterministic framework

be frstly specifed for characterizing a random feld. The stationary random feld is generated to simulate a homogeneous soil layer in this paper. Meanwhile, the lognormal Gauss random feld is utilized to describe the soil parameter spatial variability for its nonnegativity. To determine the spatial correlation of geotechnical parameters in both vertical and horizontal directions, an anisotropic random feld identifed by exponential auto-correlation function (ACF) is used, associating with the horizontal and vertical *SOFs*. Studies [[18,](#page-18-6) [20\]](#page-18-7) found that the parameters of natural soils are spatially anisotropic due to their geological deposition processes, illustrating that the horizontal *SOF* is generally 10–80 m, and the vertical *SOF* is 1–3 m. The anisotropic coefficient ξ is used to describe the transversely isotropic correlation framework.

A uniform clay layer is discretized into $m \times n$ quadrilateral elements. Figure [4](#page-5-0) depicts the discretization for random felds, where *m* and *n* denote the number of elements in each direction, respectively, and (x_i, z_j) denotes the coordinates of the centroid of each element, $i = 1, 2$, $..., m, j = 1, 2, ..., n$. The single exponential ACF is used to elucidate the correlation between diferent points in clay, as follows:

$$
\rho(\tau_x, \tau_z) = \exp\left[-2 \times \left(\frac{|\tau_x|}{\theta_x} + \frac{|\tau_z|}{\theta_z}\right)\right]
$$
\n(5)

where τ_r and τ_r represent the absolute distance between any two spatial points in horizontal and vertical directions, respectively, and θ_x and θ_z denote the horizontal and vertical *SOFs*. Then, the auto-correlation coefficient can be calcu-lated using Eq. [\(5](#page-5-1)), and the auto-correlation matrix $C_{n \times n}$ is written as follows:

(x_1,z_1)	(x_1, z_2)		(x_1,z_{n-1})	(x_1,z_n)
(x_2,z_1)	(x_2,z_2)		(x_2,z_{n-1})	(x_2,z_n)
		(x_i,z_j)		
(x_{m-1},z_1)	(x_{m-1},z_2)		(x_{m-1}, z_{n-1})	(x_{m-1}, z_n)
(x_m,z_1)	(x_m,z_2)		(x_m,z_{n-1})	(x_m,z_n)

Fig. 4 Discretization for random felds

 $\stackrel{\circ}{\mathbb{Z}}$ Springer

$$
C_{n\times n} = \begin{bmatrix} 1 & \rho(1,2) & \cdots & \rho(1,n) \\ \rho(2,1) & 1 & \cdots & \rho(2,n) \\ \vdots & \vdots & \ddots & \vdots \\ \rho(n,1) & \rho(n,2) & \cdots & 1 \end{bmatrix}
$$
(6)

where ρ represents the auto-correlation coefficient between any two centroid points.

Since $C_{n \times n}$ is a positive definite symmetric matrix, the Cholesky decomposition technique is used to decompose $C_{n \times n}$ into the product of a lower triangular matrix *L* and its corresponding transpose:

$$
C_{n \times n} = L \cdot L^T \tag{7}
$$

where L^T denotes the transpose of the matrix *L*. Then, a realization of the auto-correlated standard Gaussian random feld can be deduced according to:

$$
Z = L \cdot Y \tag{8}
$$

where *Y* is a vector randomly generated. Using the regenerated *Y*, the Gaussian random feld can be derived.

To incorporate the random feld model into numerical model, the finite difference code FLAC^{3D} is used herein. With the built-in FISH language, FLAC^{3D} can identify the positions of the discretized elements according to the proximity principle between numerical elements and random feld coordinates, thereby realizing the mapping of an independently generated random feld model to the numerical model.

In this paper, $E_{\text{oed}}^{\text{ref}}$ is considered as a spatially variable parameter. On the basis of Eq. [\(3](#page-3-2)), other stifness parameters are derived to indicate the corresponding stifness random feld.

3.2 Calculation of the Probability of Failure

Since random felds are used to describe the spatial variability of soil parameters, the responses of excavation-induced deformation can become stochastic. In this paper, MCS is adopted to generate N_s realizations of random fields for stochastic calculation and to perform a subsequent reliability analysis of structure and soil responses. To cope with such stochastic problems, the probability of failure (P_f) is employed to express the possibility of excavation-induced deformation. The method of calculating P_f can be expressed as follows:

$$
P_f = P[Z < 0] = \frac{1}{N} \sum_{i=1}^{N} I[Z < 0] \tag{9}
$$

$$
Z = S_{\rm sto} - S_{\rm lim} \tag{10}
$$

Fig. 5 Flowchart through of MCS for excavation-induced responses

where *Z* is the serviceability limit state function (LSF), in which S_{sto} is the response of stochastic calculation and S_{lim} refers to the limiting value of the corresponding response, *N* denotes the number of MCS, and *I*[–] represents the indicator function. When $Z < 0$, $I[-]$ is 1, otherwise zero.

3.3 Implementation Procedure of RFDM for Reliability Analysis

Here, random feld theory and numerical analysis are combined to investigate the infuences of clay property spatial variability on the responses of soil and structure deformation induced by excavation. Based on the aforementioned introduction of the proposed methods, i.e., RFDM, more details of the implementation procedure are outlined as below:

Step 1: Determine the values of the clay parameters, uncertain clay properties, their salient statistical parameters, and the numerical model geometry.

Step 2: Discretize the numerical model, and generate a random feld model in the same size of the corresponding numerical model.

Step 3: Perform N_s MCS to obtain different stochastic results, including the values of RWD and SS.

Table 5 Calculated cases of stochastic analyses

4066 Arabian Journal for Science and Engineering (2022) 47:4059–4077

The excavation depth *H* is 6 m. ξ represents the anisotropy coefficient, $\xi = \theta_x/\theta_z$

Step 4: Discuss the infuences of *SOFs* and *COVs* of soil stifness on the RWD and SS, then investigate the probability of failure of excavation-induced deformations.

Figure [5](#page-6-0) shows the flowchart for excavation-induced deformation assessment using the RFDM.

4 Stochastic Analysis for the Braced Excavation

In this section, stochastic responses for SS and RWD induced by excavations are illustrated. A series of anisotropic random fields (θ _x \neq θ _z) are generated to identify the infuences of both the *COVs* and the *SOFs* on the excavationinduced responses.

Based on the literature [[18,](#page-18-6) [20\]](#page-18-7), the horizontal and vertical *SOFs* of soil stifness lie in the range of 10–80 m and 1–3 m, respectively. In this regard, this subsection evaluates the responses caused by excavation for the baseline case in the conditions of $\theta_r = 4.8H = 28.8$ m, $\theta_z = 0.3H = 1.8$ m, and *COV*=0.3. To assess the efects of *COVs* and *SOFs* on the responses, a series of cases are investigated under diferent combinations of *COVs* and *SOFs* (Table [5](#page-7-0)).

Before conducting MCS, the number of simulations is determined. Figure [6](#page-8-0) shows the means and *COVs* of maximum deformations (i.e., SS and RWD, the same below) with the numbers of simulations. It can be found that the means and *COVs* of both maximum SS and maximum RWD tend to

 $\bigcircled{2}$ Springer

be stable when N_s reaches 1000; thus, $N_s = 1000$ is adopted here.

4.1 Infuences of SOFs on Excavation‑Induced Deformation Responses

In this subsection, *SOFs* are paid enough attention in the feld of deformations infuenced by spatial variability of soil parameters. It is noted that both horizontal and vertical *SOFs* arise in engineering practice; thus, both *SOFs* are considered here. For excavation-induced responses, a series of cases, named MCS-z1 to MCS-z6, are analyzed to identify the infuences of vertical *SOFs* while the cases (MCS-x1 to MCS-x6) are analyzed to study the efects of horizontal *SOFs*.

Figure [7](#page-9-0) shows the stochastic results corresponding to cases MCS-z1, MCS-z4, and MCS-z6. For better comparison, the deterministic results are also shown with the black line while the stochastic results are denoted by the gray line. As shown in Fig. [7,](#page-9-0) the stochastic results exhibit a trend of aggregation with an increase in the values of *ξ* (corresponding to the decrease of vertical *SOFs*); however, the *SOFs* exert no infuence on the shape of the deformation curve. The stochastic calculated results fuctuate around the solutions obtained by deterministic calculation. Overall, the stochastic results in majority are larger than those obtained in the deterministic scenario, which is mainly due to the dominant efects of low stifness and the asymmetry of the logarithmic random distribution of stifness. It is noted that

(a) Mean of maximum deformation

(b) *COV* of maximum deformation

Fig. 6 Mean and *COV* of maximum deformation

the stochastic results in the analysis of cases MCS-z1 to MCS-z6 are similar to those obtained when analyzing cases MCS-x1 to MCS-x6. Meanwhile, the stochastic results are more infuenced by vertical *SOFs* than by horizontal *SOFs*.

Based on the Monte Carlo method, 1000 simulations have been conducted for all cases. It can be observed from Fig. [7](#page-9-0) that the maximum deformations obtained by any stochastic calculation are diferent. In this regard, statistical analysis is conducted to identify the efects of *SOFs* on the excavationinduced maximum deformations. Figure [8](#page-10-0) shows the infuences of *SOFs* on the mean values and *COVs* of maximum deformations. Mean values of both the SS and the RWD are less afected by the *SOFs* of the soil stifness, which indicates the maximum deformations are generally the same in the 'average sense' of the infuences of *SOFs*. Further to investigate the 'average sense' of the maximum deformation,

the entire 1000 simulations are analyzed here. It is assumed that both the soil stifness and maximum deformation follow the lognormal distribution. For the lognormal distribution $(Y = \ln X - N(\mu_{ln}, \sigma_{ln}^2))$, its characteristic values and those of the normal distribution can be mutually inter-converted $(Table 6)$ $(Table 6)$.

For soil stifness *E*, ln *E* follows a normal distribution with mean and standard deviation given by:

$$
\sigma_{\text{ln}}^2 = \ln(1 + \sigma^2/\mu^2) \n\mu_{\text{ln}} = \ln(\mu) - \frac{1}{2}\sigma_{\text{ln}}^2
$$
\n(11)

According to the literature [[9\]](#page-17-7), since the soil stifness follows a lognormal distribution, the probability that the stifness is less than the average value of stifness is greater than 50% in random feld model of the soil stifness. It is recommended that engineers use the geometric mean stifness as the equivalent characteristic stifness. It can be seen from Table [6](#page-10-1) that the average soil stifness is greater than its geometric mean; thus, the results obtained by using the average value of soil stifness are lower than the results using the geometric mean. The expression of geometric mean shows it is independent of the *SOF*, but is related to the standard deviation (or *COV*), which further explains the conclusion that the mean of the maximum deformations is independent of the *SOF*.

For the *COVs* of maximum deformations in Fig. [8](#page-10-0)b, they show a tendency to increase as the *SOFs* (horizontal and vertical) increase. The infuences of vertical *SOFs* on the *COVs* of maximum deformations are found to be greater than those of horizontal *SOFs*. When the vertical *SOFs* lie in the range of 0.6*H* to 2.4*H*, the *COV* of SS shows a relatively smooth trend with the anisotropy coeffcient *ξ* while that of RWD does not show any abnormalities, as defned by the correlation of vertical *SOF*. When the vertical *SOFs* are close to the size of the excavation, the probability that high-stifness regions and low-stifness regions occur in the excavation area increases, making the excavation-induced response more broadly scattered. It is noted that the infuences of vertical *SOFs* on SS and RWD are diferently, perhaps as a result of the diference in stifness between the soil and the wall.

Figure [9](#page-11-0) shows the location of maximum deformation considering diferent *SOFs*. It is observed that the location of maximum SS mainly lies in the range of 0.8*H* to 0.9*H* with those of RWD around the base. Meanwhile, with increasing anisotropy coefficient ξ (the decrease of vertical *SOFs*), the scatter degree of maximum SS and its location frst decreases, then increases. In the case of *SOF* corresponding to the size of the excavation, the scatter of SS is the greatest, consistent with the correlation of vertical *SOF*. For the RWD, its location becomes more concentrated with increasing anisotropy coefficient ξ , which is

 (c) MCS-z6

Fig. 7 Retaining wall defection and surface settlement under diferent *SOFs*

 $\underline{\textcircled{\tiny 2}}$ Springer

(a) The means of maximum deformations

(b) The *COVs* of maximum deformations

Fig. 8 Efects of *SOF* on the means and *COVs* of maximum deformations

Table 6 Characteristic values of the lognormal distribution

Average value (arithme- Median Common value Geometric mean tic mean)		
$\exp(\mu_{\ln} + {\sigma_{\ln}}^2/2)$	$\exp(\mu_{\text{ln}}) \exp(\mu_{\text{ln}} - \sigma_{\text{ln}}^2) \exp(\mu_{\text{ln}})$	

diferent from the infuence on SS. This may be due to the diference in stifness between the soil and the wall. Based on the locus of maximum RWD (Fig. [9](#page-11-0)b), two modes of RWD are presented in this subsection, as shown in Fig. [10.](#page-11-1)

Mode 1: The location of maximum RWD is above the base, as shown in Fig. [10a](#page-11-1). Due to the inhomogeneity of strong regions and weak regions, diferent loci of maximum RWD may occur. The weak region occurs above the base and the base below tends to be stronger, making it difficult to transfer displacement to the base below.

Mode 2: The location of maximum RWD lies below the base, as shown in Fig. [10](#page-11-1)b. The strong region of unloading stifness lies above the base while the weak region is below the base. In this regard, more deformation is assigned to the area below the wall.

Figure [11](#page-12-0) shows the variations of the ratios between maximum SS (δ_{vm}/H) and maximum RWD (δ_{hm}/H) for different *SOFs*, corresponding to MCS-z1, MCS-z4, and MCS-z6. It shall be shown that the maximum SS (δ_{vm}/H) and the maximum RWD (δ_{hm}/H) are dimensionless. This study uses a range angle α to describe the degree of scatter of the ratios between δ_{vm}/H and δ_{hm}/H . In all the cases, the ratios between δ_{vm}/H and δ_{hm}/H are distributed within a particular range. As an example, *α* is 13.74°, 10.90°, and 9.95° at *ξ*=2, 16, and 64, respectively. With increasing *ξ*, the vertical *SOFs* decrease, the range angle α decreases, and the average ratios between the two deformations (δ_{vm}/H and δ_{hm}/H) tend to increase. This may be explained by the fact that more soil displacement will be assigned to surface settlement instead of horizontal displacement for such a braced excavation in variable clays. Compared to the deterministic result (1.72), the ratios between δ_{vm}/H and δ_{hm}/H calculated in a stochastic framework vary widely, with a bigger value in the 'average sense'. This may result from the inhomogeneity of strong regions and weak regions and it indicates that the ratios between δ_{vm}/H and δ_{hm}/H will be underestimated if the spatial variability of soil properties is not considered.

As illustrated, the deformed curves may be stochastic due to the inhomogeneity of soil stifness. In this regard, four modes corresponding to diferent combinations of SS and RWD are proposed by comparing data with the deterministic results. It is noted that the most scattered results may be obtained in the case when *SOF* corresponds to the size of the excavation. Thus, scenario MCS-z2 is taken as an example to illustrate the modes of deformation of SS and RWD. Figure [12](#page-13-0) shows four modes of SS and RWD by comparing the data with deterministic results. Mode 1 indicates that the SS and RWD are both more deformed than their deterministic results. This can be explained that the weak region of soil stifness is widely distributed in the area around the excavation, increasing the values of SS and RWD. Mode 2 represents a larger SS and a smaller RWD while the opposite results arise in Mode 3, which results from the inconsistent distribution of weak regions and strong regions (or intermediate regions) on the two sides of the retaining wall. Mode 4 denotes the scenario wherein smaller values of SS and RWD are obtained in the stochastic calculation when strong regions are located around the excavated areas. In general, the inhomogeneity of strong regions and weak regions leads to diferent modes for SS and RWD.

(a) Surface settlement **(b)** Retaining wall deflection

(a) Mode 1 corresponding to the case in which the maximum RWD occurs above the base

(b) Mode 2 corresponding to the case in which the maximum RWD occurs below the base

Fig. 11 Relationship between maximum SS and maximum RWD

4.2 Infuences of COVs on Excavation‑Induced Deformation Responses

As can be imagined from engineering experience, the *COV* of soil stifness will afect the characterization of soil spatial variability, which subsequently infuences the excavationinduced responses. A series of cases, as shown in Table [5](#page-7-0) (from MCS-v1 to MCS-v5), are analyzed to study the corresponding infuence.

Figure [13](#page-14-0) shows the calculated results when *COV*=0.1, 0.3, and 0.5, corresponding to MCS-v1, MCS-v3, and MCSv5, respectively. It is noted that three cases of *COV*=0.1, 0.3, and 0.5 indicate three levels of soil stifness variability (low, moderate, and high). As the *COV* increases, the degree of scatter of curves increases accordingly, whether they are plots of SS or RWD. However, the shape of the curve does not vary with the variation of *COV*, which is consistent with the result obtained in the study of *ξ*. These conclusions might result from the soil spatial correlation, indicating the distributions of low-stifness areas and high-stifness areas. The correlation of soil stifness shows a decreasing trend with an increase in *COVs*.

Figure [14](#page-15-0) illustrates the infuences of *COVs* on the mean values and *COVs* of maximum deformations. The results associated with the mean values of maximum deformation are opposite thereto: the surface settlement increases slightly while the results for the retaining wall show a slight decreasing trend with increasing *COV*. This is in line with the aforementioned conclusion. From the expression of geometric mean given in Table [6](#page-10-1), it is noted that this value is independent of the *SOF* of the stifness, only the standard deviation (or *COV*) thereof. For the *COVs* of maximum deformation in Fig. [14](#page-15-0)b, both results increase in a quasi-linear manner with an increase in soil stifness *COV*.

Figure [15](#page-15-1) shows the location of maximum deformation in diferent cases. The location of maximum SS occurs in the range of 0.6–0.8*H* while that of maximum RWD is distributed around the base. With the increase of *COVs*, the location of maximum SS broadens. The same conclusion is manifest for the maximum values of RWD.

Figure [16](#page-16-0) describes the relationship between the maximum SS and the maximum RWD in diferent cases with the variations of *COVs*. As shown in the aforementioned study, some similar conclusions can be drawn with regard to the infuences of *COVs* on these ratios. An increasing trend in angle α , corresponding to the increase of its degree of scatter, can be found as the *COV* increases. For a given *SOF*, the average ratios between δ_{vm}/H and δ_{hm}/H are found to increase as the *COV* increases. It is noted that the infuence of *ξ* (or *SOFs*) is more moderate, compared to the efects of *COVs*. In addition, similar to the study on the influences of *SOFs*, the ratios between δ_{vm}/H and δ_{hm}/H will also be underestimated if the spatial variability of soil properties is ignored.

5 Probability Analysis for Deformations Induced by Excavation

In the stochastic calculations, the deformation results for the surface and retaining wall obtained from each MCS are diferent. Thus, it is necessary to study the characteristics of SS and RWD caused by excavation using probabilistic analysis.

The baseline case ($COV = 0.3$, $\theta_r = 4.8H = 28.8$ m, θ _z = 0.3*H* = 1.8 m) is selected for reliability analysis. Meanwhile, based on the baseline case, three groups of cases (MCS-z, MCS-x, and MCS-v) are analyzed to study the infuences of vertical *SOFs*, horizontal *SOFs*, and *COVs* on the excavation-induced stochastic responses.

Figure [17](#page-16-1) shows the frequency histogram of maximum values of the deformations and their cumulative distribution functions in the baseline case. By observing the results, the average value of maximum SS is−14.92 mm while the mean of the maximum RWD is -26.56 mm. It is noted that the average maximum SS is slightly less than

Fig. 12 Four modes of SS and RWD compared with the deterministic results

the corresponding deterministic result (-15.29 mm) while the average maximum RWD is slightly larger than that in the deterministic calculation (-26.25 mm) . This may be explained by the inhomogeneous distribution of the soil strength, especially in zones of weakness [[9](#page-17-7), [42](#page-18-24)]. With the infuence of the weak region, soil is more assigned to the direction of the retaining wall in its displacement feld, increasing the value of RWD.

 (c) MCS- $v5$

Fig. 13 RWD and SS under different *COVs* (ξ = 16, θ_x = 4.8*H*, θ_z = 0.3*H*)

(b) *COVs* of maximum deformation

Fig. 14 Efects of the *COVs* of stifness on the *COVs* and mean values of maximum deformation

It is acknowledged that risks of excessive deformation may occur during the construction of braced excavation. Thus, it is necessary to determine safe limiting values of excavation-induced deformation. This study performs probability analyses of the maximum deformations based on 1000 runs of the MCSs. As provided in Eqs. ([9\)](#page-5-2) and [\(10](#page-5-3)), P_f and LSF are used to address the problem. Figure [18](#page-17-10) compares the probability of failure estimated at a series of limiting deformations (i.e., SS and RWD) at various combinations of *COVs* and *SOFs*. For Fig. [18a](#page-17-10), b, this section just shows the solutions resulting from variations in vertical *SOFs*. Overall, the probability of failure by excessive deformation can be overestimated or underestimated when ignoring the spatial variability of soil properties. Additionally, it is found that P_f decreases with the limiting SS or RWD at different combinations of *COVs* and *SOFs* (or *ξ*). Nevertheless, *COVs* and *SOFs* can dominate the rate of decrease of P_f . As the *SOFs* increase (*ξ* decreases), the maximum deformations vary more widely, and the probability of exceeding limiting values increases accordingly. In this regard, a similar conclusion can be obtained with an increase in *COVs*.

Figure [18](#page-17-10) provides a beneficial reference for an assessment of maximum SS or maximum RWD before the construction of a braced excavation.

6 Conclusion

This study presents the effects of spatial variability of soil stifness on the braced excavation in clays using the RFDM. Attention is mainly paid to *SOFs* (including horizontal and vertical variations thereof) and *COVs* when illustrating the spatial variability. The spatial variability of soil properties is modeled in the framework of random feld theory using a series of combinations of *SOFs* and *COVs*. On the basis of

(a) Surface settlement **(b)** Retaining wall deflection

Fig. 16 Relationship between maximum SS and maximum RWD

Fig. 17 Histogram of maximum deformations induced by excavation

the results presented in this study, several conclusions are drawn and summarized as follows:

- 1. Combining the small-strain characteristics of the soil and the spatial variability of soil properties, an algorithm is developed to facilitate the FDM-based probabilistic assessment in the framework of MCS.
- 2. The efects of weak stifness region: a series of modes for RWD and SS are proposed in the paper. In addition, the average maximum SS is slightly less than the corresponding deterministic result while the average maximum RWD is slightly larger than that in the deterministic calculation. These may be explained by the inhomogeneous distribution of the soil stifness, especially in zones of weakness.
- 3. The efects of anisotropic random feld: the efects of vertical *SOFs* on the excavation-induced responses are

(a) Maximum surface settlement **(b)** Maximum retaining wall deflection

greater than those of horizontal *SOFs*. In the paper, the correlation of vertical *SOF* is proposed to explain that the most scattered result occurs when vertical *SOF* is close to the excavation size, which does not occur when investigating the infuence of horizontal *SOF*.

In the present research, some useful conclusions have been drawn in the investigation of the excavation-induced deformations in spatially variable clays; however, only the frst support of such a braced excavation is considered and the analysis of the base has not been involved, thus allowing scope for future research.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos 51909259, 52079135, and 52008122), the International Partnership Program of Chinese Academy of Sciences (Grant No. 131551KYSB20180042), the Science and Technology R & D Project of China State Construction International Holdings Limited (No. CSCI-2020-Z-21), and Ningbo Public Welfare

Fig. 18 Infuences of spatial variability on the probability of exceeding the specifed limiting deformations at various combinations of *SOF* (or *ξ*) and *COV*

Science and Technology Planning Project (No. 2019C50012). The authors are also grateful to the reviewers and editors for their valuable comments and suggestions.

References

- 1. Kung, G.T.C.; Hsiao, E.C.L.; Schuster, M.; Juang, C.H.: A neural network approach to estimating deflection of diaphragm walls caused by excavation in clays. Comput. Geotech. **34**(5), 385–396 (2007)
- 2. PSCG.: Specifcation for excavation in Shanghai metro construction. Shanghai, China: Professional Standards Compilation Group (2000)
- 3. Zheng, G.; Yang, X.; Zhou, H.; Du, Y.; Sun, J.; Yu, X.: A simplifed prediction method for evaluating tunnel displacement induced by laterally adjacent excavations. Comput. Geotech. **95**(3), 119– 128 (2018)
- 4. Kung, G.T.C.; Juang, C.H.; Hsiao, E.C.L.; Hashash, Y.M.A.: Simplifed model for wall defection and ground-surface settlement

caused by braced excavation in clays. J. Geotech. Geoenviron. Eng. **133**(6), 731–747 (2007)

- 5. Zhang, W.G.; Goh, A.T.C.; Xuan, F.: A simple prediction model for wall defection caused by braced excavation in clays. Comput. Geotech. **63**, 67–72 (2015)
- 6. Morgenstern, N.R.: Performance in geotechnical practice. HKIE Transactions **7**(2), 2–15 (2000)
- 7. Lumb, P.: The variability of natural soils. Can. Geotech. J. **3**(2), 74–97 (2011)
- 8. Vanmarcke, E.H.: Probabilistic modeling of soil profles. J. Geotech. Eng. Div. **103**, 1227–12446 (1977)
- Fenton, G.A.; Griffiths, D.V.: Three-dimensional probabilistic foundation settlement. J. Geotech. Geoenviron. Eng. **131**(2), 232–239 (2005)
- 10. Cheng, H.Z.; Chen, J.; Li, J.B.: Probabilistic Analysis of Ground Movements Caused by Tunneling in a Spatially Variable Soil. Int. J. Geomech. **19**(12), 04019125 (2019)
- 11. Grifths, D.V.; Asce, F.; Huang, J.S.; Asce, M.; Fenton, G.A.: Infuence of spatial variability on slope reliability using 2D random felds. J. Geotech. Geoenviron. Eng. **135**(10), 1367–1378 (2009)

- 12. Cheng, H.Z.; Chen, J.; Chen, R.P.; Chen, G.L.; Zhong, Y.: Risk assessment of slope failure considering the variability in soil properties. Comput. Geotech. **103**, 61–72 (2018)
- 13. Luo, Z.; Li, Y.; Zhou, S.; Di, H.: Efects of vertical spatial variability on supported excavations in sands considering multiple geotechnical and structural failure modes. Comput. Geotech. **95**, 16–29 (2018)
- 14. Ching, J.Y.; Phoon, K.K.; Sung, S.P.: Worst case scale of fuctuation in basal heave analysis involving spatially variable clays. Struct. Saf. **68**, 28–42 (2017)
- 15. Gholampour, A.; Johari, A.: Reliability-based analysis of braced excavation in unsaturated soils considering conditional spatial variability. Comput. Geotech. **115**, 103163 (2019)
- 16. Sert, S.; Luo, Z.; Xiao, J.; Gong, W.; Juang, C.H.: Probabilistic analysis of responses of cantilever wall-supported excavations in sands considering vertical spatial variability. Comput Geotech. **75**, 182–191 (2016)
- 17. Lo, M.K.; Leung, Y.F.: Bayesian updating of subsurface spatial variability for improved prediction of braced excavation response. Can. Geotech. J. **56**(8), 1169–1183 (2019)
- 18. Phoon, K.K.; Kulhawy, F.H.: Evaluation of geotechnical property variability. Can Geotech J. **129**(4), 625–639 (1999)
- 19. Phoon, K.K.; Kulhawy, F.H.: Characterization of geotechnical variability. Can. Geotech. J. **36**(4), 612–624 (1999)
- 20. El-Ramly, H.; Morgenstern, N.R.; Cruden, D.M.: Probabilistic stability analysis of a tailings dyke on presheared clay-shale. Can. Geotech. J. **40**(1), 192–208 (2003)
- 21. Zhang, W.G.; Li, Y.Q.; Wu, C.Z.; Li, H.R.; Goh, A.T.C.; Liu, H.L.: Prediction of lining response for twin tunnels constructed in anisotropic clay using machine learning techniques. Undergr. Space (2020)
- 22. Li, Y.Q.; Zhang, W.G.: Investigation on passive pile responses subject to adjacent tunnelling in anisotropic clay. Comput. Geotech. **127**(3), 103782 (2020)
- 23. Zhang, W.G.; Han, L.; Gu, X.; Wang, L.; Chen, F.Y.; Liu, H.L.: Tunneling and deep excavations in spatially variable soil and rock masses: A short review. Undergr. Space (2020)
- 24. Teng, F.C.; Ou, C.Y.; Hsieh, P.G.: Measurements and numerical simulations of inherent stifness anisotropy in soft Taipei clay. J. Geotech. Geoenviron. Eng. **140**(1), 237–250 (2014)
- 25. Grimstad, G.; Andresen, L.: Jostad HP NGI-ADP: anisotropic shear strength model for clay. Int. J. Numer. Anal. Methods Geomech. **36**, 483–497 (2012)
- 26. Chen, G.H.; Zou, J.F.; Chen, J.Q.: Shallow tunnel face stability considering pore water pressure in non-homogeneous and anisotropic soils. Comput. Geotech. **116**, 103205 (2019)
- 27. Goh, A.T.C.; Zhang, R.H.; Wang, W.; Wang, L.; Liu, H.L.; Zhang, W.G.: Numerical study of the effects of groundwater drawdown on ground settlement for excavation in residual soils. Acta Geotech. (2019)
- 28. Zhang, R.H.; Wu, C.Z.; Goh, A.T.C.; Thomas, B.; Zhang, W.G.: Estimation of diaphragm wall defections for deep braced excavation in anisotropy clays using ensemble learning. Geosci. Front. (2020)
- 29. Zhang, R.H.; Goh, A.T.C.; Li, Y.Q.; Hong, L.; Zhang, W.G.: Assessment of apparent earth pressure for braced excavations in anisotropic clay. Acta Geotech. 1–12 (2021)
- 30. Zhang, W.G.; Zhang, R.H.; Wu, C.Z.; Goh, A.T.C.; Wang, L.: Assessment of basal heave stability for braced excavations in anisotropic clay using extreme gradient boosting and random forest regression. Undergr. Space (2020)
- 31. Hsieh, P.G.; Ou, C.Y.; Liu, H.T.: Basal heave analysis of excavations with consideration of anisotropic undrained strength of clay. Can. Geotech. J. **45**(6), 788–799 (2008)
- 32. Kong, D.S.; Men, Y.Q.; Wang, L.H.; Zhang, Q.H.: Basal heave stability analysis of deep foundation pits in anisotropic soft clays. J. Cent. S. Univ. **43**(11), 4472–4476 (2012)
- 33. Puzrin, A.M.; Burland, J.B.: Non-linear model of small-strain behavior of soils. Geotechnique **48**(2), 217–233 (1998)
- 34. Burland, J.B.: Small is beautiful-the stifness of soils at small strains. Can. Geotech. J. **26**, 499–516 (1989)
- 35. Benz, T.: Small-Strain Stifness of Soils and Its Numerical Consequences. PhD thesis, Universität Stuttgart (2007)
- 36. Schweiger, H.F.; Vermeer, P.A.; Wehnert, M.: On the design of deep excavations based on fnite element analysis. Geomech. Tunnell. **2**(4), 333–344 (2009)
- 37. Jin, Y.F.; Yin, Z.Y.; Zhou, W.H.; Huang, H.W.: Multi-objective optimization-based updating of predictions during excavation. Eng. Appl. Artif. Intell. **78**, 102–123 (2019)
- 38. Zhang, D.M.; Xie, X.C.; Li, Z.L.; Zhang, J.: Simplifed analysis method for predicting the infuence of deep excavation on existing tunnels. Comput. Geotech. **121**, 103477 (2020)
- 39. FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions), Version 6.0, User manual. USA: ltasca Consulting Group, Inc (2017)
- 40. Wang, W.D.; Wang, H.R.; Xu, Z.H.: Study of parameters of HSsmall model used in numerical analysis of excavations in Shanghai area. Rock Soil Mech. **83**(5), 413–419 (2013)
- 41. Davis, M.W.: Production of conditional simulations via the LU triangular decomposition of the covariance matrix. Math. Geol. **19**(2), 91–98 (1987)
- 42. Fenton, G.A.; Grifths, D.V.: Probabilistic foundation settlement on spatially random soil. J. Geotech. Geoenviron. Eng. **128**(5), 381–390 (2002)

