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Abstract
Implementation of radial basis neural network is demonstrated by considering a test case of non-Newtonian third-grade fluid 
flow and heat transfer through two parallel plates. Five commonly used stochastic optimization methods: genetic algorithm, 
global search algorithm, multiple starting point algorithm, simulated annealing algorithm, and pattern search algorithm, 
are employed to optimize the RBNN. Flow of a non-Newtonian third-grade fluid through two parallel plates, subjected to 
uniform heat flux, is considered. At first, governing equations, describing the flow and heat transfer problem, are solved by 
the least-square method, a semi-analytical tool. The velocity and the temperature profiles are obtained for different values of 
third-grade fluid parameter ‘A’, which are then used for training different stochastic optimization method-assisted RBNNs 
(SOMARBNNs). For proper functioning of RBNN, a suitable value for an important attribute called ‘spread’ is required. 
Deciding the value for ‘spread’ requires experience and knowledge of neural networks. The present approach makes the 
selection of proper value of ‘spread’ very easy, and beginners can use the RBNN for problem-solving. With the help of 
different stochastic optimization methods, the value of spread for the RBNN is determined. Once all SOMARBNNs are 
trained, the temperature profile and the corresponding third-grade fluid parameter ‘A’ are obtained as output, corresponding 
to any new velocity profile fed as input. Further, the data for training are perturbed by different levels of noise, and different 
SOMARBNNs are successfully employed to get the output. The performance evaluation of different SOMARBNNs is car-
ried out in terms of CPU time and error in result. The results indicate that PSAARBNN is better than other SOMARBNNs, 
as it is able to generate results with high accuracy for both low noise data and high noise data. Moreover, the CPU time 
requirement by PSAARBNN is lowest.

Keywords Non-Newtonian fluid · Least square method · Radial basis neural network · Stochastic optimization methods · 
Parameter retrieval

List of Symbols
A  Third-grade fluid parameter
Ac  Cross-sectional area  [m2]
A1, A2, A3, ...An  Kinematic tensor
a0, a2, a4, a6, a8  Constants
an  Layer output vector in RBNN
Br  Brinkman number
b0, b2, b4,

b6, b8, b10, b12
  Constants

bn  Bias in RBNN

CP  Specific heat at constant pressure [J/
kg.K]

c1, c2, ...  Constants
ci  Ith constant
D  Differential operator
D/Dt  Material derivative
f   Body force per unit volume
g  Function
h  Half depth of channel [m]
IWn1  Hidden layer weight matrix in RBNN
kth  Thermal conductivity of the fluid [W/m 

K]
L  Length of the channel [m]
LWn2  Output layer weight matrix in RBNN
l1, l2  Constants
N  Non-dimensional pressure gradient

 * Vijay K. Mishra 
 mishra.vdm@gmail.com

1 School of Mechanical Engineering, Kalinga Institute 
of Industrial Technology (KIIT) DU, Bhubaneswar 751024, 
India

http://orcid.org/0000-0003-0990-4340
http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-021-05702-8&domain=pdf


11798 Arabian Journal for Science and Engineering (2021) 46:11797–11818

1 3

Nu  Nusselt number
p∗  Dimensional pressure [N/m2]
q  Heat flux ratio
q1, q2  Heat fluxes at lower and upper walls 

[W/m2]
R  Residual
Rn  Number of observation points along y* 

direction (= 201)
S  Sum of square of residual
sn  Size of matrix in RANN
T∗  Dimensional temperature [K]
T∗
m
  Bulk mean temperature [K]

T∗
wl

  Temperature of the lower wall [K]
u  Non-dimensional velocity along axial 

direction
uN  Non-dimensional velocity for Newto-

nian fluid
u∗  Dimensional velocity along axial direc-

tion [m/s]
u0  Average velocity [m/s]
V∗  Velocity vector [m/s]
v, ṽ  Functions [m/s]
x, y, z  Non-dimensional coordinate
x ∗, y ∗, z ∗  Dimensional coordinates [m]
Xno, Xn1  Central point in PSA indifferent 

iterations
xni  Neuron input
wi  Ith weight function
Wni  Neuron weight

Abbreviations
mse  Mean squared error
ANN  Artificial neural network
RBNN  Radial basis neural network
GA  Genetic algorithm
GAARBNN  Genetic algorithm-assisted RBNN
GSA  Global search algorithm
GSAARBNN  Global search algorithm-assisted 

RBNN
MSPA  Multiple starting point algorithm
MSPAARBNN  Multiple starting point algorithm-

assisted RBNN
OF  Objective function
SAA  Simulated annealing algorithm
SAAARBNN  Simulated annealing algorithm-assisted 

RBNN
PSA  Pattern search algorithm
PSAARBNN  Pattern search algorithm-assisted 

RBNN
SOM  Stochastic optimization method
SOMARBNN  Stochastic optimization method-

assisted radial basis neural network
TGF  Third-grade fluid

Greek symbols
�1, �2  Material constants
�  Constant
�1, �2, �3, ...  Material constants
�  Density of the fluid [kg/m3]
�  Dynamic viscosity of the fluid [N s/m2]
�  Non-dimensional temperature
�N  Non-dimensional temperature for New-

tonian fluid
𝜃  Temperature obtained from 

SOMARBNNs
Φi  Base function
τ  Stress

Superscript
1, 2  Hidden layer and output layer variables

1 Introduction

Artificial neural network (ANN) can prove to be a very 
effective statistical tool for handling variety of situations 
such as (1) absence of mathematical relations for compli-
cated physics, (2) fast and time-effective approach to get 
the result, (3) use of noisy data (obtained from analytical/
numerical/experimental method). One of the very powerful 
types of neural network, used to solve a wide range of practi-
cal problems, is the radial basis network. Radial basis net-
work offers various advantages over perceptron types such 
as simple to use and better capability to handle noisy data 
for medium-sized data set [1, 2]. Because of these advan-
tages, radial basis network has been employed by numerous 
researchers in a wide spectrum of problems of engineering 
and industrial applications.

Stochastic optimization methods [3, 4] are very powerful 
optimization methods with capability to handle optimization 
problems with local minimum traps. Most commonly used 
stochastic optimization methods (SOMs) are: genetic algo-
rithm (GA) [5], global search algorithm (GSA) [6], multiple 
starting point algorithm (MSPA) [7], simulated annealing 
algorithm (SAA) [8], and pattern search algorithm (PSA) 
[9].

For design and optimization of various systems, inverse 
engineering has emerged as a new field in this regard [10, 
11]. In the inverse engineering problems, independent 
variables are computed from the knowledge of dependent 
variables. Or, we can say that from the end product, we 
have to trace back the governing equations of the system. 
Inverse engineering proves to be very effective in situation 
such as [12] measurement of properties is a costly affair or 
not possible due to inaccessibility of location (re-entry of 
vehicles), or chances of perturbation of flow pattern due 
to intrusion of measuring probes. In the field of inverse 
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engineering, ANN-based optimization techniques play a 
key role in the final analysis.

In the present study, implementation of radial basis 
neural network (RBNN) has been demonstrated by choos-
ing a problem of engineering applications involving flow 
and heat transfer of a non-Newtonian third-grade fluid. 
A variety of engineering equipment such as mixer, heat 
exchanger and pumps handles different kinds of fluids such 
as slurry [13], polymers [14], medicines [15], and pastes 
[16] in industries like mining applications, polymer pro-
cessing, etc. Flow of fluid through these equipments is 
not governed by a simple linear stress–strain rate model 
of Newtonian fluids. Instead, in many cases, a nonlinear 
stress–strain rate relation is better-suited to describe the 
intricacies associated with the flow of these substances, 
classified as non-Newtonian fluids.

A non-Newtonian fluid exhibits strange behavior such as 
shear thinning/thickening and elastic nature, which are not 
displayed by Newtonian fluids. But a mathematical modeling 
of problems involving non-Newtonian fluid is a formidable 
task. Over the years, several mathematical models such as 
power law model, visco-elastic model, visco-plastic model, 
and Rivlin–Erickson model of grade three (also known as 
third-grade fluids) are put forward by the researchers to 
describe the non-Newtonian fluids. Third-grade fluid model 
has been employed by numerous researchers for modeling 
the flow of polymer, slurry, lubricants. In the present study, 
flow and heat transfer of a non-Newtonian third-grade fluid 
has been chosen as a test case for the demonstration of 
implementation process of RBNN.

Flow of a non-Newtonian third-grade fluid through rec-
tangular parallel plates, subjected to uniform heat fluxes, is 
considered. First, governing equations of the problem are 
solved by employing LSM [17]. Even though LSM approach 
is comparatively simple to apply, yet it takes significant time 
to find the solution for small alterations such as new type of 
boundary conditions, changes in thermo-physical properties 
of fluid and changes in geometry. One pair of velocity profile 
and temperature profile is computed for one value of third-
grade fluid parameter (A). This process is repeated multiple 
times to generate 26 pairs for 26 different values of ‘A’. This 
constituted the first part of the problem.

In the second part, RBNN is explored to solve the energy 
equation, as well as to retrieve the value of A, corresponding 
to a given velocity profile. So, the present approach intends 
to two problems simultaneously: (a) to solve the direct 
problem to find the temperature profile and (b) to apply the 
inverse method to find TGF parameter ‘A’. To apply RBNN 
in the problem, one important parameter is required, called 
spread. Five different SOMs are used, one by one to compute 
the value of spread (required for RBNN). The data (velocity 
profile: as input, temperature profile & A: as target) gen-
erated by LSM are used to train RBNN. This leads to the 

development of stochastic optimization method-assisted 
radial basis neural network (SOMARBNN).

Once the SOMARBNNs are developed, a new velocity 
profile (not part of training data) is fed as input, and temper-
ature profile along with A is obtained as output. The advan-
tage of this approach is that only few cases need to be solved 
with any of the means: analytically, numerically or experi-
mentally to generate data. Once sufficient data are generated 
to train SOMARBNNs, and then, various alterations can 
be solved by using SOMARBNNs. One case (i.e., produc-
ing temperature profile and A corresponding to any veloc-
ity profile) is shown in the present work, but the approach 
can be extended to solve any engineering problem. Present 
work reports first time use of SOMARBNNs, applied to non-
Newtonian fluid flow problem.

Table 1 shows the latest literature available for applica-
tion of ANN/RBNN on non-Newtonian fluids. It is observed 
from Table 1 that large number of work is done on non-
Newtonian fluids by employing ANN, but optimization of 
RBNN by different stochastic optimization methods, and 
comparative assessment of the final result is not available in 
open literature. The present work intends to find a best solu-
tion to optimize RBNN for application in non-Newtonian 
fluids. The performance of different SOMARBNNs is com-
pared and analyzed under various noises in the input data. 
PSAARBNN is found to be the most suitable in terms of 
accuracy, CPU time consumption, and capability to handle 
noisy data set. (Table 1 to be inserted here).

The advantages of present approach are: (i) the main 
attribute in RBNN is easily obtained, which otherwise 
requires lots of technical knowledge of neural networks, (ii) 
solving any inverse engineering problem becomes easy (iii), 
if few cases of any engineering problem are solved either 
experimentally, numerically or analytically, large number of 
other cases with various levels of alterations can be solved 
within very short time.

2  Formulation

2.1  First Part: Generation of Data for RBNN

Two parallel plates subject to uniform heat fluxes  (q1 and  q2) 
are arranged to make channel with the following dimensions: 
distance H, length L and width W. An incompressible non-
Newtonian fluid flow through the parallel plates under the 
steady-state condition and is shown schematically in Fig. 1. 
The flow is assumed to be laminar and fully developed (ther-
mally and hydro-dynamically). The dimension of the chan-
nel along the x* axis is large as compared to the dimension 
in other two axes, i.e., L >  > H  W. The equations governing 
the flow can be presented as: (Fig. 1 to be inserted here).

Equation of continuity
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Equation of momentum conservation

It is to be noted that body forces are neglected in Eq. (2).
For modeling a non-Newtonian fluid flow, the nonlinear 

relationship between stress and the strain rate can be expressed 
by the third-grade fluid model as [17]:

(1)∇ ⋅ V∗ = 0

(2)�
DV

Dt

∗

= ∇ ⋅ � + f

Equation of energy conservation

With the help of assumption of hydro-dynamically fully 
developed flow, the only velocity component that remains 
nonzero is the axial one, with dependency only on y*. Thus, 
the velocity vector becomes:

With the help of Eq. (7), the momentum conservation 
equation given by Eq. (2) simplifies to:

(3)

� = −pI + �A
1
+ �

1
A
2
+ �

2
A2

1
+ �

1
A
3
+ �

2

(

A
1
A
2
+ A

2
A
1

)

+ �
3

(

trA2

1

)

A
1

(4)A1 = (gradV∗) + (gradV∗)Transpose

(5)
An =

dAn−1

dt
+ An−1(gradV

∗) + (gradV∗)TransposeAn−1,

n = 1, 2, 3

(6)�cp
dT∗

dt
= � ∶ grad(V∗) − ∇ ⋅ (−kth∇T

∗)

(7)v∗ =
[

u∗(y∗), 0, 0
]

(8)
�p∗

�x∗
= �

d2u∗

dy∗2
+ 2(�2 + �3)

d

dy∗

(

du∗

dy∗

)3

(9)
�p∗

�y∗
=
(

2�1 + �2
) d

dy∗

(
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dy∗

)2

Table 1  Research available in open literature about use of ANN in fluid flows

S. No. Paper Work

1 H. Kalani et al. [18] Used particle swarm optimization-assisted artificial neural networks of different types, for modeling a photo-
thermal nanofluid-based collector system

2 M.H. Esfe [19] Used artificial neural network for predicting heat transfer and pressure drop characteristics of nanofluid in a 
heat exchanger

3 R. Daneshfar et al. [20] Employed various alterations of ANN to determine the heat capacity of ionanofluids as a function of nanoparti-
cle concentration, critical temperature, etc.

4 M. H. Esfe [21] Two alterations of artificial neural network were used to predict thermal conductivity of ethylene glycol–water-
based TiO2 nanofluids

5 K. Chhantyal et al. [22] ANN and support vector machine (SVM) are used to develop empirical models in to be used in ultrasonic-level 
sensors for flowmetering of non-Newtonian fluids in open Venturi channels

6 H. Eshgarf [23] ANN models were used to forecast the rheological behavior of MWCNTs–SiO2/EG–water non-Newtonian 
hybrid nanofluid

7 H. Wu et al. [24] They used ANN + GA to improve the pipe flow hydrodynamic and thermal properties such as pressure drop 
and heat transfer coefficient for a non-Newtonian nanofluid composed of Fe3O4 nanoparticles dispersed in 
liquid paraffin

8 S. Zhang et al. [25] Radial basis neural network was used to predict thermal conductivity for a non-Newtonian fluid
9 V.K. Mishra et al. [26] Used ANN + GA for estimation of one parameter in non-Newtonian fluid flow problem
10 M. Amani et al. [27] ANN was used to evaluate friction factor and heat transfer coefficient of the aqueous solution of TiO2/CMC-

water non-Newtonian nanofluid

Fig. 1  Schematic of the non-Newtonian fluid flow under uniform heat 
flux
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Similarly, by using Eq. (7), energy conservation equa-
tion given by Eq. (6) simplifies to:

The effect of third-grade fluid parameter A on energy 
equation is represented by the third term in the right-hand 
side of Eq. (11). Because of the assumption of thermally 
developed conditions, the temperature profile becomes 
independent of x* and depends only upon y*. The non-
dimensional temperature can be defined as follows:

For constant wall heat flux condition, the following 
important relations can be deduced:

(10)
�p∗

�z∗
= 0

(11)

�cpu
∗ �T

∗

�x∗
= kth

(

�2T∗

�x∗2
+

�2T∗

�y∗2

)

+ �

(

du∗

dy∗

)2

+ 2(�2 + �3)

(

du∗

dy∗

)4

� =
T∗ − T∗

wl

T∗
m
− T∗

wl

Thus, substitution of Eq. (12) into Eq. (11) gives the 
following form of energy equation

Boundary conditions: (a) constant and uniform heat 
fluxes on both the plates, (b) at the plate–fluid interface, 
no-slip conditions prevail. Thus, the following expressions 
can be written

(12)�T∗

�x∗
=

dT∗
m

dx∗
= const.,

�2T∗

�x∗2
= 0

(13)

�cpu
∗ �T

∗

�x∗
= kth

(

�2T∗

�y∗2

)

+ �

(

du∗

dy∗

)2

+ 2(�2 + �3)

(

du∗

dy∗

)4

(14)u ∗ (−h) = 0, u ∗ (h) = 0

Fig. 2  Validation of the first part by comparing the velocity by LSM 
with exact solution [28]

Fig. 3  Validation of the first 
part with exact solution for 
Newtonian fluid [28]. a Com-
parison of velocity profiles. b 
Comparison of non-dimensional 
temperature profiles

Start: gen =0

Initialization of population

Evaluation of  fitness

Selection of parents

Crossover to produce children

Mutation in children

Increment of generation: gen = gen+1

Output: results of evaluation of fitness

END

Check for 
conditions

Yes

No

Fig. 4  Flowchart of processes in GA
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To make the analysis independent of requirement of 
knowledge of plate surface temperature, the temperature 
is non-dimensionalized in the following way:

Further, the fluid velocity at any location, and distance 
(along y* direction) are non-dimensionalized as:

With the help of non-dimensional terms defined in Eqs. 
(16) and (17), conservation equations of momentum and 
energy can be expressed in the non-dimensional form as:

In Eq. (20), u0 is the average velocity of fluid flow.

(15)kth

(

�T∗

�y∗

)

−h

= ∓q1, kth

(

�T∗

�y∗

)

h

= ±q2

(16)� =
T∗ − T∗

wl

q1h∕kth

(17)u =
u∗

u0
, y =

y∗

h

(18)d2u

dy2
+ 6A

(

du

dy

)2
d2u

dy2
= N

(19)�u =
d2�

dy2
+ Br

(

du

dy

)2

+ 2ABr

(

du

dy

)4

(20)

A =
�2 + �3

�

(u0

h

)2

, Br =
�u2

0

q1h
, u0 =

1

N

dp∗

dx∗
h2

�
, � =

�cpu0

q1

dT∗

dx∗

Equation (14) can now be presented in the non-dimen-
sional form as:

Further, the boundary condition for energy equation 
becomes:

Solution of the governing equations subjected to the 
boundary conditions is obtained by LSM, and the method-
ology of LSM application is explained in the next section.

2.1.1  Solution

2.1.1.1 Least Square Method (LSM) Starting with any arbi-
trary function v(y), and operating this with a differential 
operator D to get a function say g(y), it can be presented in 
the mathematical form as:

Also, a group of linear base functions who satisfy the 
boundary conditions can be arranged linearly to the function 
v to be 

∼
v . This can be expressed as:

(21)u(−1) = 0, u(1) = 0

(22)�(−1) = 0

(23)
d�

dx
(−1) = ∓1

(24)
d�

dx
(1) = ±

q2

q1
= q

(25)Dv(y) = g(y)

(26)v ≅ ṽ =

n
∑

i=1

ci𝜙i

Start: initial point =Xo

Generation of mesh points

Evaluation of  objective function

Set new mesh size =1/2

Set new mesh size =2

Stop
Is any one

of the Stopping 
Criteria met ?

Yes

No

O.F. of 
mesh points < 
O.F. of Xo ?

Yes

No

Fig. 5  Flowchart of pattern search algorithm (PSA)
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Fig. 7  Radial basis neuron Input
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Velocity Profile
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V4
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1
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Fig. 8  Architecture of RBNN Input Radial Basis Layer Linear Layer Output
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Fig. 9  Flowchart to use SOM-
assisted RBNN for generating 
temperature profile along with 
A
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Thus, with the help of Eqs. (25) and (26), we can define 
the residue as:

The residue need not be zero at every point, but their 
average quantity will reduce to zero.

In Eq. (28), as per LSM method, the weights are taken to 
be equal to residual:

Now, S can be minimized as:

(27)R(y) = D{ṽ(y)} − g(y) ≠ 0

(28)∫
x

R(y)wi(y)dy = 0, i = 0, 2, 3..n

(29)S = ∫
y

R(y)R(y)dy = ∫
y

R2dy

Equation (30) gives equal number of algebraic relations 
and unknown constants, which can easily be computed.

2.1.1.2 Solution Methodology by  Using LSM A group of 
base functions, which satisfy the boundary conditions, are 
used to approximate the velocity field:

By using the definition of velocity field in Eq. (31), the 
residues are obtained from Eq. (18):

(30)
�S

�ci
= 2∫

x

R(y)
�R

�ci
dy = 0

(31)u(y) = c1(1 − y2) + c2(1 − y4)

(32)R(y) = a0 + a2y
2 + a4y

4 + a6y
6 + a8y

8

Table 2  Results of different SOMARBNNs in retrieval of third-grade fluid parameter (Aret) for A = 0.75

S. no. Algorithm Total time (s) Fitness value spread Aret Absolute error in 
retrieved value of A

RBNN 
time (s)

Noise (%)

1 GA 84 9.7999 ×  10–10 2.5704 0.7500 0.00 2 0
2 GS 370 9.7073 ×  10–10 2.6099 0.7500 0.00 3 0
3 MSP 10 1.4138 ×  10–9 28.4341 0.7500 0.00 2 0
4 SA 65 9.7646 ×  10–10 2.5826 0.7500 0.00 2 0
5 PS 10 1.5105 ×  10–9 0.8168 0.7500 0.00 2 0
6 GA 96 1.7187 ×  10–9 1.8396 0.7501 0.02 2 0.1
7 GS 785 7.5392 ×  10–8 36.1157 0.7539 0.53 3 0.1
8 MSP 199 1.7349 ×  10–9 39.4829 0.7504 0.06 3 0.1
9 SA 71 1.9727 ×  10–9 20.9232 0.7500 0.00 3 0.1
10 PS 9 2.7723 ×  10–9 2.7500 0.7503 0.04 3 0.1
11 GA 81 6.0253 ×  10–9 16.2999 0.7504 0.06 2 0.2
12 GS 730 3.7493 ×  10–8 27.9120 0.7527 0.37 3 0.2
13 MSP 181 4.1118 ×  10–8 27.6489 0.7528 0.38 2 0.2
14 SA 72 3.1172 ×  10–8 25.9298 0.7498 0.03 3 0.2
15 PS 8 9.7416 ×  10–9 0.4375 0.7501 0.02 2 0.2
16 GA 82 7.9762 ×  10–8 16.7495 0.7537 0.50 2 0.5
17 GS 765 1.5355e ×  10–8 14.4924 0.7509 0.13 2 0.5
18 MSP 218 8.0474 ×  10–8 18.7814 0.7539 0.53 17 0.5
19 SA 72 2.6623 ×  10–8 15.6627 0.7492 0.11 3 0.5
20 PS 9 1.8760 ×  10–8 1.5078 0.7503 0.04 3 0.5
21 GA 92 1.7301 ×  10–7 4.6898 0.7494 0.09 2 1
22 GS 840 3.9252 ×  10–8 12.3061 0.7514 0.19 4 1
23 MSP 252 9.4098 ×  10–8 11.8309 0.7531 0.42 3 1
24 SA 72 3.8517 ×  10–8 11.5062 0.7517 0.23 4 1
25 PS 10 7.1505 ×  10–8 0.7500 0.7502 0.03 2 1
26 GA 91 5.4749 ×  10–7 17.8381 0.7595 1.27 3 2
27 GS 593 1.5704 ×  10–6 36.0814 0.7666 2.22 2 2
28 MSP 203 7.3257 ×  10–7 34.5372 0.7613 1.51 3 2
29 SA 73 4.8089 ×  10–7 26.3000 0.7589 1.19 3 2
30 PS 8 3.1130 ×  10–7 0.6211 0.7471 0.39 3 2
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With the help of Eq. (27) describing the LSM technique, 
the following relations are obtained from Eq. (30):

Now, Eq. (34) and Eq. (35) are solved for the values of 
the constants  c1 and  c2, by using practically possible values 
of Ha, N, H and A. The energy equation of Eq. (19) can be 
expressed in terms of base function by using the definition 
of velocity field given by Eq. (31):

(33)

a
0
= −2c

1
− N, a

2
= −12c

2
− 48c

3

1
, a

4
= −480Ac2

1
c
2
,

a
6
= 6A(32 + 12.16)c

1
c
2

2
, a

8
= −72.16Ac3

2

(34)

1

∫
−1

R
�R

�c1
dy = 0

(35)

1

∫
−1

R
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The temperature field is obtained by integration of Eq. 
(36) as:

Substitution of boundary conditions from Eq. (22) to 
Eq. (24) gives the value of the constants  r3 and  r4 in Eq. 
(38) as:

Following definitions are used for Nusselt number:
(i) Nusselt number for the bottom plate:

(ii) Nusselt number for the top plate: Nuupper = Nu q2/q1.
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2.1.2  Validation of First Part

Once the governing equations are solved by using LSM, 
the first part of the problem is over. In the second part, 
data generated by the LSM are used for the development 
of SOMARBNNs. Before proceeding to the second part 
of the problem, the validation of the first part is presented 
in Figs. 2 and 3. Figure 2 shows that the velocity profile 
obtained from the LSM is compared with the data avail-
able in the literature [28]. Further, the temperature and the 
velocity profiles from LSM are compared with the result of 
analytical solution, for the Newtonian fluid, and are shown 
in Fig. 3. (Figs. 2 and 3 to be inserted here).

2.2  Second Part: Designing of RBNN with the Help 
of SOMs

After completion of the first part of the problem, the sec-
ond part of the problem is solved. In the second part, five 
different SOMs are used to design a RBNN. All the SOMs 
are implemented in the present work, without taking the 
results from any other work. A brief description of differ-
ent SOMs is presented below:

2.2.1  Genetic Algorithm

GA is a mathematical tool to search global minimum 
and is inspired from nature’s process of evolution [29]. It 
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mathematically mimics different processes of evolution such 
as selection, crossover, and mutation. The flowchart of GA 
is shown in Fig. 4. First of all, a group of probable solutions 
are generated, called population of first generation. Then, 
depending upon the value of fitness value from each indi-
vidual, selection and mutation are carried out to generate 
children, also called next generation. In this way, good indi-
viduals are generated for few generations till only few good 
individuals remain. These good individuals correspond to 
the best solution. (Fig. 4 to be inserted here).

2.2.2  Global Search Algorithm

GSA finds starting points for gradient-based local nonlin-
ear programming (NLP) solvers [30]. Scatter search method 
OptQuest is employed by GSA to find the starting point for 
the gradient search algorithm. Global optimization along 
with powerful local search makes GSA very effective opti-
mization tool. The scatter search is advanced than GA in 
terms of generating new generation in a deterministic means 
rather than the random means.

2.2.3  Multiple Starting Point Algorithm

MSPA uses local optimization routine but starts with vari-
ous different points to solve any optimization problem [31]. 
The global solution is said to be obtained if best solution is 
picked. Chances of getting the global minimum increases 
with the increase in the number of starting points or repeat-
ing the program from different sets of starting points. The 
algorithm gives a set of good solutions, and any of them 

can be picked depending upon the required stability of the 
solution parameters.

2.2.4  Simulated Annealing Algorithm

SAA is very commonly used stochastic optimization method 
to solve unconstrained and bound-constrained problems 
[32]. It is inspired from the metallurgical process called 
annealing, where it mimics the physical process of heat-
ing a material and then slowly lowering the temperature to 
decrease defects in crystal structure, thus minimizing the 
system energy.

In each iteration, a new point is generated in a random 
way. A probability scale, proportional to the temperature, is 
used to locate the position of the new point, i.e., the extent of 
the search. The SAA accepts all the points, which give lower 
values for objective function. The algorithm also accepts few 
points with certain probabilities, which give higher values of 
objective function. This means of accepting the points with 
higher objective function helps the SAA to overcome the 
local minima and explore global minima.

2.2.5  Pattern Search Algorithm

PSA is computationally efficient algorithm yet very sim-
ple and easy to implement [33]. The flowchart of the steps 
involved in implementation of PSA is shown in Fig. 5. It 
starts with a single point Xno ; then, a mesh is generated 
around this point. The objective function for all the mesh 
points is computed and compared with the objective func-
tion for point Xno.
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If the objective function for any of these mesh points 
is less than that for the initial point, then that mesh point 
is designated as new Xn1 , and it is called successful poll. 
Then, a new mesh is generated around the point Xn1 with 
twice the size, and the whole process is repeated, whereas 
if the algorithm encounters unsuccessful poll, i.e., all the 
mesh point gives higher value of objective function than 
the central point, then a new mesh is generated with half the 
size. In this way, the algorithm proceeds until it achieves 
the required accuracy for the objective function or any other 
stopping criterion is met. (Fig. 5 to be inserted here).

2.2.6  Radial Basis Neural Network

A radial basis neural network (RBNN) function is one of the 
most commonly used neural networks, apart from percep-
tron network. In RBNN, the final input to the radbas trans-
fer function is a distance between a weight vector and an 
input vector and multiplied by a bias. The transfer function 
calculates a neuron’s output as an = exp ( −  nn2). When the 
distance is 0, the function gives it maximum value an = 1, 
and the function decreases with the increase in distance. 
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The sensitivity of neuron is decided by the bias bn. The 
output of radbas for different inputs is shown in Fig. 6. The 
radial basis neuron is shown in Fig. 7. (Figs. 6 and 7 to be 
inserted here).

The network based on the radial basis function is illus-
trated in Fig. 8. One radial basis layer of  sn1 nodes consti-
tutes the hidden layer, and the output linear layer consists 
of  sn2 nodes. With the help of input vector V and a weight 
matrix  IWn1, a distance vector of size  sn1 is generated. After 
scaling of the distances by bias vector bn1, the radial basis 
transfer function converts it into hidden layer output vector 
an1. The output layer in RBNN works similar to perceptron 
output layer with a linear transfer function to produce output 
vector  an2 of size  sn2. The coefficients  IWn1,  LWn2,  bn1 
and  bn2, are computed automatically in MATLAB software. 
(Fig. 8 to be inserted here).

One neuron is added at a time in the hidden layer, until 
the sum-squared error reaches the prescribed value or the 
prescribed maximum number of neurons is achieved. Thus, 
number of neurons in the hidden layer is automatically 
generated.

2.2.7  Stochastic Optimization Methods Assisted RBNN

RBNN is very simple to use, with only one parameter 
‘spread’ is required from user to construct the model. 
Spread helps to decide the width of an area in the input 
space to which each neuron in the hidden layer responds. 
The accuracy and time consumption of the RBNN model 
depend on the value of spread. Proper selection of the 
value for spread is very vital for the performance of RBNN 

model and at the same time it is very difficult, as lot of 
experience is required to come to a final value. But in the 
present work, a novel approach of using stochastic opti-
mization method for selecting suitable value for spread is 
proposed. Different stochastic optimization methods such 
as GA, GSA, MSPA, SAA, and PSA are used, and the 
results are compared and analyzed on the basis of accuracy 
and time consumption.

Flowchart of the stochastic optimization method-assisted 
RBNN (SOMARBNN) is shown in Fig. 9. First of all, the 
first part of the problem is used to generate multiple pairs 
of the velocity- and the temperature- profile for different 
values of A. This gives the data in the form of input (velocity 
profile) and target (temperature profile and A), to be used 
in the SOMARBNN for training purpose. Anyone SOM is 
selected to guess the value for spread, and by using this 
spread, RBNN is used. The RBNN returns mean-squared 
error (mse), which acts as objective function (OF) for the 
selected SOM. Once SOM gets lowest mse, it finalizes the 
guessed value of ‘spread’ for RBNN. Thus, this ‘spread’ is 
used in RBNN, and output is produced corresponding to any 
given input. (Fig. 9 to be inserted here).

These steps are repeated for all the SOMs, and com-
parison of the result is done to select most suitable 
SOMARBNN. The analysis is also done with different levels 
(0.0, 0.1, 0.2, 0.5, 1.0, and 2.0) of perturbation in the input 
data. In all the SOMARBNNs, number of neurons in the 
hidden layer are 14, and it is automatically decided.
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3  Results and Discussions

In the quest for generating an efficient and robust RBNN, 
different SOMs are explored to decide the values of spread. 
The SOMARBNNs are used to get the temperature profile 
and the value of A corresponding to any velocity profile 
(not part of initial data). With the help of mse, measured as 
the difference between the true value (computed by LSM) 
and the corresponding network output, the convergence of 
RBNN is monitored [34] and is given by Eq. (42) as:

where Rn is number of observation points (= 201), A and � 
is true value of TGF parameter and temperature (obtained 

(42)OF = mse =
1

Rn + 1

(

(

A − Aret

)2
+

Rn
∑

i=1

(

𝜃i − 𝜃i
)2

)

from LSM), respectively. RBNN-generated TGF parameter 
and temperature are represented by Aret and 𝜃 , respectively. 
The mse calculated in the last iteration of RBNN is allocated 
to the objective function OF, to be used in SOMs. The accu-
racy of retrieval of A is measured by using the following 
error function [34]:

where Aret is retrieved value of TGF parameter, and A is true 
value of TGF parameter.

Results of different SOMARBNNs are presented in 
Table 2. For no noise in the input data, all the SOMARBNNs 
retrieve the value of A with zero error. Under the total time 
column, CPU time consumption by different SOMARBNNs 

(43)error =
|

|

|

|

A − Aret

A

|

|

|

|

× 100
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is listed. RBNNs assisted by MSPA and PSA take minimum 
time of 10 s. During the training stage of the SOMARBNNs, 
the performance of the RBNN is displayed under the col-
umn, fitness value (mse). Low value of fitness value indi-
cates higher accuracy in the output (temperature profile and 
A) of SOMARBNNs. Value of spread for RBNN, as given 
by SOMs, is listed under the column ‘spread’. Once spread 
is given by the SOMs, RBNN runs very fast and takes 2–3 s  
for almost all the cases and is displayed under the column 
RBNN time.

It is observed from Table 2 that the fitness value increases 
with the increase in noise level. Generation of spread by dif-
ferent SMOs is on the basis OF, with no observable trend. 
Error in the retrieved value of A, increases with the increase 
in the noise. Detailed interpretation and plots for different 
SOMARBNNs are discussed below: (Table 2 to be inserted 
here).

3.1  Performance Evaluation of GAARBNN

Figure 10 shows the error in the temperature profile gener-
ated by GAARBNN for different levels of noise in the input 
data. It is observed that for all the cases the error in the 
output is in the order of  10–4, which is highly accurate. Also, 
the error in the temperature profile generated by GAARBNN 
is proportional to the noise in the input data (Fig. 10 to be 
inserted here).

In Fig.  11, a detailed performance evaluation of 
GAARBNN is presented. Temperature profile generated by 
LSM, along with the error in the temperature profile gener-
ated by GAARBNN, for different levels of noise in the input 

data, is shown in Fig. 11a. Robustness of the GAARBNN 
is evident from the observation that the error in the output 
is very less even for high-level noise (2.0%) in the input 
data. Figure 11b shows the performance of the GAARBNN 
during the training stage, for different levels of noise in the 
input data.

It is observed that the mse decreases continuously with 
the increase in iteration (epoch). CPU time consumption by 
GAARBNN for different cases is shown in Fig. 11c. For 
all the cases, time consumption is approximately the same. 
Error in the retrieved value of A for different cases is shown 
in Fig. 11d. For high noise (2.0%) case, the error in retrieval 
is more than 1%, whereas for all the other cases the error is 
less than 1%. This indicates that the GAARBNN is capable 
of giving accurate results, even under the situations where 
the input data are noisy. (Fig. 11 to be inserted here).

3.2  Performance Evaluation of GSAARBNN

Error in the temperature profile obtained from GSAARBNN 
for different levels of noise in the input data is compared in 
Fig. 12. For all the cases, the order of error is  10–3, which 
is poor as compared to GAARBNN. For high level of noise 
in the input data, the error in temperature profile is high. 
Figure 13 shows the results of GSAARBNN for different 
cases of noise in the input data. Figure 13a shows that along 
the whole height (distance along y*) the error in the result 
is very less. (Fig. 12 to be inserted here).

Convergence of GSAARBNN during the training stage 
is shown in Fig. 13b. For no noise case, the rate of con-
vergence is faster than other cases. All the cases converge 
very fast during 12th iteration. CPU time consumption by 
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GSAARBNN for all the cases is shown in Fig. 13c. Time 
consumption for no noise case is very less, as compared 
to noisy cases. The error in the retrieved value of A from 
GSAARBNN for all the cases is shown in Fig. 13d. Except 
for high noise (2.0%) case, for all the cases the error in the 
retrieved value is less than 0.5. (Fig. 13 to be inserted here).

3.3  Performance Evaluation of MSPAARBNN

An enlarged view of the comparison of the error in the tem-
perature profile generated by MSPAARBNN for different 
levels of noise in the input data is shown in Fig. 14. It is 
observed that for all the cases, the error is in the order of 
 10–4, which indicates high accuracy in results. Also, the 
errors for low noise level are less and high for high noise 
levels. Detailed performance evaluation of MSPAARBNN 

is presented in Fig. 15. Figure 15a shows the error in tem-
perature profile generated by MSPAARBNN along the y* 
axis and compared against the LSM solution. It is observed 
that for all the cases the output is very accurate. (Fig. 14 to 
be inserted here).

Plots of iteration verses mse are plotted for different 
noise cases in Fig. 15b. For all the cases, accuracy improves 
significantly after iteration 12. CPU time consumption by 
MSPAARBNN for different cases is compared in Fig. 15c. 
Drastic difference in time consumption is observed between 
no noise and noisy cases. Error in the retrieved value of A 
is shown in Fig. 15d. Up to 1.0% noise, the error in result is 
found to be less than 0.6%, whereas for high level of noise 
(2.0%), the error in the result is more than 1.4%. (Fig. 15 to 
be inserted here).
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3.4  Performance Evaluation of SAAARBNN

Enlarged view of the comparison of the error in the tem-
perature profile generated by SAAARBNN for differ-
ent levels of noise in the input data is shown in Fig. 16. 
Error in all the cases is of the order of  10–3, which is not 
so good as compared to some of the other SOMARBNNs. 
The error increases with the increase in noise in the input 
data. Detailed performance evaluation of SAAARBNN is 
presented in Fig. 17. Figure 17a shows the error in the tem-
perature profile produced by SAAARBNN for different noise 
levels in the input data. It is observed that temperature along 
the y* axis, as produced by SAAARBNN, is having very less 
error for all the cases. (Fig. 16 to be inserted here).

Convergence of SAAARBNN is shown in Fig. 17b, and 
the mse falls continuously with the increase in iteration. 
Also, after iteration 12, the mse falls very rapidly. CPU time 
consumption by SAAARBNN is shown in Fig. 17c, and it 
is observed that CPU time is approximately independent of 
noise in the input data. Error in the retrieved value of A is 
shown in Fig. 17d. Error in the output, in all the cases except 
high noise (2.0%), is less than 0.4%. (Fig. 17 to be inserted 
here).

3.5  Performance Evaluation of PSAARBNN

Enlarged view of the comparison of the error in the tem-
perature profile generated by PSAARBNN for different 
levels of noise in the input data is shown in Fig. 18. Maxi-
mum error out of all the cases is of the order of  10–3. The 
error increases with the increase in noise in the input data. 

Detailed performance evaluation of PSAARBNN is pre-
sented in Fig. 19. Figure 19a shows the error in the tem-
perature profile produced by PSAARBNN for different noise 
levels in the input data. It is observed that the temperature 
along the y* axis, as produced by PSAARBNN is having 
very less error for all the cases. (Fig. 18 to be inserted here).

Convergence of PSAARBNN is shown in Fig. 19b, and 
the mse falls continuously with the increase in iteration. 
Further, after iteration 12, the convergence speeds up rap-
idly. CPU time consumption by PSAARBNN is shown in 
Fig. 19c, and it is observed that the CPU time is approxi-
mately independent of noise levels in the input data. The 
error in the retrieved value of A is shown in Fig. 19d, for all 
the cases of noise levels in the input data. The error in the 
output is less than 0.05% for all the cases except for high 
noise (2.0%) (Fig. 19 to be inserted here).

3.6  Performance Evaluation of different 
SOMARBNN

Comparison of error in the temperature profile generated 
by different SOMARBNNs is shown in Fig. 20. Figure 20a 
shows error in the output temperature for the case of no 
noise in the input data. Output from RBNN, assisted by PSA 
and MSPA, has a maximum error, at the center of chan-
nel height. Similarly, Fig. 20b shows the error in the output 
temperature for the case of high noise (2.0%) in the input 
data. The error in the output from the RBNN assisted by 
PSA and GSA is higher than, by other SOMs. (Fig. 20 to be 
inserted here).
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Fig. 18  Enlarged view of error in the temperature generated by PSAARBNN for different levels of noise in the input data
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Convergence comparison of different SOMARBNNs is 
shown in Fig. 21, for different cases of noise in the input 
data. Figure 21a and b shows the convergence for the case 
of no noise and high noise (2.0%) in the input data, respec-
tively. All the SOMARBNNs converge slowly up to 12 itera-
tion and then speed up to finally converge within 14 itera-
tions. PSAARBNN gives lowest mse for both the cases of 
noise in the input data, thus indicating higher accuracy in 
the output (Fig. 21 to be inserted here).

Figure 22 shows the performance evaluation of different 
SOMARBNNs in the retrieval of A, for different cases of 
noise in the input data. Figure 22a compares the CPU time 
consumed by different SOMARBNNs for giving the value 
of spread for a RBNN, in case of no noise in the input data. 
GSA is found to take maximum time to achieve the target. 
Error in the retrieved value of A by different SOMARBNNs 

under no noise is shown in Fig. 22b. Through this graph 
also, GSAARBNN is found to be least suitable due to low 
accuracy. However, for all other SOMARBNNs, the error in 
the output is less than 0.1%.

CPU time requirement by different SOMARBNNs is 
shown in Fig. 22c, for the case of high noise (2.0%) in the 
input data. PSA is found to take minimum time even in case 
of high noise. Figure 22d shows the error in the retrieved 
value of A by different SOMARBNNs under various level 
of noise in the input data. RBNN assisted by PSA is most 
accurate, while GSA gives poorest accuracy. All the runs 
were taken on 2.4 GHz processor with 8 GB RAM (Fig. 22 
to be inserted here).
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4  Conclusions

Implementation of radial basis neural network (RBNN) is 
demonstrated by choosing a test case of non-Newtonian 
third-grade fluid flow with heat transfer, through two par-
allel plates. First part of the problem involves solving the 
governing equations subjected to the prescribed boundary 
conditions, by employing LSM. Pairs of velocity profile and 
temperature profile along with A, are prepared for the second 
part of the problem.

In the second part, RBNN is designed with the help 
of the following SOMs: GA, GSA, MSPA, SAA, and 
PSA. The data generated in the first part are then fed to 
train SOMARBNNs. After successful training of the 
SOMARBNNs, a velocity profile is used as input, and out-
puts obtained are: (i) temperature profile (ii) A. Performance 
of different SOMARBNNs under varying noise levels in the 
input data is analyzed and evaluated in terms of CPU time 
consumption and error in the result.
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Overall, all the SOMARBNNs are able to generate highly 
accurate temperature and value of A, corresponding to any 
velocity field, for different noise levels in the input data. 
GSAARBNN is found to be performing worst than other 
SOMARBNNs. PSAARBNN is found to be better than other 
SOMARBNNs in terms of CPU time consumption, accu-
racy, and ability to handle noisy input data.
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