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Abstract
Uniaxial compressive strength (UCS) of rocks is the most commonly used parameter in geo-engineering application. How-
ever, this parameter is hard for measurement due to a time consuming and requires expensive equipment. Therefore, obtaining 
this value indirectly using non-destructive testing methods has been a frequently preferred method for a long time. In order to 
obtain multiple regression models, input parameters need many assumptions. Thus, the estimation of the mechanical proper-
ties of rocks using by machine learning methods has been investigated. In this study, UCS values of rocks were estimated by 
reformulating with artificial intelligence-based age-layered population structure genetic programming (ALPS-GP) which is 
one of machine learning methods. Artificial neural network (ANN) and ALPS-GP models were performed to predict UCS 
from porosity, Schmidt hammer hardness and ultrasonic wave velocity test methods. For this purpose, the mentioned three 
tests (porosity, Schmidt hammer hardness and P-wave velocity) were carried out on ten different stones from Turkey. ANN 
was performed to evaluate this new technique. Reliability of UCS values determined by models was checked with mean 
absolute error (MAE), coefficient of determination  (R2), root mean square error (RMSE) and variance account for (VAF) 
values. These values were calculated as 1.64, 0.98, 2.11 and 99.81 for ANN, and 2.11, 0.98, 2.50 and 97.86 for ALPS-GP, 
respectively. It was observed that both methods used were quite successful in UCS estimation. The most important advan-
tage of the ALPS-GP model is providing an equation for UCS estimation. In the light of the obtained findings, it has been 
revealed that this equation derived from ALPS-GP can be used in UCS estimation processes of similar rock types (limestone, 
dolomite and onyx).

Keywords Artificial intelligence-based age-layered population structure genetic programming (ALPS-GP) · Artificial 
neural network · Uniaxial compressive strength · P-wave velocities · Schmidt hardness

1 Introduction

The mechanical properties of rocks play an important role in 
planning and design of construction and mining excavations, 
including the stability of rocky slopes, underground excava-
tions, tunnels, dams and caves. However, determining these 
mechanical properties in situ or in laboratory conditions is 
very difficult, laborious and time consuming. Therefore, 
non-destructive methods that long since can be used both 
in situ and in laboratory and cannot damage the sample are 

more preferred [1]. In mining, construction, geology and 
geotechnical engineering studies, Schmidt hammer hardness 
and ultrasonic wave velocity method are frequently preferred 
techniques for evaluating the mechanical properties of con-
crete and rocks due to their undamaged, easy-to-apply and 
reliability [2].

Regression analysis is the statistical modeling performed 
to estimate dependent variable by using the relationship 
between two or more variables that have a cause-effect rela-
tionship. It is expressed as simple regression analysis if one 
variable is used as the prediction variable, and as multi-
ple regression analysis if two or more variables are used. 
Although many researchers have successfully developed and 
applied simple regression equations to estimate the uniaxial 
compressive strength of rocks using Schmidt hammer hard-
ness [3–16] and ultrasonic testing methods [17–24], the 
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new trend is seen as the usage of machine learning methods 
rather than regression models. For a long time, it has been 
seen that machine learning methods are frequently preferred 
in determining mechanical properties of rocks in geo-engi-
neering application such as civil, construction, mining and 
geology. Some researchers have determined mechanical 
properties of rocks using machine learning methods such 
as fuzzy inference system [25, 26], artificial neural network 
[27, 28], relevance vector machine [29, 30], support vector 
machine [30, 31] adaptive neuro-fuzzy inference system [32, 
33], particle swarm optimization [34, 35], imperialist com-
petitive algorithm [36, 37], generalized neural feed-forward 
network [37, 38] and least square support vector machine 
[39, 40]. Recently, hybrid computing models are replac-
ing such basic methods. Momeni et al. (2015) developed 
a hybridized intelligence method for uniaxial compressive 
strength (UCS). They determined that the new technique is 
more successful in predicting UCS when compared to con-
ventional ANN method and hybridized intelligence method 
[35]. In a study that a hybridized intelligence method was 
developed for the UCS and elasticity modulus (E) estimation 
of rocks, it was observed that the classification error of the 
hybridized generalized feedforward neural network (ICA-
GFFN) for CS and E decreased significantly compared to the 
generalized feedforward neural network (GFFN) [41]. Simi-
larly, in a study, where a hybridized intelligence method was 
developed using support vector regression, it was detected 
that this hybrid method was found to be quite reliable to 
predict UCS and E [42].

Genetic programming (GP) is technique which enables 
computers to evaluate and solve problems by generally using 
genetic algorithms. In GP, computer programs are indi-
viduals in population. Thousands of these individuals are 
genetically breed by using Darwinian principle of survival 
and reproduction of fittest along with a genetic recombina-
tion which is called as crossover. Therefore, combination 
of Darwinian natural selection and genetic operations plays 
important role for genetic programming to solve given prob-
lems by computers [43]. GP, which is frequently preferred in 
solving the problems of many disciplines due to its fast, easy 
and practical features, is structurally divided into three basic 
groups. The first of these, GP obtained by using individu-
als made up of chromosomes with a very simple structure. 
According to this GP, which was discovered by Holland, 
chromosomes survive according to their characteristics [44]. 
This GP method has become one of the preferred methods 
for determining the mechanical properties of rocks. This 
method was used to estimate dynamic properties of granitic 
rocks [45] and deformation modulus of rock masses [46]. 
Second method was discovered by Ferreira, chromosomes 
belonging to individuals, initially coded in fixed and lin-
ear lengths, later turn into branched structures [47]. Chro-
mosomes on branched structures survive depending on the 

causality principle. This method was used to determine uni-
axial compressive strength and tensile strength of limestone 
[48]. The last method, which was discovered by Koza, con-
sists of individuals with highly complex branched structures 
and high functionality [43]. In these systems, chromosomes 
survive due to their own characteristics. This method was 
used to estimate surface subsidence due to underground min-
ing [49, 50]. Çanakcı et al. (2009) estimated UCS value of 
basalt samples collected from Gaziantep (Turkey) by means 
of gene expression programming and artificial neural net-
works using non-destructive tests like P-wave velocity, dry-
saturated density, by weight and bulk density [51]. Ozbek 
et al. (2013) estimated UCS value of basalt and four ign-
imbrite (black, yellow, gray, brown) samples by means of 
GEP using rock properties like water absorption by weight 
and unit weight and porosity [52]. Dindarloo and Siami-
Irdemoosa (2015) predicted UCS value of carbonate rocks 
by means of GEP, using two parameters of total porosity and 
P-wave velocity of rocks [53]. Behnia et al. (2017) predicted 
UCS of rocks by means of GEP using some engineering 
properties like quartz content, dry density and porosity [54].

Simple and multiple regression models have more 
meaningful indicators for predicting the dependent vari-
able. But many assumptions need to be met in order to per-
form multiple regression analysis. The main advantage of 
machine learning methods is not required such comprehen-
sive assumption. In this study, two machine learning meth-
ods, which are known as artificial neural network (ANN) 
and artificial intelligence-based age-layered population 
structure genetic programming (ALPS-GP), are used in 
prediction of UCS. So far, there is no study for prediction 
of UCS from ALPS-GP. Thus, this new hybrid technique 
was compared with ANN model. For this purpose, poros-
ity, Schmidt hammer hardness and P-wave velocity were 
used as inputs for both models and were analyzed to obtain 
testing and training data. The reliability of estimated UCS 
determined using models was checked with mean absolute 
error (MAE), coefficient of determination (significance) 
 (R2), root mean square error (RMSE) and variance account 
for (VAF) values. These values were calculated as 1.64, 
0.98, 2.11 and 99.81 for ANN, and 2.11, 0.98, 2.50 and 
97.86 for ALPS-GP, respectively. If a proposed model 
result in  R2 > 0.8, it is well known that there is a strong 
correlation between the measured and predicted values. 
This situation shows that both models used have the ability 
to make accurate predictions for UCS results. However, 
the most important advantage of ALPS-GP model over 
ANN is that it provides an equation for UCS estimation. 
In addition, ALPS-GP is known to give more successful 
results in the solution of highly complex structures. There-
fore, this study may encourage some researchers to use 
ALPS-GP in rock mass classifications such as RMR, Q 
and GSI.
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2  Material and Method

2.1  Material

In this study, ten different natural stones (limestone, dolo-
mite and onyx) which obtained from various locations of 
Turkey were used. The codes, trade names and origins 
of these rocks used in building and construction in vari-
ous regions of Turkey are displayed in Table 1. In order to 
determine the physical and mechanical properties of rocks, 
cubic samples with 70 mm dimensions were prepared with 
a marble cutting device. The location map of samples used 

in experimental study is given in Fig. 1. Images of prepared 
samples and test devices are given in Fig. 2. The physical 
and mechanical properties of samples (porosity, Schmidt 
hammer hardness, P-wave velocity and uniaxial compres-
sive strength) are determined according to ISRM and TS 
standards [55–58].

2.2  Experimental Studies

2.2.1  Porosity

Porosity is ratio of the void volume formed by grains form-
ing rock to the total volume of rock, which varies depending 
on shape, size distribution, sequence and cementing degree 
of grains. Porosity values directly affect uniaxial compres-
sive strength of rocks. Increasing this value negatively 
affects mechanical strength of rock. Therefore, it is a factor 
to be taken into account in the indirect estimation of uniaxial 
compressive strength of rocks [59, 60]. The porosity values 
of rocks were determined according to TS 699 [55].

2.2.2  Schmidt Hammer Hardness

Schmidt hammer hardness, which was first developed in 
1948 to test the concrete hardness non-destructively, was 
later used to determine rock hardness. This non-destructive 
test device, which was used in the early 1960s to have an 
idea about the hardness and strength of rocks, is a quick, 

Table 1  Sample codes, types and trade names

Code Trade name Type

OT Onix-Travertine Limestone
SM Afyon Sugar Marble Limestone
PE Pure Emperador Dolomite
GT Gray Travertine Limestone
BE Bursa Emperador Dolomite
WO White Onyx Onyx
CM Chipboard Marble Limestone
PO Pure Onyx Onyx
ST Sivas Travertine Limestone
WE White Emperador Dolomite

Fig. 1  The locations of samples
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portable and simple method. The reliability of test results 
is directly affected by factors such as hammer type, sample 
sizes, surface roughness, weakness of sample and moisture 
content. Schmidt hardness is highly influenced by features 
such as porosity, dry unit weight and origin of rock [10, 59]. 
Schmidt hammer hardness values of rocks were determined 
according to ISRM 1978 [56].

2.2.3  Ultrasonic Wave Velocity

Ultrasonic test methods are techniques used to determine 
the mechanical properties of rock and concrete samples both 
in situ and laboratory conditions. Ultrasonic wave propa-
gation has three different waveforms. These are expressed 
as P-wave (axial-longitudinal), S-wave (shear) and R-wave 
(Rayleigh) propagation. The fastest-moving waveform 
is P-wave, the R-wave traveling only along the surface of 
the material. P and S-wave velocities are most widely used 
in rock mechanics studies [61]. These wave velocities are 
affected by parameters such as grain size and shape, density, 
porosity, anisotropy, moisture content, temperature, filling 
material [2, 18, 20, 21, 62–65]. P-wave velocity values of 
rocks were determined according to ISRM 1978 [57].

2.2.4  Uniaxial Compressive Strength

Uniaxial compressive strength is an important param-
eter used for construction and design purposes in studies 
related to earth sciences such as mining, construction, geol-
ogy, geophysical engineering. In rock engineering, it is the 
most widely used mechanical test in determining the failure 
properties of rock material and rock mass classifications. 
However, this mechanical property of rocks is destructive 
and time-consuming test that requires expensive equipment 
[66, 67]. UCS of rocks was determined according to method 
defined by ISRM [58].

2.3  Model Construction

2.3.1  Artificial Neural Network

ANN contains nerve cells neurons just as biological system. 
These neurons connect to each other in various ways to form 
a network. These networks have capacity to learn, memorize 
and reveal the relationship between data. ANN is an effec-
tive method that separates complex and nonlinear systems 
into simple elements. ANN is a data processing that has 
inputs (xi), connection weights (wi), addition function (Σ), 
activation function (f) and output (y) (Fig. 3). It consists of 
three basic layers (i.e., input layer, hidden layer (s) and out-
put layer). The weights of each layer differ from each other. 
The quality of ANN model determines the selected activa-
tion functions. The activation function is used to convert the 

Fig. 2  a General view of test samples b Schmidt hammer hardness c Ultrasonic wave velocity device

Fig. 3  Basic ANN structure [71]
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output to desired ranges. There are many activation functions 
used by ANN cells. Tangent-hyperbolic, sigmoid and linear 
functions are generally preferred activation functions due to 
reliable results. The activation function can be both linear 
and nonlinear. In this study, tangent-hyperbolic activation 
function was used. This activation function is a nonlinear 
that takes values between -1 and 1. For supervised learn-
ing of multi-layer ANNs used feedforward backpropagation 
(BP), which is simple, quite efficient and general algorithm. 
BP algorithm minimizes the general error by iterating the 
weight of network. In other words, observed values and 
predicted output of model were very close [68–70]. ANN 
model was used to predict UCS from other physico-mechan-
ical tests. MATLAB 14B was used for this model. Porosity, 
Schmidt hammer hardness and P-wave velocity were used as 
input parameters in model.  R2, RMSE, VAF and MAE were 
used to evaluate the performance of model.

2.3.2  Artificial Intelligence‑Based Age‑Layered Population 
Structure Genetic Programming (ALPS‑GP)

Genetic algorithms are optimization techniques to find the 
most optimal solutions to any problem. In this new hybrid 
technique, called ALPS-GP, it is treated as a symbolic 
expression similar to the group of genes that make up the 
organism. This symbolic expression is like tree branches 
containing both symbolic variables and numeric constants. 
This new hybrid technique was used for the first time in 
studies on rock mechanics. ALPS-GP is part of evolutionary 
algorithms (EA). However, it is quite successful compared 
to EAs in solving more extensive problems. EAs use biol-
ogy techniques such as mutation, inheritance, crossover and 
selection. In addition, ALPS controls breeding by defining 
a new age scale for individuals. ALPS-GP age scale was 
defined to represent the number of generations. Training 
procedure of ALPS-GP can be summarized as follows. The 
algorithm constructs the age layers as a first step and then 
creates a random population and evaluation. New individu-
als that are spontaneously formed start with an initial age 
of 0. When individuals produced from genetic factors such 
as crossover and mutation are selected as parents, their age 
increases 1 each time. If a candidate solution is used more 
than one as a parent, their age increases 1 only once. There 
is a maximum age limit for each age-layer in the population. 
Aging scheme given in Table 2 can be used for this age limit. 
In this study, polynomial aging scheme was used. Individu-
als were breed in their own layers or from the previous layer. 
Therefore, for layer i, parents can only be chosen from layers 
i -1 and i. When the age of individual exceeds the age limit 
assigned to this layer, it moves to next upper layer. A new 
layer is not opened until previous layer is full. Therefore, 
all layers are filled at the same time [72–76]. In modeling 
studies latest version HeuristicLab 3.3 package program was 

used. Porosity, Schmidt hammer hardness, P-wave velocity 
were used as input parameters in ALPS-GP modeling stud-
ies. UCS was defined as the output parameter.

ALPS-GP created by HeuristicLab is based on a tree rep-
resentation. This tree is a symbolic expression of equation 
obtained by ALPS-GP. ALPS-GP model tree containing 
both symbolic variables and numeric constants is given in 
Fig. 4. This tree, which forms the first population of indi-
viduals, consists of terminals (porosity, Schmidt hardness, 
P-wave velocity and constants) and functions (basic math-
ematical functions). A criterion is used to assess the fitness 
of each individual in a population. ALPS-GP initially ran-
domly generated 100 population sizes. These programs were 
developed by genetic operators for next generation. For this 
purpose, genetic operations such as mutation, crossover and 
reproduction were used. 50 iterations were made to obtain 
the best model to be used for UCS prediction. After each 
iteration, RMSE values were recorded and the best model 
was established. Convergence procedure of ALPS-GP is 
given in Fig. 5. Constant coefficients in Eq. 2 are explained 
in Table 3. General information about training of ALPS-GP 
model is given in Table 4.

3  Results and Discussion

3.1  Experimental Results

Non-destructive tests (porosity, Schmidt hammer hardness 
and ultrasonic P-wave velocity) and UCS results used in sta-
tistical studies are given in Table 5. When Table 6 is exam-
ined, it is seen that UCS values increase as Schmidt hammer 
hardness and P-wave velocity values of rocks increase. It 
is also seen that UCS value decreases when the porosity 
value increases. In addition, the increase in porosity value 
caused the ultrasonic wave to be transmitted late due to 

(1)UCS =
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Table 2  Aging scheme distribution examples for ALPS-GP

Aging Scheme Max age in layer for ALPS-GP

0 1 2 3 i

Linear 1 2 3 4 i
Polynomial 1 2 4 9 (i)2

Exponential 1 2 4 8 2i

Factorial 1 2 6 24 i!
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the dispersion in space. As a result, it seems that porosity 
directly affects the physical and mechanical properties of 
rock.

3.2  Assessment of model performance

UCS data set obtained as a result of experimental studies 
was divided into two section as testing and training. For 
the model, 70% of the data was used as training and the 
remaining 30% as test data. To understand that one model 
processes properly, there are some certain functions which 
determine the quality of the estimations. For this purpose, 
average absolute error (MAE), mean absolute error (MAE), 
coefficient of determination  (R2), root mean square error 

Fig. 4  ALPS-GP model tree
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Fig. 5  Convergence procedure of ALPS-GP
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(RMSE) and variance account for (VAF) values were cal-
culated in order to compare performance results of obtained 
by models.

(2)MAE =
1

n

n∑
j=1

|||yj − ŷj
|||

(3)R =

n∑
j=1

�
yj − yj,m

��
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�

�
n∑
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2
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�
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Here;

(4)RMSE =

√√√√1

n

n∑
j=1

(
yj − ŷj

)2

(5)VAF =

(
1 −

var
(
yj − ŷj

)

var
(
yj
)

)
× 100%

Table 3  Constant coefficients of 
the model

c0  − 15,852

c1  − 1,4767
c2 10,863
c3 1,346
c4  − 4,9717
c5 1,3222
c6  − 1,4767
c7 0,29,144
c8 10,863
c9 1,4394
c10 1,6572
c11 1,903
c12 1,7918
c13 1,7783
c14 1,8208
c15 1,4394
c16 1,8208
c17 0,54,642
c18  − 57,606

Table 4  The ALPS-GP parameters for estimating UCS

ALPS-GP parameters Values

Terminal set n, HR, Vp
Functions  + , -, /, × 
Fitness function RMSE
Maximum iterations 50
Age gap 15
Population size 100
Aging scheme Polynomial
Genetic operators Crossover, reproduction, mutation,
Crossover Subtree swapping crossover
Mutation probability 25%
Selector Generalized rank selector

Table 5  Data used in the statistical studies

Sample Pr Vp SH UCS

OT1 1.88 3545 36.1 41.11
OT2 1.81 3609 37.3 44.89
OT3 1.60 3437 35.6 43.21
SM1 2.29 3133 32.4 38.22
SM2 2.29 3157 32.9 39.53
SM3 2.25 3107 31.1 36.36
PE1 0.88 4920 51.0 70.62
PE2 0.74 5091 52.8 74.34
PE3 0.67 4839 49.2 69.33
GT1 1.11 3842 39.8 45.82
GT2 1.09 4112 42.2 50.35
GT3 1.03 4092 41.8 50.74
BE1 0.97 5394 54.9 85.53
BE2 0.81 5303 53.4 79.42
BE3 0.85 5432 54.1 80.71
WO1 1.18 4275 43.7 57.91
WO2 1.21 4239 43.2 56.52
WO3 1.24 4301 44.5 60.33
CM1 2.38 2858 29.2 29.35
CM2 2.44 2967 30.4 33.04
CM3 2.38 2948 30.1 30.50
PO1 1.85 3678 37.5 41.10
PO2 1.97 3609 36.5 42.46
PO3 2.01 3655 37.3 43.78
ST1 2.14 3101 32.0 36.64
ST2 2.25 3058 31.5 35.91
ST3 2.27 3145 32.4 39.03
WE1 0.89 5152 52.9 75.83
WE2 0.83 5056 51.1 73.21
WE3 0.82 5011 50.7 73.37

Table 6  Performance analysis of models

Model Data MAE R2 RMSE VAF

ALPS-GP Test 2.11 0.98 2.50 97.86
Train 1.19 0.99 1.61 99.14

ANN Test 1.64 0.98 2.11 98.43
Train 0.61 0.99 0.74 99.81
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yj = measured UCS value, ŷj = predicted UCS value and 
subscript of m indicate mean value.

Performance criteria of models for UCS estimation are 
given in Table 6, which include the most frequently used 
criteria to evaluate the performance of models.

The correlation coefficient was determined to decide if 
there was a linear relationship between the calculated and 
measured UCS. The value of the correlation coefficient is 
between 0 and 1 and is the closest to the most optimum 1. 

 R2 values of the obtained models are seen to be very close 
to 1. RMSE gives information about the short-term perfor-
mance of the calculated and measured values. Its results are 
always positive. As RMSE value approaches zero, it shows 
that obtained model is strong and meaningful. When RMSE 
values are examined, it is seen that these values are close 
to zero. Therefore, it shows that UCS values obtained from 
models are quite significant. MAE gives average absolute 
error between measured and experimentally calculated 

Fig. 6  Testing (a, c) and training (b, s) mean relative error obtained from models
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values. It is widely used in the prediction performance of 
models. As the MAE value decreases, significance of the 
model increases. For model to be strong and acceptable, 
MAE value is required to be less than 10. VAF is a statisti-
cal approach used to estimate magnitude and significance of 
indirect effects relative to total effect. If this value is above 
80%, it shows that relationship is quite significant. When 
VAF values obtained from models are examined, it is seen 
that UCS estimation is quite successful.

Linear fit graph for training and testing obtained from 
models is shown in Fig. 6a-d. Mean relative error of mod-
els for both data sets is less than 10%. When performance 
of ALPS-GP and ANN was compared, training and test 
correlation coefficients were obtained as 0.991–0.985 and 
0.998–0.985, respectively. These results show that UCS 
obtained from models and experiment is compatible with 
each other. The probability of accurately predicting UCS of 
rocks using each model is greater than 98%. Although ANN 
model appears to be stronger compared to ALPS-GP, this 
new hybrid model can ignore this difference due to present-
ing an equation. In addition, predictability level for train-
ing and testing obtained from ALPS-GP model is shown in 
Fig. 7. It is necessary to look at predictability level in order 
to interpret correctly usability of the data obtained from the 
model. When Fig. 7 is examined, it is obvious that predict-
ability level of model is quite high.

4  Conclusion

UCS is one of the most important and influential param-
eters used in engineering application. This test is a destruc-
tive, expensive and time consuming. Therefore, it is very 
important to determine this value in a short time with 

non-destructive test methods. In this study, ANN and new 
hybrid technique called ALPS-GP were used for predicting 
UCS from porosity, Schmidt hammer hardness and ultra-
sonic P-wave velocity. These methods were applied to 30 
datasets of porosity, Schmidt hammer hardness and ultra-
sonic P-wave velocity of ten different stones from Turkey. 
The reliability of ANN and ALPS-GP models was confirmed 
with MAE,  R2, RMSE and VAF. These values were calcu-
lated as 1.64, 0.98, 2.11 and 99.81 for ANN, and 2.11, 0.98, 
2.50 and 97.86 for ALPS-GP, respectively. For UCS predic-
tion, both ANN and ALPS-GP models offered very strong 
predictions. Although ANN model appears to be stronger 
compared to ALPS-GP, it is very important that ALPS-
GP provides equations like regression analysis. Equation 
obtained from ALPS-GP model can be used for UCS estima-
tion of similar rock types. In addition, ALPS-GP is known to 
give more successful results in the solution of highly com-
plex structures. Therefore, this study may encourage some 
researchers to use ALPS-GP in rock mass classifications 
such as RMR, Q and GSI.
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