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Abstract
In physical science, nonlinear singular Lane–Emden and pantograph delay differential equations (LE–PDDEs) have abundant 
applications and thus are of great interest for the researchers. The presented investigation is related to the development of a 
new application of intelligent computing for the solution of the LE–PDDEs-based system introduced recently by merging 
the essence of delay differential equation of Pantograph type and standard second-order Lane–Emden equation. Intelligent 
computing is exploited through Levenberg–Marquardt backpropagation networks (LMBNs) and Bayesian regularization 
backpropagation networks (BRBNs) to provide the solutions to nonlinear second-order LE–PDDEs. The performance of 
design LMBNs and BRBNs is substantiated on three different case studies through comparative analysis from known exact/
explicit solutions. The correctness of the designed solvers for LE–PDDEs is further certified by accomplishing through 
assessment on error histograms, regression measures and index of mean squared error.

Keywords Intelligent computing · Numerical computing · Levenberg–Marquardt · Bayesian regularization · Lane–Emden 
model · Delay differential equation · Regression measures

1 Introduction

During the sixteenth century, the research in the area of dif-
ferential models shows the introduction of a specific type of 
differential model; namely delay differential (DD) model. 
The literature of delay differential models offers substantial 

contribution to solving real-life problems. These contribu-
tions can be seen in the several applications of DDEs in a 
myriad of physical phenomena, for instance, transport and 
propagation, communication network model, economical 
systems, and population dynamics engineering system, 
[1–5]. In an extensive research, Forde [5] illustrates the 
solutions using delay differential equations of mathemati-
cal biology, whereas Beretta and Kuang [6] utilize the 
delay-dependent factors of DDEs to control their geometric 
constancy. Forde solves the DDEs in mathematical biology 
[7], in the study of DD models, delay/non-delay differential 
models were solved by Chapra [8] applying the Runge–Kutta 
method. Rangkuti and Noorani [9] provided exact solutions 
while taking help of both variation iterations coupled tech-
nique, as well as the Taylor series. Frazier solved second-
order DDEs by using the wavelet Galerkin method [10].

This research study uses pantograph delay differential 
equations (PD-DEs), a certain type of proportional delay 
differential equation which has multifarious applications 
considerably in mathematical models of broad problems in 
applied science and technology [11, 12]. Based on the sig-
nificance of PD-DEs, several numerical, as well as analyti-
cal techniques, have been posited. Methods used to solve 
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Fig. 1  Process blocks of meth-
odology for solving LE–PDDEs

Fig. 2  Architecture of proposed 
LMBN and BRBNs
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PD-DEs in literature include, but are not limited to, Collo-
cation [13], multi-wavelets Galerkin [14], Taylor operation 
[15], modified Chebyshev collocation [16], multistep block 
[17], fully geometric mesh one-leg [18], the partially trun-
cated Euler–Maruyama [19], Laplace decomposition [20] 
methods and numerous other methodologies [21–27], while 
non-traditional computing procedures are also implemented 
for solving PD-DEs including neuro-heuristic computational 
intelligence [28], Bernstein neural network [29], neuro-
swarm intelligent computing [30], computational intelli-
gence approach to pantograph delay differential system [31], 
backpropagated artificial neural networks for pantograph 
differential models [32] and machine learning approach for 
pantograph ODEs systems [33]. Beside these Pantograph 
models, researchers have exhibited keen interest in solving 
the ‘singular problems.’ The Lane–Emden singular system 
(LESS) is one such valuable and recognized model. LESS 
explains a good deal of physical phenomena such as cooling 
of radiators, clouds, cluster galaxies, polytrophic stars and 
many other physical problems. The LESSs have benefited 
numerous fields of study, including, physical sciences [34], 
oscillating magnetic problem [35], electromagnetic problem 
[36], mathematical physics [37], study of gaseous star [38], 
catalytic diffusion in chemical reaction [39], stellar structure 
model [40], quantum mechanics [41] and isotropic media 
[42]. Alongside these deterministic solver, stochastic meth-
ods based in artificial intelligence have been utilized exhaus-
tively in different applications [43–49]. A few of these 
solver for singular system include Thomas–Fermi system 
of atomic physics [50–52], Lane–Emden and Emden–Fowler 
based system models in astrophysics [30, 53–55], doubly 
singular system [56] and thermal analysis of human head 
model [57]. Based on our examination of relevant litera-
ture, up till now, no researcher has made use of the applied 
AI techniques for the recently introduced model based on 

integration of singular and proportional delay system, named 
as Lane–Emden pantograph delay differential equations 
(LE–PDDEs). This encourages motivation for the authors 
to explore or exploit the said AI algorithms to solve recently 
reported nonlinear singular LE–PDDEs equation.

Enlisted below are certain prominent characteristics or 
features of the proposed research:

• An innovative application of backpropagated intelligent 
networks (BINs) is introduced for numerical treatment 
of nonlinear, singular, delay differential models.

• The BINs comprising of Levenberg–Marquardt back-
propagation networks (LMBNs) and Bayesian regulari-
zation backpropagation networks (BRBNs) are designed 
effectively for Lane–Emden pantograph delay differential 
equations (LE–PDDEs).

• The mean squared error (MSR) as a figure of merit is 
exploited for the training, testing and validation of 
LMRNs and BRBNs for estimated modeling of the LE–
PDDEs-based system.

• The superior accomplishment of the developed meth-
odologies via LMBNs and BRBNs is certified through 
assessment on error histograms, regression measures and 
index of mean squared error.

The rest of the study is organized in this paper as fol-
lows: Sect.  2 describes the overview of system model 
based on LE–PDDEs. In Sect. 3, numerical experimenta-
tion with interpretations of the outcomes is given, while the 

Table. 1.  Outcomes of lmbns for numerical treatment of nonlinear singular LE–PDDEs

LE–PDDE 
problem

MSE-based fitness Performance level Gradient value Mu parameter Epoch executed Time consumed

Training Validation Testing

2.1 7.38E−10 7.41E−10 9.10E−10 7.38E−10 2.06E−06 1.00E−07 1000 0.03
2.2 1.66E−10 1.47E−10 1.35E−10 1.66E−10 8.37E−06 1.00E−09 1000 0.04
2.3 1.40E−10 1.44E−10 1.75E−10 1.41E−10 9.77E−08 1.00E−09 168 0.01

Table. 2  Outcomes of BRBNs for numerical treatment of nonlinear singular LE–PDDEs

LE–PDDE 
Problem

MSE−based fitness Performance level Gradient value Mu parameter Epoch executed Time consumed

Training Validation Testing

2.1 2.39E−11 0.00 2.93E−11 2.51E−11 2.61E−07 5.00E+04 1000 0.12
2.2 1.68E−11 0.00 1.84E−11 1.69E−11 8.18E−08 5.00E+04 662 0.03
2.3 2.78E−12 0.00 7.68E−12 2.78E−12 6.34E−08 5.00E+04 201 0.01
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conclusions are provided in Sect. 4 with potential future 
applications of presented methodology.

2  Lane–Emden Pantograph Delay 
Differentiation Equations

Given below is the standard form of LESS [30, 53–55]

where µ shows the shape parameters, x = 0 be the location of 
the singularity ,while α denotes a constant value.

Inspired from Eq. (1), introducing the proportional delay 
as reported in [58], the LE–PDDEs-based system is given 
as follows

(1)

d2f

dx2
+

�

x

df

dx
+ h(f ) = g(x),

f (0) = �,
df (0)

dx
= 0,

Fig. 3  The results of LMBNs for LE–PDDE of Problem 2.1 a convergence curves, b transition states, c histograms d regression index
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where β represents the pantograph factor in a singular 
system.

The three different variants of LE–PDDEs are chosen 
in the presented analysis of the proposed methodology as 
follows:

(2)
�
d2f (�x)

dx2
+

�

x

df (�x)

dx
+ h(f ) = g(x),

f (0) = �,
df (0)

dx
= 0,

Problem 2.1 Consider nonlinear LE–PDDE equation in (2) 
for µ = 3, β = 0.5, h(f) = f2 and g(x) = x8 + 2x4 + 3x2 + 1 as fol-
lows [58]

The reference exact solution of (3) is provided as:
(3)

0.5
d2f (0.5x)

dx2
+

3

x

df (0.5x)

dx
+ f 2(x) = x8 + 2x4 + 3x2 + 1,

f (0) = 1,
df (0)

dx
= 0.

Fig. 4  The results of BRBNs for LE–PDDE in Problem 2.1 a convergence curves, b transition states, c, histograms, d regression index
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Problem 2.2 We consider in this case, the LE–PDDEs 
Eq. (2) for µ = 3, β = 0.5, h(f) = ef and g(x) = e(1+x3) + 3.75 × as 
follows [58]

The reference exact solution of (4, 5) is written as:

(4)f (x) = 1 + x4.

(5)
0.5

d2f (0.5x)

dx2
+

3

x

df (0.5x)

dx
+ ef = e1+x

3

+ 3.75x,

f (0) = 1,
df (0)

dx
= 0.

Problem 2.3 Suppose in this case, the LE–PDDEs (2) for 
µ = 3, β = 0.5, h(f) = x−2 and g(x) = -0.05cos(0.5x) +  sec2x –

3x−1sin(0.5x) as follows [58]

The reference solution of (7) is provided as:

3  Numerical Computing with Discussion

We present here the numerical experimentation with nec-
essary discussion on solving LE–PDDEs using proposed 
LMBNs and BRBNs.

The methodology adopted in the presented study is illus-
trated in the flowchart in Fig. 1, while the outcomes of the 
numerical experimentation conducted by using LMBNs and 
BRBNs to solve the three selected problems on LE–PDDEs 
as presented in Eqs. (3–8) are provided along with neces-
sary interpretations. Using backpropagation based networks 
incorporating Levenberg–Marquardt and Bayesian regulari-
zation schemes for training of weights by implementation 
of function in Matlab neural networks modeling toolbox 
through ‘nftool’ routine. Figure 2 manifests the design of 
networks by nine neurons having log-sigmoid transfer func-
tion in the hidden layers.

For all three Problems 2.1–2.3 of LE–PDDEs, the data-
set has been developed while making use of Eqs. (4), (5), 
(6) and (8) for 201 inputs in interval [0, 2] for both LMBN 
and BRBNs. The developed dataset was divided randomly 
in three parts: the first 15% for testing, the second 15% for 
the validation, whereas the last 70% are utilized for training 
of the networks. As can be seen in Fig. 2, the fitting tool 
through ‘nftool’ routine based on two-layered structure of 
feed forward networks is applied to provide solutions for the 
all 03 problems of LE–PDDEs.

In the three LE–PDDEs, i.e., Problem  2.1 to Prob-
lem 2.3, respective results of LMBN and BRBNs are listed 
in Tables 1 and 2, which portrayed the performance in rela-
tion to fitness on MSE, epochs, training/testing/validation 
performance, backpropagation measures and time duration. 
For LMBNs, the values of performance are around  10–10, 
however, for BRBNs, the performance values are  10–12 to 

(6)f (x) = 1 + x3.

(7)

0.5
d2f (0.5x)

dx2
+

3

x

df (0.5x)

dx
+ x−2 = −0.05 cos(0.5x)

+ sec2 x −
3

x
sin(0.5x) ,

f (0) = 1,
df (0)

dx
= 0.

(8)f (x) = cos x.

Fig. 5  Comparison of results for LMBNs in case of LE–PDDE in 
Problem 2.1

Fig. 6  Comparison of results for BRBNs in case of LE–PDDE in 
Problem 2.1
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 10–11. The corresponding values of MSE for training, valida-
tion and testing of LMBNs are about  10–10 and about  10–12 
to  10–11 for BRBNs. The algorithms complexity in the form 
of executing time utilized for training of weights of both 
backpropagated networks is also listed in Tables 1 and 2 
for all three problems. Both backpropagation methodolo-
gies LMBN and BRBNs show almost similar computational 
time. Generally, these outcomes manifest similar, consistent, 
accuracy in finding the numerical solution of LE–PDDEs.

Figs. 3 and 4 manifest the results of MSE-based objective 
function, performance of testing validation and training pro-
cess, state transition index, regression outcomes of LMBN 
and BRBNs for LE–PDDEs as presented in Problem 2.1. 

However, Figs. 5 and 6 exhibit the approximate solutions 
with error dynamics, i.e., difference between proposed 
results and available exact solutions. Consequently, the out-
comes of LMBN and BRBNs for LE–PDDEs in problems 
2.2 and 4.3 are put forth, respectively, in Figs. 7, 8, 9, 10, 
11, 12, 13 and 14.

In connection with training, validation and testing against 
epochs, the performance of MSE is exhibited in Figs. 3a, 4a, 
7a, 8a, 11a and 12a about the developed problems (respec-
tively, for 2.1, 2.2 and 2.3) of LE–PDDE. It can be observed 
that optimum curves of the networks are obtained at 1000, 
1000 and 168 epochs having respective MSE approximately 
 10–10 to  10–09,  10–10 to  10–09 and  10–10 to  10–09 for LMBNs, 

Fig. 7  The results of LMBNs for LE–PDDE of Problem 2.2 a convergence curves, b transition states, c histograms, d regression index
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whereas 1000, 662 and 201 epochs with MSE about  10–10 
to  10–09,  10–11 to  10–10 and  10–12 to  10–11 for BRBNs for 
respective problems 2.1 to 2.3.

The sub-Figs. 3b, 4b, 7b, 8b, as well as 11b and 12b, 
layout the gradient index and parameter Mu of backpropa-
gation procedure in LMBNs for LE -PDDEs in each of the 
problems 2.1, 2.2 and 2.3, respectively. The approximate 
values  10–08 to  10–06 and  10–09 to  10–07 of gradient and Mu 
values for Levenberg–Marquardt-based backpropagation, on 
the other hand, the corresponding values for BRBNs are 
about  10–07 to  10–08 and  10–10 to  10–07. The reasonably sta-
ble performance of BRBNs over LMBNs is indicated via a 
slight change in the parameters of gradient index and Mu.

The dissimilarity of estimated solutions of LMBNs and 
BRBNs from reference solutions is revealed in Figs. 5, 6, 
9, 10, 13 and  14 for respective 2.1 to 2.3 problems. These 
solutions indicate the consistency in both results with 5–7 
decimal precision. Furthermore, it can be inferred that per-
formance of LMBNs for LE–PDDE in Problem 2.2 is com-
paratively less effective as compared to BRBNs whereas 
the reliable and viable performance of BRBNs is attained 
for all three variants of LE–PDDEs.

Histogram-based error analysis has been carried out for 
the pair LMBN and BRBNs, and the outcome of the error 
analysis for LE–PDDEs in problems 2.1, 2.2 and 2.3 is 
figuratively described for each system, in the following 

Fig. 8  The results of BRBNs for LE–PDDE of Problem 2.2 a convergence curves, b transition states, c histograms, d regression index
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Figs 3c, 4c, 7c, 8c, 11c and 12c, respectively. For LMBNs, 
the value is found to be close to  10–06 to  10–07, however, 
value for BRBNs is  10–06 to  10–08 of the error bin with ref-
erence to desire optimal value of zero. It is shown clearly 
from the results that there is only a miniscule variance in 
the performance for LE–PDDE for both methodologies; 
small error values (better) are obtained using BRBNs over 
LMBNs.

For the complete and evident inferences, the regression 
analysis intended for training, testing, validation for both 
LMBNs and BRBNs. Figs. 3d, 4d, 7d, 8d and 11d, 12d 
for LE–PDDEs in problems 2.1, 2.2 and 2.3, respectively, 
show the results of regression index. For LMBNs, as well as 
BRBNs, the value of correlation is very close to unity, i.e., 
R = 1, for almost each variant of LE–PDDE.

The analysis is continued further for the scenario of the 
LE–PDDEs other than those presented in problems 2.1 to 
2.3 without known exact solutions or reference numerical 
solutions. In these scenarios, we are unable to get the train-
ing target for an equation, e.g., nonlinear singular Thomas 
Fermi equation [51], nonlinear fractional Riccati equation 
[59], nonlinear singular Flierl–Petviashivili equations [60], 
etc. Thus, we cannot implement the proposed LMBNs, as 
well as BRBNs, straightforwardly, however, unsupervised 
versions of these neural networks as reported in [61, 62] 
can be exploited for finding the solution in such scenarios 
of LE–PDDEs.

4  Conclusions

The present research looks into the pursuit of intelligent 
backpropagated networks exploiting the Levenberg–Mar-
quardt and Bayesian Regularization optimization mecha-
nism to discover the solution of recently introduced non-
linear, singular and delay systems known as nonlinear 
second order Lane–Emden pantograph delay differential 
equations. Based on acknowledged standard results, i.e., 
available exact solutions, for the variants of LE–PDDEs, a 
dataset for training, testing, in addition to, validation was 
formed. The two different types of intelligent backpropa-
gated networks via LMBNs and BRBNs are employed on a 
given dataset for approximate modeling of the LE–PDDEs-
based systems on fitness through mean squared error. The 
performance of the developed intelligent backpropagated 
algorithms LMBNs and BRBNs on LE–PDDEs is authen-
ticated by attaining a good agreement, i.e., a close match-
ing, with the available solutions and additionally validated 
using regression analyses and error histograms. Beside 
the reasonably precise solutions of LE–PDDE proposed 
LMBNs and BRBNs, simple concept, implementations 
ease, stability, convergence, robustness, extendibility and 
applicability are other key advantages.

In future, one should investigate in Bernstein and 
Legendre ANNs, as well as deep version of LMBNs and 
BRBNs along with their proof of theoretical convergence 
such that these methodologies can be exploited effectively 
to solve variety of nonlinear systems of paramount inter-
est [29, 63–68]. Additionally, the proposed LMBNs and 
BRBNs, as well as the deep versions of both intelligence 
computing paradigms, can be extended to be applicable for 
singularly perturb variants of LE–PDDEs.

Fig. 9  Comparison of results for LMBNs in case of LE–PDDE in 
Problem 2.2

Fig. 10  Comparison of results for BRBNs in case of LE–PDDE in 
Problem 2.2



1206 Arabian Journal for Science and Engineering (2022) 47:1197–1210

1 3

Fig. 11  The results of LMBNs for LE–PDDE of Problem 2.3 a convergence curves, b transition states, c histograms, d regression index
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Fig. 12  The results of BRBNs for LE–PDDE of Problem 2.3 a convergence curves, b transition states, c histograms, d regression index
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