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Abstract
Contractive auto-encoder (CAE) is a type of auto-encoders and a deep learning algorithm that is based on multilayer training
approach. It is considered as one of the most powerful, efficient and robust classification techniques, more specifically
feature reduction. The problem independence, easy implementation and intelligence of solving sophisticated problems make
it distinct from other deep learning approaches. However, CAE fails in data dimensionality reduction that cause difficulty to
capture the useful information within the features space. In order to resolve the issues of CAE, restricted Boltzmann machine
(RBM) layers have been integrated with CAE to enhance the dimensionality reduction and a randomized factor for hidden
layer parameters. The proposed model has been evaluated on four benchmark variant datasets of MNIST. The results have
been compared with four well-known multiclass class classification approaches including standard CAE, RBM, AlexNet and
artificial neural network. A considerable amount of improvement has been observed in the performance of proposed model as
compared to other classification techniques. The proposed CAE–RBM showed an improvement of 2–4% on MNIST(basic),
9–12% for MNIST(rot), 7–12% for MNIST(bg-rand) and 7–10% for MNIST(bg-img) dataset in term of final accuracy.
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Abbreviations
AE Auto-encoder
RBM Restricted Boltzmann machine
CAE Contractive auto-encoder
CAE–RBM Hybrid contractive auto-encoder–restricted

Boltzmann machine
ANN Artificial neural network
SVM Support vector machine
kNN k-Nearest neighbor
CNN Convolution neural network
DL Deep learning
ML Machine learning
ROC Receiver operating characteristic
CM Confusion matrix
MNIST Modified National Institute of Standards

and Technology (database)
rot MNIST random rotation digits
bg-rand Random noise background digits
bg-img Random background digits
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1 Introduction

In the field of data mining, classification algorithms are
skilled for processing a huge amount of data. These algo-
rithms are used to predict categorical classes for the test data
based on training dataset and also used for classifying the
new data instances. The field of classification covers many
contexts in which a few decisions or forecasts are made on
the basis of currently accessible information. The procedure
of Classification is acknowledged as a method of frequently
making conclusions in novel situations. Here, the assump-
tions are made for building a procedure that is applied to a
continuous sequence of instances and in which every new
instance is assigned to one of the groups of pre-defined
classes based on observed features of existing data instances.
A type of classification procedure in which the exact classes
labels are known in training phase is the so-called supervised
learning or pattern recognition [32]. The famous AI tech-
niques for solving classification problem are: support vector
machine (SVM) [30], k-nearest neighbor (kNN) [56] and arti-
ficial neural network (ANN) [39]. Furthermore, a group of
techniques known as deep learning (DL) algorithms has been
introduce recently for solving these sophisticated problems.

Deep learning is a subdomain of machine learning that
learns high-level abstraction present in the data by using hier-
archical learning. Deep learning algorithms are the advanced
versions of traditional neural networks which possess some
serious limitations. In traditional neural networks, if there
are more layers and units, there will be a higher expressional
power of the network which leads to more complexity of
cost functions. The network learning will be difficult and
cause overfitting. Overfitting can be reduced using several
methods, for example keeping the network size smaller,
maximizing the training part of the dataset and some other
techniques. In order to overcome the limitations associated
with traditional neural networks, deep learning algorithms
have been introduced. It is an advanced approach and has
been utilized in family of applications for example transfer
learning [26], semantic parsing [44], computer vision [34],
natural language processing [53] and many other complex
applications. The reasons behind the usage of deep learning
algorithms are the low cost of computing hardware, pow-
erful processing capabilities and high level of advancement
in the machine learning techniques. There are three famous
DL algorithms in the most recent research, namely convo-
lution neural network (CNN), restricted Boltzmann machine
(RBM) and auto-encoder (AE). All of these deep learning
algorithms have further many variants suitable for different
types of applications.

Auto-encoders (AEs) are a kind of artificial neural net-
work consist of three layers. These layers are input layer,
hidden layer and output layer, which are used for learn-
ing of efficient encoding [50]. The AE reconstructs its own

inputs instead of predicting outputs from the inputs. In auto-
encoder, the output vector has the same dimension as the
inputs. During the reduction process in auto-encoder, the
purpose is to minimize the reconstruction error and learned
features are actually the code generated by the encoder [4].
A single layer cannot extract informative features from the
raw data. Therefore, in recent studies on AEs, researchers
have used multiple layers to extract the most useful fea-
tures from the raw data. AE have many variants, e.g., sparse
auto-encoder [51], denoising auto-encoder [11], Saturating
auto-encoder [14], convolutional auto-encoder [20], zero-
bias auto-encoder [21] and contractive auto-encoder [13].

Boltzmannmachine (BM) falls under the category of deep
learning models that is based on probability distribution for
machine learning. Restricted Boltzmann machine (RBM) is
one of the famous variants of standard BM which was first
created byGeoff Hinton [16]. Restricted Boltzmannmachine
(RBM) [23] is one of the famous variants of standard BM.
Themain purpose of RBM is reducing high-dimensional data
into low-dimensional feature space. Since it is a probability-
based approach, it is stochastic and generative in nature [3].
The internal architecture of theRBMis similar to other neural
networks (NNs) having layers with neurons in each layer.
Except that in RBM there are only two layers. The first layer
is referred to the input layer of the network, while the second
layer is the hidden layer that is output from the input layer
[6]. There is a neural connection between the neurons of
input layer and hidden layer. In standard BM, there exist
connections between the neurons of the same layer, but in
RBM, there is a restriction that none of the neurons in same
layer can communicate with the neurons between them.

In this paper, we integrate the RBM layers with the CAE
in order to improve the dimensionality reduction capability
of CAEmore efficiently. This integration of RBM layerswith
CAE creates a learning approach with the two major proper-
ties including robustness toward small noise or changes in the
input features vector and the capability of learning high-order
statistical feature from high-dimensional features space. The
proposed CAE–RBM has the capabilities of both CAE and
RBM which proves the significance of the proposed model.
However, this paper has three main research contributions:

1. This paper gives a brief introduction, literature study and
applications of CAE and RBM in solving the multiclass
classification problems in different domain.

2. This paper proposedCAE–RBMapproachwhich improves
the dimensionality reduction ability of conventional CAE
and enhancing the learning of high-order statistical fea-
tures by integrating the RBM layers during feature
reduction phase.

3. This paper conducted an extensive experiments on the
proposed CAE–RBM model, in addition with state-of-
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the-artmulticlass classification algorithms on benchmark
handwritten digit images dataset.

The rest of the paper is organized as follows: Sect. 2 shows
related work; Sect. 3 presents the conventional contrac-
tive auto-encoder; Sect. 4 shows the proposed CAE–RBM
approach; Sect. 5 shows experimental results; Sect. 6 shows
the comparative analysis of results; and Sect. 7 presents the
conclusion and future work.

2 RelatedWork

In the field of multiclass classification, supervised behavior
learning algorithms are aimed to assign a designated class to
every input instance [43]. For an input dataset of (a j , b j ),
where b jεRn is the j th instance and b jε1, 2, 3...k is the j th

class label, the main purpose is to find a model for learn-
ing H , while H(a j ) = b j for all of the testing instances.
Many models and algorithms have been proposed in the
last few decades for solving the binary class classification
problems, most of them are easy to extend for multiclass
classification problem, while some of them use special for-
mulation to solve multiclass classification problem [8,31].
Solving the multiclass classification problem is challenging
[24]. In state-of-the-art classification approaches, the multi-
class classification problem is solved using the splitting of
problem into many independent binary classification sub-
problems. Image classification is the famous application of
classification in which images are being categorized on the
basis of contents and object it consists [12]. Image classi-
fication is one of the challenging problems in the field of
classification and decision making [1,41].

In the recent literature studies, generative adversarial net-
works (GANs) has been widely used in well-known image
generation applications including image super-resolution
[19,55], image-to-image translation [45] and text-to-image
transformation [47]. The authors in [54] have proposed the
self-attention GAN and named it SAGAN. Their proposed
SAGAN has auto-attention mechanism for generating con-
volutions in convolutional GANs. This auto-attention helps
the network in modeling the multilevel dependencies for
long-range image regions the results in drawing the images
with finer details in distant portion of image. Additionally,
its discriminator can enforce complex geometric constraints
more accurately on the image structure globally. In [29], the
authors presented the idea of adding least square methods
in GANs and formed an enhance network called LSGANs.
The proved by their experiments that reducing the cost of
objective function can ultimately yields the minimization of
Pearson divergence. The tested their proposed LSGAN using
LSUN andCIFAR-10 benchmark datasets based on the train-

ing stability and performance. They also applied it to Chinese
handwritten characters datasets containing 3740 classes.

Moreover, the recent literature gives a new non-iterative
approach for multiclass classification called a neural-like
structure of SGTM (successive geometric transformation
model). The SGTM neural-like structure of models is more
effective on the processing time of large datasets in clas-
sification task [48]. However, the processing time can be
dramatically reduced by the usage of non-iterative greedy-
based training approach in high-speed SGTM neural-like
structure. All the mathematical and statistical proof and
description of the training procedure and formulation of acti-
vation functions along with its computation intelligence are
presented in [17]. In [49], the authors have used the SGTM
neural-like structure in a hybrid with Kolmogorov–Gabor
polynomial for solving the regression problems on large-
sized datasets. According to the deep literature study, [48]
has provided enough evidence to prove the effectiveness and
significance of the non-iterative SGTM neural-like structure
for solving different types of regression, classification and
prediction problems.

As the study of image processing and classification
becomes vaster in the last few decades, the performance
of many deep learning (DL) approaches is promising. One
of the reasons of DL-based approaches is it subtype called
convolutional neural network (CNN) specifically for solving
image classification problems [15]. A typical CNN model is
a feed-forward neural network that consists of different lay-
ers including convolutional layers, pooling layers and fully
connected layers, which emphasis on multidimensional cor-
relation by connecting the neuron of each adjacent layer.
When the neuron of one layer is connected to all the neu-
rons on the proceeding layer, the architecture is called deep
CNN (DCNN) [40]. DCNN captures the quick interest of
researchers for the solution of image classification and pro-
cessing problem. In [22], the authors used a variant of DCNN
called ImageNet for large scale visual recognition challenge
in 2012.Thewinners of that challengewith new record break-
ing results, used DCNN for classification of approximately
1.2 million images in 1000 classes. Since then, the subse-
quent variants of DCNN got and interest of most researchers
for image classification.

The authors in [33] proposed a dimensionality reduction
approach for image classification. The proposed cross-
attentionmechanism and graph convolution integration algo-
rithmboosts hyperspectral data classification efficiency. PCA
is used to reduce the dimensions of hyperspectral images
to achieve more expressive low-dimensional features. The
model employs a cross-attention strategy to jointly assign
weights based on its two strategies and then employs a
graph convolution algorithm to establish directional rela-
tionships between the features. Deep features, as well as
the relationships between them, are used to predict hyper-
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spectral data. Three hyperspectral datasets show that the
proposed algorithm outperforms other algorithms using vari-
ous training set divisionmethods. Additionally, [9] presented
a new dimensionality reduction method for face recognition
called Biomimetic uncorrelated locality discriminant pro-
jection (BULDP). It is based on unsupervised discriminant
projection and two human bionic characteristics: homol-
ogy continuity and heterogeneous similarity principles. A
new representation has been proposed based on these two
human bionic features that can collect category informa-
tion between different samples and represents consistency
between similar samples and the similarity between differ-
ent samples. Besides, it also can transform the original space
into an uncorrelated discriminant subspace using the new
unsupervised discriminant projection [35]. Singular value
decomposition provides a detailed solution to the BULDP.
A nonlinear version is developed using kernel functions for
BULDP that minimizes nonlinear dimensionality. Four pub-
licly accessible face recognition benchmarks are compared
to state-of-the-art methods. The experimental results prove
that the BULDP achieves competitive recognition efficiency
performance.

In themost recent literature, enormousnumber of researcher
are working the improvements of image classification. From
a deep overview of the existing research, it has been con-
cluded that proper dimensionality reduction is one of the
most important and compulsory steps in image classification
[36]. Though the deep learning approaches are considered
as one of the better approaches for solving a number of
multiclass classification problems, still there are few weak-
nesses related to deep learning that encourages researchers
to overcome these weaknesses. The first weakness related to
these approaches is the failure in application of independent
data dimensionality reduction based on preferences. This
failure is the inability of model to capture the useful infor-
mation from the data which defects the quality solution of
the classification [7]. Therefore, to overcome the dimension-
ality reduction problem associated with these models, many
researchers have improved and hybridized the standard ver-
sion of CAE for solving multiclass classification problem.
[25] and [27] proposed the stacked versions of CAE, in order
to increase the dimensionality reduction capability of CAE.
They overcome this issue to some extent according to their
research requirements, but it led to an increase in the com-
plexity of their proposed model.

3 Contractive Auto-encoder

[38] firstly proposed the idea of contractive auto-encoder
(CAE). CAE is a variant of AE family that aims to show
robustness and senseless toward minor variation in the train-
ing datasets during encoding process. CAE is based on an

additive penalty term called “Frobenius norm of the Jaco-
bian matrix,” which is used to reduce the cost of objective
function. The result of this modification to AE is to mini-
mize learned representation with respect to the input which
increases the robustness ofCAE toward the trainingdata sam-
ple [2]. CAE is commonly used as the same as other variants
of AE nodes, particularly when there exist some noise in the
input data where usually other encoding algorithms fail to
classify the data points. The aim of denoising auto-encoder
(DAE) and CAE is used to bring robustness in the model, but
the working mechanism is different for both [10,52]. DAE
injects noise in the data to bring robustness in the model,
whereas the CAE adds analytic contractive penalty to error
reconstruction function [25,27].

Although CAE is considered as one of the most power-
ful approaches used for solving various types of multiclass
classification problems, some drawbacks are associated with
this algorithmwhich needs proper attention to develop a tech-
nique that leads to a problem-independent and high-quality
solution generation for solving these complex problems.
Same as other classification approaches, CAE perform the
classification task in three major stages, namely features
extraction, feature reduction and classification. The major
drawback associatedwith standardCAE is its failure in appli-
cation independent data dimensionality reduction according
to user satisfaction. The result of this failure is the incapabil-
ity of the CAE model to capture the finer details possessing
the useful information. Resultantly, it leads to low-quality
solution of the classification problem. The work carried out
in this research has targeted the issue associatedwith conven-
tional CAE while solving multiclass classification problem
in order to enhance its performance.

Thewhole processing insideCAE takes place in two parts,
namely encoding and decoding.

3.1 Encoding

The process of mapping the input feature set to transform it
to give as intermediate representation to the hidden layer is
called encoding given by Eq. 1:

y = f (x) = se(wx + bh) (1)

where f (x) represents the outputs of the input layer which
is given as inputs to the hidden layer, w represents weights
given to each input and b represents the biasness value asso-
ciated with input feature set.

3.2 Decoding

The process of mapping the output of the hidden layer back
into the input feature set is called decoding and is given by
Eq. 2:
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r = g(y) = sd(wy + br ) (2)

where g(y) represents the output of the hidden layer, w rep-
resents the weights given to the inputs of the hidden layer
and b represents biasness of the inputs to the hidden layer. In
both encoding and decoding functions, weights w and bias-
ness b values are generated randomly based on the number
of nodes in that layer.

The se and sd are the encoding and decoding activation
functions, respectively, and are given by Eq. 3 for nonlinear
representation (sigmoid function),whereas byEq. 4 for linear
representation (hyperbolic tangent function):

sigmoid(x) = 1

(1+ e−x )
(3)

tanh(x) = (ex − e−x )

(ex + e−x )
(4)

Themajor aim of the reconstruction is to generate the outputs
as much similar to the original inputs as possible by reducing
the reconstruction error. The following parameter set is used
to reconstruct the original inputs by reconstruction layer:

θ = [W , bh, br ] (5)

Suppose, we have the input feature set as Di = [x1, x2, x3,
...., xn], then the reconstruction error is minimized by mini-
mizing the following cost function presented in Eq. 6:

JAE (θ) =
∑

xεDi

R(x, r) (6)

where R is reconstruction error. In case of linear representa-
tion, it is the Euclidean distance, whereas in case of nonlinear
representation, it is the cross-entropy loss. In order to avoid
overfitting and penalizing the large weights rose from Eq. 6,
the simplest form of Eq. 6 is Eq. 7:

JAE − wd(θ) =
∑

xεDi

R(x, r) + 1

2
(λ||W ||)2

2
(7)

in which the relative importance of regularization is con-
trolled by weight coefficient decay λ. From the inspiration
of learning robust feature set, in [38] the authors proposed a
CAE with an unconventional regularization yielding objec-
tive function presented in Eq. 8 based on Eqs. 6 and 7.

JCAE (θ) =
∑

xεDi

R(x, r) + 1

2
(λ|| f (x)||) 2

F
(8)

In Eq. 8, the Jacobian matrix is f (x) = ∂ f (x)/∂x of the
encoder f at value x . Themapping of feature set in order to be
contractive in local domain of training data is encouraged by

adding the penalty of Frobenius norm of encoder Jacobian,
for example the intermediary representation of features that
are robust to the minor variations or noise in the input data.

In [37], the authors additionally deliver an experimen-
tal proof that the trade-off between the CAEs regularization
term and the reconstruction error which produce a repre-
sentation that captures the local representation of variation
verbalized by the data. It is frequently corresponding to a
low-dimensional non-directed manifold, on the other hand,
being additional invariant to the enormous majority of direc-
tions orthogonal to the manifold. The contractive additive
term for a sigmoid encoder is easy to calculate.

J (x) = f (x) j (1− f (x) j )Wj (9)

||J (x)||2F =
dh∑

j=1

( f (x) j (1− f (x) j ))
2||Wj ||2 (10)

The computational complexity by using Eq. 10 is same as
the computing cost of a linear reconstruction error.

R(x, r) = ||x − br −
dh∑

i=1

f (x) jW j ||2 (11)

For example, the squared error is equal then calculating the
gradient update and objective in CAE is just a double expen-
sive as compared to and conventional AE. While the overall
complexity of both is approximately equal, that is equal to
O(dhdx ). The step-by-step working mechanism and archi-
tecture of conventional CAE are presented in Algorithm 1
and Fig. 1, respectively.

Algorithm 1 Conventional CAE
Parameters initialization
- No of hidden layers: h
- Input feature set: [x1, x2, x3, ..., xn]
- Encoding activation function: E AF
- Decoding activation function: DAF
- Inputs weights: wi
- Biasness values: bi

Encoding
- Compute encoded inputs f (w) by Multiplying xn and wi

Decoding
- Compute decoded outputs f (wo) by Multiplying xn and wi

Optimization
- Optimize value of equation 8

4 The Contractive Auto-encoder with
Restricted BoltzmannMachine (CAE–RBM)

The proposed CAE–RBM model focuses on the solution of
first problem associated with the standard CAE that relates to
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Fig. 1 Standard CAE internal architecture

the dimensionality reduction. We named the model as CAE–
RBM because the enhancement has been made based on the
addition of restricted Boltzmann machine hidden layers. It
maps high-dimensional input data to a lower-dimensional
representation, in which the encoder used to compress the
input, whereas the decoder refers to the reconstruction of
original input from the lower-dimensional feature representa-
tion. A cross-entropy loss function quantifies the information
loss derived from the deviation between the original input and
the reconstructed output. The goal of the training is to min-
imize the information loss of the reconstruction. Because
target labels for the reconstruction are generated from the
input data, the CAE–RBM is observed as self-supervised.
In this model, RBM layers are added with CAE in order
to enhance the dimensionality reduction property of CAE
for solving multiclass classification problem efficiently. The
addition ofRBMlayerswith standardCAEdesigns a learning
approach with the twomajor properties: a) Firstly, it is robust
toward small noise or changes in the input features vector,
and b) secondly, it has the capability of learning high-order
statistical feature from high-dimensional features vector due
to RBM layers. The proposedCAE–RBMhas the advantages
of both CAE and RBM. The basic operational procedure of
the proposed model consists of two major stages, namely
the training of the CAE layers and the RBM layers. In the
first stage, all the parameters associated with the CAE and
RBM are initialized. Some of the CAE parameters that have
been considered include number of hidden layers, input fea-

ture set, encoding and decoding activation functions, input
weights and bias values. The parameters that have been con-
sidered for the RBM include input feature set, weight matrix,
visible layer and hidden layer bias vectors. After initializing
these parameters, the CAE working mechanism starts in the
second stage. The extracted features vector is given as input
to the CAE input layer. The encoding process occurs from
input to hidden layer of CAE and the decoding process hap-
pens during information transfer from hidden layer to the
output layer of CAE along with reconstruction error. If the
reconstruction error is below than the threshold value, the
information is then propagating to the third stage. To find
the best threshold value that provides better results, in every
epoch the model keep updating threshold value in order to
achieve the final accuracy, which did not increase or decrease
further. The third stage of the proposed CAE–RBM is based
on theworking procedure of RBM,where the output from the
CAEhidden layers is transformed to theRBM layer for learn-
ing the high-order statistical features. The hidden layer nodes
for RBM are represented by Hi , and iε[1, 2, 3, ...x]. Visible
nodes are represented by Vj , such that jε[1, 2, 3, ...y]. The
weight connection between hidden and visible layers is rep-
resented by Wi j . The weights for RBM hidden layer nodes
are also calculated randomly in a sequence based on its input
from CAE. The final equation for energy of RMB is:

Erbm(v, h|φ) = −
x∑

i=1

vi ai −
y∑

j=1

h j

×b j

x∑

i=1

y∑

j=1

wi j × vi × h j (12)

In Eq. 12, φ = (Wi j , ai , b j ), all these are real numbers.
The bias value of hidden layer is denoted by b j and the bi rep-
resents the bias value of visible layer. The likelihood function
that is also called the joint probability distribution of visible
and hidden layer is formulated in Eq. 13, if φ is known.

P(v, h|φ) = 1

z
exp(−Ev, h|φ) (13)

The normalization parameter Z = ∑
(v, h)

exp(−E(v, h|π)). This visible and hidden layer’s activation
functions can be formatted in Eqs. 14 and 15, respectively.

P(h j = I |v) = sigmoid

⎛

⎝
x∑

j

vi × wi j + b j

⎞

⎠ (14)

P(vi = I |v) = sigmoid

( y∑

i

h j × wi j + ai

)
(15)
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sigmoid(x) = 1
1 + e−x . Probability that the first jt h hidden

node is activated is presented by Eq. 14, while the activation
of first it h visible node is presented in Eq. 15. Finding the
best suitable parameter set that is possible for φ is the main
purpose of RBM training. The input data can be betterly
fit by the trained model. Calculate the best value of φ using
maximum likelihood function based on log bygiving training
sample Tr , such that Tr = [v1, v2, v3, vTr ]. The outputs of
theRBMhidden layers are then proceed to the fourth stage. In
the fourth stage, the output feature vector from RBM layers
is given as input to the softmax layer for final classification
process. The complete structure of the proposed model is
shown in Fig. 2 and explained in Algorithm 2, while the
internal layered architecture is presented in Fig. 3.

5 Experimental Results

In this section, we conducted the experiments to evaluate
the feature learning ability of the proposed and comparative
models, toward better solution for multiclass classification
problems. All the experiments are carried out on Intel core i5
CPU with 8GB of RAM having windows 10 operating sys-
tem. Python 3.6 is used as compiler and language used for
developing and testing these algorithms. For quick imple-
mentation of the proposed and comparative approaches, an
efficient numeric computational open-source library Tensor-
flow [5] is used which allows a simple and fast development
for both CPU and GPU support. Table 1 presents a sum-
mary of parameters setting for the proposed and comparative
approaches.

We used four variants of benchmark MNIST dataset for
evaluation and comparison. MNIST is a handwritten digit
images dataset that contain 70,000 images from 0 to 9. Each
image in this dataset has a size of 28x28 pixels. In the
conducted experiments, 12,000 images are considered for
evaluation and comparison with some comparative models.
The experiments performed with 70:30 ratio of training and
testing data. Six random images from each MNIST variant
dataset are shown in Fig. 4.

5.1 CAE–RBM-Based Feature Reduction

The feature reduction capability of the CAE–RBMmodel for
all the datasets is presented in this section. The main role of
CAE in multiclass classification is the dimension reduction
of feature space, while the RBM performs better in learning
high-order statistical features. The purpose of merging both
CAE and RBM in the developed CAE–RBM is to enrich the
model with the advantages of both CAE and RBM. The out-
put of the experiments for feature reduction of the developed
CAE–RBM is presented in Fig. 5. The first row contain the
original images, the second row shows the encoded features

Algorithm 2 CAE–RBM
Parameters initialization
CAE Parameters
- No of hidden layers: h
- Input feature set: [x1, x2, x3, ..., xn]
- Encoding activation function: E AF
- Decoding activation function: DAF
- Inputs weights: Wi
- Biasness values: bi
- The state of visible unit is set as training vector
RBM Parameters
- Input feature set: [y1, y2, y3, ..., yn]
- Weight matrix: [y1, y2, y3, ..., yn]
- Bias vectors of hidden layer: b j
- Bias vectors of visible layer: bi

CAE Operations
Encoding
- Compute encoded inputs f (w) by Multiplying xn and Wi
- Compute biased inputs f (b) by adding bI to encoded inputs
- Compute f (x) using Equation 1 by applying f (w) and f (b)
Decoding
- Compute decoded outputs f (wo) by Multiplying xn and Wi
- Compute biased outputs f (bo) by adding bI to decoded outputs
- Compute g(yo) using Equation 2 by applying f (wo) and f (bo)
Optimization
- Optimize value of Equation 8
While (All layers trained)

RBM Operations
Assign [x1, x2, x3, ..., xn] to [y1, y2, y3, ..., yn]
Visible units training
- Compute P(v, h|φ) using Equation 13
- Apply P(vi = I |v) of Equation 15
- Perform Gibbs sampling from visible units to hidden unit using

v1i ε[0, 1]
Hidden units training
- Compute P(v, h|φ) using Equation 13
- Apply P(h j , I |v) of Equation 14
- Perform Gibbs sampling from hidden units to visible units using

h1i ε[0, 1]
Update rule
- Update weight W : W = W + Wn while Wn = Weight update

factor
- Update Bias bi : bi = bi + bn while bn = Bias update factor for

visible units
- Update Bias b j : b j = b j + b jn while b jn = Bias update factor

for hidden units
- Update energy function using Equation 12
While (All layers trained)

images, while the third row consists of the decoded images
from reduced feature set. The information loss in dimension-
ality reduction is given in Table 2.

5.2 CAE–RBMMeasures

This section shows the experimental results of the proposed
CAE–RBMmodelwith the referenceof confusionmatrix and
ROC. Confusion matrix and ROC curve present the detailed
results of the correctly classified and misclassified instances
at class level. The output results of the proposed model on
all of four aforementioned datasets are shown in Figs. 6, 7,
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Fig. 2 CAE–RBM working
flow

8 and 9. In these experiments, the core CAE–RBM model
leverages a softmax classifier to find out the overall classifi-
cation behavior on images data. All these figure presents the
output confusion matrix and roc curve for 70:30 training–
testing ratio. The highest accuracy is observed for class 1
followed by class 6 and class 0 because their features were
more distinct as compared to other classes. On the other hand,
the lowest accuracy can be seen for class 8 followed by class
9 and class 5, and mainly these classes were misclassified to
one another because of high similarity in features.

6 Comparative Analysis

The comparative analysis of the proposed CAE–RBM with
different state-of-the-art multiclass classification models
including ANN, standard CAE and standard RBM is pre-
sented in here. In this comparison, accuracy and complexity
are used as performance evaluation attributes. Testing accu-
racy and precision/recall are compared in order to compare
the accuracy, whereas execution time with big− O notation
is selected for complexity. However, in image processing,
most of the time is consumed by the image representation
learning. We reduced the high-dimensional features to low-
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Fig. 3 Architecture of the proposed CAE–RBM model

Table 1 Parameter tuning of the
proposed and comparative
models

Models Parameters Tested values Considered value
Input Nodes 784 784

ANN [39] Output nodes 10 10

CAE [28] Hidden layers 2,4,6 4

RBM [18] L1 hidden nodes 400,256 256

AlexNet [42] L2 hidden nodes 256,64 64

CAE–RBM Activation unit Relu, Softmax Softmax

Fig. 4 Sample images from
different MNIST variant
datasets
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Fig. 5 CAE–RBM-based
encoded and decoded sample
images from different MNIST
variant datasets

dimensional feature vectors for efficiently reduce the time
complexity of the proposed CAE–RBM. It can be further
reduce by increasing the memory capacity, because mem-
ory consumption is directly proportional to representation
learning. Therefore, extendingmemory will enhance the rep-
resentation learning speed.

6.1 Accuracy

All of the experimented models are trained and tested using
the same architecture for pre-classification steps. Table 3 lists
all the models with their training accuracy rates. In order
to conduct most fair results, the experiments for each of
the model has been repeated for five times. All the testing
accuracy results of the proposed CAE–RBM and state-of-
the-art models discussed in Table 4 are the mean value these
repeated experiments. Furthermore, with the training and
testing accuracies, Table 5 provides more explanatory per-
formance evaluation metric based on the precision and recall
value the proposed and comparative models. The final results
conclude that CAE–RBM with Softmax classifier outper-
forms ANN, CAE and RBM.

Table 2 Information loss during CAE–RBM dimensionality reduction

MNIST variants Basic Rot bg-rand bg-img

Loss 0.24 0.31 0.38 0.42

6.2 Time Complexity

Besides the different computational behavior of different
algorithms, all experiments were carried out on same hard-
ware and software architecture as mentioned earlier. The
complexity of a neural network is based on its architecture,
the number of layers and nodes per each layer. In the con-
ducted experiments, a four hidden layered architecture has
been considered. For computing the activation of all nodes in
layer L requiresO(L(n2)), where n is the number of features
at layer L . The final complexity for ANN in conducted exper-
iments requires O(4n2) and AlexNet O(4n3). The standard
RBM has a runtime complexity ofO(n2) for a single hidden
layer [46]. In the experiments performed followed the same
architecture of four hidden layers, according to which the
overall complexity of RBM in experiments becomeO(4n2),
where n is the number of features in each layer. In a conven-
tional CAE, the complexity has been divided according to
encoding and decoding functions. The complexity in calcu-
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Fig. 6 CM and ROC for MNIST small subset (basic)

lating the compressed layer is O(xn) and decoding requires
O(xh) runtime. In such case, the overall complexity of a
four-layered CAE become O(4(xn + xh)), where x is the
number instances, n is the number of encoded features and
h refers to number decoded features.

In the proposed model, the CAE and RBM advantages
have been merged but as the internal architecture has been
kept same for developed and comparativemodels so the com-
plexity is not increased like other hybridized model. The
computation runtime of CAE layers is O(4(xn + xh2)),
where x is the number instances, n is the number of features
in CAE hidden layer and h refers to the number of features
in RBM hidden layer.

Fig. 7 CM and ROC for MNIST random rotation digits (rot)

Table 6 summarizes the runtime of different competitive
models from the literature based on MNIST variant datasets.
It shows a clear observation of the time taken by all of the con-
sidered models and algorithms, i.e., ANN, RBM, AlexNet
and CAE with four hidden layers, which is greater than that
of CAE–RBM. The time taken byCAE–RBM is less because
of the randomization factor, which boostup the training but
did not increase the computational complexity of the model.
Although the difference between the time consumed by
CAE–RBM and other approaches is very small, collectively
with accuracy and time complexity CAE–RBM presents bet-
ter performance. Nevertheless, in the overall experimental
results the proposed model outperformed the state-of-the-art
models with the same architecture and parameter tuning.
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Table 4 Testing accuracy of
different models with softmax
classifier on MNIST variants

MNIST variants Basic Rot bg-rand bg-img

ANN 89.42 74.50 71.35 70.08

CAE+Softmax 87.60 77.45 76.30 73.60

RBM+Softmax 87.92 76.17 76.41 73.40

AlexNet 85.28 78.35 74.38 70.55

CAE–RBM+Softmax 90.33 86.42 83.61 80.43

Table 5 Precision and recall of different models on MNIST variants

MNIST variants Basic Rot bg-rand bg-img
Evaluation metric Precision Recall Precision Recall Precision Recall Precision Recall

ANN 0.84 0.76 0.74 0.72 0.70 0.67 0.66 0.63

RBM + Softmax 0.84 0.78 0.77 0.74 0.73 0.70 0.67 0.66

CAE + Softmax 0.86 0.77 0.76 0.77 0.75 0.74 0.70 0.69

AlexNet 0.82 0.74 0.76 0.77 0.74 0.72 0.71 0.70

CAE–RBM + Softmax 0.89 0.84 0.81 0.81 0.79 0.80 0.73 0.71

Table 6 Execution time of different models on MNIST variant

Models Compexity Basic Rot bg-rand bg-img

ANN O(4n2) 18m 51s 22m 3s 30m 42s 36m 25s

RBM O(4n2) 33m 49s 39m 40s 44m 32s 59m 51s

CAE O(4(xn + xh)) 27m 45s 28m 53s 37m 40s 41m 57s

AlexNet O(4n3) 38m 49s 41m 40s 44m 32s 60m 51s

CAE–RBM O(4(xn + xh2)) 19m 57s 20 52s 30m 56s 35m 12s

Table 3 Training accuracy of different models on MNIST variant

MNIST variants Basic Rot bg-rand bg-img

ANN 92.45 90.44 82.63 77.98

RBM 93.81 88.48 90.24 83.30

CAE 94.54 89.96 91.32 86.42

AlexNet 93.98 90.10 90.40 84.62

CAE–RBM 96.90 90.85 94.65 87.34

7 Conclusion

The main focus of this paper is to propose a better approach
for mutliclass classification. Here we present the CAE based
on RBM (CAE–RBM) and evaluate the performance of pro-
posed model. We use CAE for dimensionality reduction and
RBMfor learning high-order statistical feature. The output of
the developed model is compared analytically with existing
state-of-the-art classification algorithms including standard
CAE, RBM, AlexNet and ANN. The results presented in
different figures and tables are based on four benchmark
datasets of MINST. In these experiments, 12000 images are
randomly selected from each of the five benchmark datasets.

The experiments performed with 70% training and 30% test-
ing ratio of the each dataset. The performance is evaluated
in term of accuracy and time complexity. In order to vali-
date the performance of the proposed model, the class level
classification results are presented in the form of confusion
matrices and ROC curves. The experimental outputs project
a minor decrease in the accuracy starting fromMNIST basic
dataset to the most complex MNIST random background
digits dataset. This gradual increment in the complexity of
dataset is directly related to the accuracy decrement. In the
developedmodels, CAE–RBMoutperformed all the compar-
ative models based on accuracy and time complexity. On the
other hand, the proposed models do not consider the space
complexity of the algorithm for less complex and small-sized
datasets. The CAE–RBM has been added the functionalities
standard CAE from RBM, both of these algorithms have
different working procedures for processing the informa-
tion in order to perform the final classification phenomenon.
So, merging the concepts of one algorithm in another algo-
rithm involves many technical procedures. In CAE–RBM,
the RBM layers are merged with the CAE layers and during
this process, the complex computational steps of both CAE
and RBM have not been removed which may increase the
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Fig. 8 CM and ROC for MNIST random noise background digits (bg-
rand)

space complexity of the model. In future, we will proceed
with the space complexity reduction of the proposed model
and perform experiments on the Big Data application.
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