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Abstract
Saudi Arabia tries to build local desalination water stations to supply water to remote areas. Due to the low cost and energy 
requirements of reverse osmosis (RO) desalination technology, it has been used to supply fresh water to Arar City in the 
northeast of Saudi Arabia. In this paper, it is proposed to provide an average of 1000 cubic meters of water per day by using 
autonomous hybrid renewable energy system (RES). This proposed system contains wind turbines (WTs), photovoltaic (PV), 
battery, and it is designed to feed the RO system with the energy adequate to produce the required amount of fresh water 
for the minimum cost and minimum loss of supply probability. The proposed system was designed to generate 2440 kW 
power to produce this amount of water. Matching study between the site and the best WT among 10 market-available WTs 
is introduced. Three optimization strategies were used and compared for the design of the proposed system to ensure that no 
premature convergence can occur. These strategies consisted of two well-known techniques, particle swarm optimization 
and bat algorithm (BA), and a relatively new technique: social mimic optimization. The simulation results obtained from the 
proposed system showed the superiority of using a RES for feeding a RO desalination power plant in Arar City, and they also 
showed that the BA is the fastest and most accurate optimization technique to perform this design problem compared with 
the other two optimization techniques. This detailed analysis shows that the cost of production of fresh water is $0.745/m3.

Keywords Reverse osmosis · Water desalination · Wind energy · Battery system · Cost analysis · Optimization techniques

1 Introduction

Fresh water is essential for humans, and modern socie-
ties concentrate around sources of fresh water. However, 
between 10% [1] and 25% of the world’s population does not 
have adequate access to fresh water [2]. Moreover, increases 
in the global population, coupled with drought and deserti-
fication due to climate change, will undoubtedly aggravate 
water security. Water desalination substations provide a use-
ful solution to remedy these problems. However, an inherent 

problem in these substations is the need for electric energy 
and the high cost of the desalination seawater or brackish 
water, which could be resolved by using innovative energy 
solutions that can participate in helping 18% of the global 
population that lacks access to electricity [1]. This problem 
has led to researchers investigating the use of renewable 
energy systems (RESs) for water desalination, especially 
for remote communities without access to electricity. With 
the vast expanse of Saudi Arabia, water scarcity is a critical 
issue for remote areas. Most remote societies without access 
to electricity use diesel engines to power desalination substa-
tion, which could cause a shortage of fresh water when there 
is no fuel. Therefore, RESs provide a suitable alternative 
to supply these communities with their needs from electric 
power.

Many types of water desalination systems have been 
introduced in the literature [2–10], including solar distilla-
tion, vacuum distillation, multi-stage flash distillation, multi-
ple-effect distillation, vapor compression distillation, reverse 
osmosis (RO), membrane distillation, etc. The use of RES 
for driving reverse osmosis desalination systems (RODSs) 
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is one of the best options in remote areas because it does 
need fuel transmission, and it provides a safe, feasible, and 
reliable source of energy. Moreover, RODS technology is 
advancing, it is widespread in many places worldwide, its 
price is continuously dropping, and it produces fresh water 
with relatively lower energy consumption than other tech-
nologies. Fresh water can be produced from both seawa-
ter and brackish water using a RODS [2–9]. A review of 
the drawbacks of using renewable energy systems in water 
desalination and other application are shown in [11]. For 
these reasons, RODS technology was selected to be inves-
tigated in this paper as water desalination technology. The 
RODS size is computed according to the amount of fresh 
water produced, while RES-rated values are designed to sat-
isfy the required energy for a RODS to produce the required 
amount of fresh water based on the wind speed and solar 
irradiance of the site.

Different sources of RESs with and without storage sys-
tems can be used to supply a RODS with the electric energy 
needed for its operation. Some researchers have introduced 
RODSs working from wind energy systems without an 
energy storage system [3]. Other researchers introduced 
photovoltaic (PV) energy systems without battery storage 
[4–9]. These systems are very cost-effective because the 
expensive and short-lived storage system is not included 
in these systems. However, RODSs working from RESs 
without energy storage systems are unreliability due to 
the intermittent nature of the RES sources, such as wind 
or photovoltaic energy systems. Therefore, many RODSs 
use hybrid RESs with battery storage and/or fuel cells and 
hydrogen tanks to store energy when needed [12, 13]. Some 
studies recommend using a water tank to store extra desali-
nated water for later use when water production is lower 

than consumer needs [2]. Using a water tank reduces the size 
of the battery storage required to store the surplus energy 
required to account for shortages from RES generation. An 
exergy analysis of a hydrogen and water production by using 
a solar-driven transcritical  CO2 power cycle with Stirling 
engine is introduced in [14, 15]. This study aimed to further 
utilizes the highest possible exergy using a novel system for 
hydrogen and fresh water production. This system used a 
Stirling engine instead of a condenser in abundant access 
places to solar radiation and brackish or sea water.

Hybrid RESs are containing wind turbines (WTs), PV 
modules, battery systems, and water tanks can be used 
together to increase the reliability of the system. An itera-
tive technique [7] was used to obtain the sizing of the RES 
required to minimize the cost of fresh water production. 
Another iterative procedure using a RES and other sources, 
such as an electric utility or diesel generation system, was 
introduced by Koutroulis and Kolokotsa [2] without per-
forming economic optimization. The connection of different 
components of the hybrid system can be accomplished based 
on three different configurations in which the components 
can be connected to the common DC busbar, AC busbar, or 
mixed between DC and AC busbars. Each configuration has 
its advantages and disadvantages, which have been discussed 
extensively in [16]. Based on this study, a mix between AC 
and DC busbars was selected for this research because of 
its superior performance and high efficiency compared with 
the other configurations shown in Fig. 1. The reliability of 
the operation of the RODS is a function of the size of the 
energy storage systems. Therefore, it is important to compro-
mise between the cost of the energy storage system and the 
adequate reliability of the water supply. Moreover, for the 
highest reliability and lowest cost, it is necessary to perform 

Fig. 1  Configuration of the 
reverse osmosis desalination 
system
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optimization operations to select each system component’s 
optimal size. Many iterative techniques have been used to 
determine the best option for sizing the RES for supplying a 
RODS. One of these techniques is using the iterative proce-
dure to design the optimal size of a PV system for a RODS 
[17–19]. These iterative techniques provide a suitable option 
for sizing the RES and RODS, but there is no guarantee that 
this solution is the optimal one. Hybrid RESs with several 
components and several factors inherent in each component 
provide a challenge to using iterative techniques to perform 
the optimal design of the hybrid RES for RODS applica-
tions. Modern soft computing techniques, such as swarm 
techniques, can be useful for the selection of the optimal 
size of the RES that can supply the RODS with the required 
amount of electric energy. The particle swarm optimization 
(PSO) technique has been used several times to optimally 
design a hybrid RES for RODS [20–22]. The PSO tech-
nique is a powerful optimization tool that can be used for 
this purpose, but it may capture local optima. Moreover, the 
PSO optimization time is sometimes long, especially with 
a higher number of variables. The Genetic Algorithm (GA) 
optimization technique has also been used in several stud-
ies [23, 24]. The GA is one of the evolutionary techniques 
that can be trapped in one of the local optima and is suffer-
ing from complexity and long convergence time. Simulated 
annealing (SA) [25] and gray wolf optimization (GWO) [26] 
techniques have also been used for the optimal design of a 
hybrid RES for use in supplying a RODS. Other research-
ers have used hybrid optimization techniques, such as PSO-
GWO, for this purpose to accurately determine the global 
optimal values and to improve the convergence speed [27]. 
The results obtained from this hybrid optimization technique 
[27] have been compared with the results obtained from each 
optimization technique separately. The results obtained from 
the hybrid PSO-GWO showed better performance than using 
PSO or GWO alone. However, this technique introduced 
complexity into the system, and the improvements in this 
hybrid technique are not clear. Moreover, this hybrid opti-
mization technique requires substantial effort to tune the 
control parameters of PSO and GWO. Therefore, it is essen-
tial to find another optimization technique to conduct these 
optimization requirements without adding complexity or 
lowering the convergence speed and reliability of capturing 
the optimal solution. The bat algorithm (BA) optimization 
technique, which was introduced in 2010 [28], is a modifica-
tion of the PSO technique. This technique is characterized 
by a very fast and accurate convergence performance for 
low-dimensional problems [29, 30] such as the case studies 
presented in this paper. This powerful optimization tool has 
never been used in the design of the renewable desalination 
system, and for this reason, it was selected for investigation 
in this paper. A modern optimization technique, called the 
social mimic optimization (SMO) technique [31, 32], was 

also be used in the optimization of the hybrid system, and it 
was compared with the well-known PSO and BA optimiza-
tion techniques.

In this paper, we conduct optimization of a RODS pow-
ered by a RES for supplying fresh water to Arar City located 
in the northeast of Saudi Arabia. The proposed RES contains 
WTs, PV modules, batteries, and a water tank, along with 
their control systems and power conditioner. A new optimal 
matching between the site and the WTs was introduced in 
the sizing processes. A total of 10 market-available WTs 
were studied to select the best one for the Arar site which 
include the WT matching strategy with the sizing of the 
RES components. Moreover, the optimal sizing of the RES 
components was used to determine the lowest cost and high-
est reliability of fresh water produced from the system. The 
loss of supply probability (LOSP) is used to evaluate the 
reliability of the proposed system during the year. A detailed 
cost analysis of the proposed system was conducted to cover 
all details of the proposed system, taking into considera-
tion the salvage value and operating and maintenance costs. 
The optimization techniques used in this problem were PSO, 
BA, and SMO. The latter two techniques have not been used 
before in the design of desalination systems, and for this 
reason, they were used and compared with the previously 
used PSO technique. Results are shown for different levels 
of reliability to see the effect of the high LOSP level on the 
cost of desalinated cubic meters of fresh water. This paper 
indicates that lower LOSP leads to higher confidence from 
the RODS system and higher costs of the generated energy 
and fresh water produced and vice versa.

The rest of the paper is structured to show the proposed 
system in Sect. 2. Section 3 shows the power flow in a RES 
and the energy balance between the generation, battery, and 
the load. Section 4 presents the cost analysis and economic 
issues used in the simulation section. Section 5 introduces 
the three optimization techniques understudy, while Sect. 6 
shows the simulation work. Recommendations and conclu-
sions are summarized in the final section.

2  Proposed System

Different renewable energy sources with different storage 
systems can be used to feed a RODS with the energy it 
requires. Wind turbine-only RODSs can be used at low cost 
to effectively produce desalinated water. However, although 
a wind energy system without battery storage has a lower 
cost, its reliability is very low since fresh water can only be 
produced when wind speed and solar irradiances are suffi-
cient to satisfy RODS requirements. A water tank can solve 
part of the problem, as the water stored in a tank can feed the 
customer during the electric power generated using a RES is 
deficient. Moreover, battery storage can also be used to store 
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the surplus generated electric energy for use during deficit 
periods. The proposed hybrid RES and RODS is shown in 
Fig. 1. This system uses WTs and a PV array as a renewable 
generation system. Lead–acid batteries will be used as an 
electric storage system. The configuration of the system uses 
a mixed configuration between DC and AC busbars, which 
shows better performance and higher efficiency [16]. The 
operating characteristics of these components are provided 
in the following sections.

2.1  Wind Energy System Modeling

WTs can have different performance characteristics from 
site to site, and for this reason, it is necessary to match the 
site with an appropriate WT. Statistical analysis was con-
ducted to determine the capacity factor (CF), where the CF 
represents the relationship between the average generated 
power from a WT and its rated power. The WT with the 
highest performance can be selected as the best option based 
on technical considerations. Meanwhile, selecting the best 
WT should take technological and economic parameters into 
consideration [33].

Hourly wind speed, u, is modeled using the Weibull 
distribution where its probability density function can be 
expressed in terms of Weibull parameters, scale parameter, 
c, and shape parameter, k, as shown in Eq. (1). The value 
of k and c can be determined from the iterative process pre-
sented by Stevens and Smulders [34], as shown in Eqs. (2) 
and (3), respectively. The CF of using WT parameters and 
site wind speed is shown in Eq. (4). The average amount of 
power generated from a WT at a certain site is equal to the 
CF multiplied by the rated power of the WT as shown in 
Eq. (5) [35].
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where uj is the wind speed at time step j, N is the number of 
time steps, and PR is the rated power of the WT.

The hourly generated power at wind speed u from a WT 
was calculated following Tzen et al. [10].

where UC, UR, and UF are the WT cut-in speed, rated speed, 
and cutoff speed, respectively.

2.2  Photovoltaic Energy System Modeling

The electric power generated from the PV system is sub-
stantially affected by the irradiance falling on the PV as well 
as its area. It is recommended to tilt the PV modules with 
an optimal tilt angle to increase the irradiance and, conse-
quently, the energy generated from a PV system. This opti-
mal tilt angle is chosen to be equal to the latitude angle of 
the site [16]. The hourly generated power from the PV array 
was determined using Eq. (7).

where Ht is the solar radiation on an optimally tilted surface, 
PVA is the total area of PV array, and ηc(t) is the hourly 
efficiency of a PV array, which was obtained using Eq. (8).

where βt is the temperature coefficient, which was set at 
0.005 per °C following [36], Tcr and ηcr are the solar cell 
temperature and efficiency, respectively. Tc(t) is the instan-
taneous solar cell temperature at the ambient temperature 
(Ta), which was obtained using Eq. (9).

2.3  Battery Storage Model

When a battery is being used, it loses some of its charge 
whenever it is charging, discharging, or storing energy. The 
factor that characterizes the loss of its energy is called the 
self-discharge rate. The equation that shows the state of 
charge (SOC) of the battery due to the self-discharge rate 
(SDR) is given by Kaabeche et al. [37].

where EB is the rated energy of the battery bank and σ is the 
battery SDR, which was taken to be equal to 0.2% per day 

PW,av = CF ∗ PR
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in this study [38]. To protect batteries during overcharge 
and undercharge operating conditions, the SOC of batteries 
should follow the restriction in Eq. (11).

where EB,max and EB,min are the maximum and minimum 
allowable storage capacities of the battery bank, respec-
tively. EB,min is a function of the allowable depth of discharge 
(DOD), which is recommended by the manufacture of the 
battery, as shown in Eq. (12). In the simulation in this paper, 
the value of DOD was chosen to be 70%, and the value of 
maximum allowable energy of the battery, EB,max, was cho-
sen to be equal to the nominal storage capacity of the battery 
bank, EBR.

2.4  Reverse Osmosis Desalination Unit Production

Various mathematical models of RODSs are presented in the 
literature. The cost of fresh water production depends on the 
pressure level used in the RO pipes and the water salinity. 
The energy required to produce one cubic meter of water 
from a RODS varies from 2 to 10 kWh. The RODS model 
used in Dashtpour et al. [39] was used in the simulation 
program. The specific energy consumption from this model 
is 2.44 kWh/m3.

The well-known formula for calculating the head loss due 
to friction and the formula for calculating the power con-
sumption is given in Eqs. (13) and (14) following Dashtpour 
et al. [39]:

where f is the friction coefficient, L and D are the length and 
diameter of the pipe, Q is the flow rate  m3/h, g is the gravi-
tational acceleration, and η is the efficiency of RO system.

2.5  Energy Balance

Three different configuration systems can be used to inter-
face the components of the hybrid system, DC, AC, and 
mixed AC and DC configurations [16]. In the DC system, 
all the components are connected to the main DC busbar 
where all the generating sources should be transferred to the 
DC source and there is only one inverter to convert the DC 
power to AC to be suitable for the RODS system. The main 
problem of this system is the low efficiency due to rectifying 

(11)EB,min ≤ EB(t) ≤ EB,max

(12)EB,min = (1 − DOD) EBR

(13)Hf =
8fLQ2

g�2D5

(14)P =
�ghQ

�

the power from AC sources, such as diesel or WTs to DC 
and then reinverting it again to AC. Moreover, all power 
transferred from DC to the load should be converted to AC 
power through an inverter, which reduces the efficiency of 
the system [16]. In the AC configuration, all components 
should be connected to the main AC bus. So, the power from 
DC sources, such as fuel cells, should be converted to AC 
first, and this power can be transferred to load or it may be 
rectified again to DC power to feed the battery, which may 
reduce the overall efficiency. The best option is to use a DC 
bus and AC bus, as shown in Fig. 1, which is called a mixed 
AC/DC configuration [16]. In this figure, the wind energy 
system is connected to an AC bus because its output is AC. 
Meanwhile, the PV and batteries are connected to a DC bus 
because their output is DC. This configuration will increase 
the overall efficiency where each component is connected to 
the appropriate busbar type (also see [16, 40]). The primary 
finding of these studies is that the mixed AC/DC configura-
tion has the best efficiency. Therefore, it is used in this study.

A configuration containing the fuel cell, electrolyzer, and 
hydrogen tank has been introduced in many studies [41, 42]. 
The battery is still more economically feasible compared 
with the fuel cell, but with the fast development in fuel cell 
technology, its price is getting lower, and it may compete 
with batteries in the near future. A detailed comparison 
between the use of batteries versus the hydrogen tank is 
shown in [43]. The results obtained from [41–43] showed 
that the battery is still a cheaper and more reliable storage 
option. Therefore, it is used in this study. The energy bal-
ance of a mixed AC/DC system is shown in the following 
sections.

2.5.1  Charging Mode

The charging mode means that more electric power is gen-
erated from a RES than the amount of power needed for 
a RODS, and the surplus electric power can be fed to the 
battery system if its SOC is lower than the maximum value, 
EB,max. The surplus power should be discarded when the 
batteries are full and there is surplus power from the RES 
systems. The logic behind this mode of operation is shown 
in the following equations.

If PW (t) > PRO and EB(t) < EB,max , then the surplus power 
will charge the battery by PBC(t) as shown in (Eq. 15); mean-
while, the discharging power from the battery, PBD(t), is 
zero.

If PW (t) > PRO and EB(t) ≥ EB,max , then the battery will 
not be able to obtain extra energy, and the control system 
will get rid of the extra power by controlling the output 
power from WTs and the PV system.

(15)PBC(t) =
[(
PW (t) − PRO

)
�inv + PPV (t)

]
�BC
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If PW (t) < PRO , meanwhile 
[
PW (t) +

(
PPV (t)

)
𝜂inv

]
> PRO and 

the batteries are not fully charged, EB(t) < EB,max , then the 
extra power will be transferred to charge the batteries, as 
shown in the following equation:

If PW (t) < PRO(t) ,  
[
PW (t) +

(
PPV (t) 𝜂inv

)]
> PRO(t) and 

EB(t) ≥ EB,max , then the control system will discard the extra 
power by controlling the generated power from WT and PV 
systems, and for this reason Eq. (18) is used.

2.5.2  Discharging Mode

During this mode of operation, the RODS power, PRO, is 
higher than the electric power available from the RES, and 
the difference is supplied from the battery system until the 
SOC in the battery reaches the minimum allowed energy, 
EB,min. When the stored energy reaches this lower limit, the 
RODS will not be able to work at full operation, and there 
will be a loss of power supply. These conditions are sum-
marized below.

If 
[
PW (t) +

(
PPV (t) 𝜂inv

)]
< PRO and EB(t) > EB,min , then 

the power needed for the RODS will be as shown in the fol-
lowing equation:

If the generated power from the RES is lower than 
the requirement of the RODS and the battery is at 
the lower allowable limit of its charging condition [
Pw(t) +

(
PPV (t) 𝜂inv

)]
< PRO(t) and EB(t) ≤ EB,min , then 

the discharging power from the battery is zero and the 
loss of power supply probability will be increased by one 
occurrence;

In this case, the accumulated deficit in the generated energy, 
Ed, can be obtained as shown in Eq. (22).

where ηinv is the efficiency of the inverter.
The battery state loses σ % of its capacity every hour 

during the simulation, where the SOC can be extracted from 
(23).

(16)PBC(t) = PBD(t) = 0

(17)PBC(t) =
[
PW (t) +

(
PPV (t) �inv

)
− PRO

]
�BC

(18)PBC(t) = PBD(t) = 0

(19)PBD(t) =

[
PRO − PW (t) − PPV (t) �inv

]
�inv �BD

,

(20)PBD(t) = 0

(21)LOSP = LOSP + 1

(22)Ed = Ed + PRO −
[
PW (t) +

(
PPV (t) ∗ �inv

)]

The flowchart explaining the logic of the energy balance 
steps is shown in detail in Fig. 2.

3  Cost Analysis

The primary objective of this section is to determine the 
cost of desalinating one cubic meter of fresh water, which 
can be obtained by using the levelized cost of water (LCW) 
factor according to Eq. (24). In this calculation, all the fac-
tors affecting the price during the operation of the RODS 
are considered as the price at the start of project, taking into 
consideration interest and inflation rates. The total present 
value (TPV) was used to determine the LCW to better choose 
the best size of each component of the RES, as shown in 
Eq. (24) [44]. Many studies introduced economical method-
ologies to calculate the cost of the desalinated cubic meter 
of water depending on many assumptions. The TPV of the 
system components, OMC, and the price of salvage parts are 
introduced in [45–47]. The TPV was used to determine the 
cost of water production from a RODS supplied by a RES.

where YW is the annual total cubic meters of the fresh water 
and CRF is the capital recovery factor which is shown in 
Eq. (25).

where T is the project lifetime in years and r is the net inter-
est rate.

The value of TPV can be determined from Eq. (26).

where CC is the capital cost of the whole system including 
the installation cost, RC is the replacement cost, OMC is 
the operation and maintenance cost, and PSV is the present 
value of the salvage [44]. The detailed descriptions of the 
variables shown in Eq. (26) are shown in the sections below.

3.1  Capital Cost

The capital cost (CC) of the RES and RODS, including the 
price of all parts of the system, such as the installation cost, 
was calculated using Eq. (27) [48].

where WEP is the price of wind energy system, including 
installation, power electronics conditioners, and the price of 

(23)EB(t) = � EB(t − 1)

(24)LCW =
TPV ∗ CRF

YW

(25)CRF =
r(1 + r)T

(1 + r)T − 1

(26)TPV = CC + RC + OMC − PSV

(27)CC = WEP + PVP + BAP + ROP
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all components required for the wind energy system, PVP 
is the total price of the PV energy system, including the 
installation, civil work, power electronics conditioner, and 
control system. BAP is the total price of the battery system 
with the all required components for this system. ROP is 
the total price of RODS with all required components and 
installation.

3.2  Replacement Cost

The components that have a lifetime less than the lifetime 
of the project should be replaced during the operation of 
the project. These replaced components will be bought at 
the time of the replacement. The cost of these components 
should be calculated as a present value when the project 

Fig. 2  Fitness function, including the energy balance and cost estimation (EBCE), of the reverse osmosis desalination system
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started taking into consideration the interest rate, r, and 
inflation rate, l. The cost of replacement of any component 
of the system at the beginning of the project, RC, is shown 
in Eq. (28) [37].

where RCU  is the current replacement cost of the compo-
nents that will be replaced during the project period and Nrep 
represents the times that the component is replaced during 
the lifetime of the project, T.

3.3  Operation and Maintenance Cost

The proposed system needs an OMC during the lifetime of 
the project. There is no exact evaluation for the OMC for 
each price, but the value used for it is obtained from experts 
and previous research work or as recommended by the man-
ufactures of the components. These values will be shown in 
detail in the simulation section.

The present value of OMC of any component in the RES 
or RODS can be determined from Eq. (29) [7].

4  The Present Salvage Value

The old components that are replaced with new ones dur-
ing the operation of the project should be sold at the time 
of replacement. The values of these components should be 
calculated at the start of the project which is called the PSV 
which can be calculated as shown in Eq. (30) [7].

where SV is the scrap or salvage value.

5  Optimization Techniques

Three different optimization techniques are introduced in 
this paper to perform the optimal design of the RES and 
RODS to obtain the minimal cost of water desalinated at 
the lowest LOSP. The three proposed techniques are chosen 
with two well know techniques, and one recently introduced 
optimization technique. The three techniques are the BA, 
PSO, and SMO [7, 31] algorithms.

(28)RC = RCU

Nrep∑
j=1

((
1 + l

1 + r

)T∗j∕(Nrep+1)
)

(29)

OMC = OMC0 ∗
(
1 + l

r − l

)
∗

(
1 −

(
1 + l

1 + r

)T
)
, r ≠ l

(30)PSV =

Nrep+1∑
j=1

SV ∗
(
1 + i

1 + r

)T∗j∕(Nrep+1)

The optimization used a multiobjective function to mini-
mize both the cost per cubic meters of fresh water and LOSP 
values, as shown in Eq. (31).

where F is the fitness function, LCW is the levelized cost of 
water, which is the cost of desalinating one cubic meter of 
fresh water, and M is the weight value required to give the 
LCW a weight relative to the LOSP value.

5.1  Optimization Techniques Initialization

Before using the optimization techniques, values were 
assigned to the optimization variables (NWT, PVA, and EBR) 
with numbers of particles called swarm size. It is recom-
mended that the initial values in the original optimization 
techniques are random, but random values for these variables 
could increase the convergence time, and it may cause the 
optimization technique to capture one of the local peaks. So, 
it is recommended to have random values within reasonable 
limits of these variables. The initial values of NWT, PVA, 
and EBR were fed to the energy balance and cost estimation 
(EBCE) subroutines, and the values of the objective function 
shown in Eq. (31) collected F1∶n

0
 . The minimum value of the 

objective function was determined as Fbest = min(F1∶n
0

) and 
the corresponding best bat, dbest , was determined.

5.2  PSO for Designing the Renewable Energy 
System for Reverse Osmosis Desalinization 
System Applications

The PSO technique is a very popular optimization tech-
nique that is used in numerous applications. This technique 
imitates the behavior of many flocks of animals, such as 
fish or birds, in searching for their food to use the same 
searching technique in capturing the optimal solutions of 
real-world applications. This technique was introduced in 
1995 (15 years before BA) by Kennedy and Eberhart (1995) 
[49]. The idea behind this technique is to send many solu-
tions, called the swarm, and each solution, called a particle, 
to search for the optimal solution. The experience gained 
from the searching step will be transferred to offspring in 
the next step. The particles share their experience among 
other particles in the swarm (social-experience) and use their 
private experience (self-experience) to modify the searching 
technique.

The searching performance PSO is performed using Eqs. 
(32) and (33). Equation (32) is used to determine the veloc-
ity or trajectory of particles in the new iterations vk

i+1
 . The 

velocity of the particles in the next step v1∶n
i+1

 is obtained from 
three different terms, which are summarized in the follow-
ing points:

(31)F = LOSP +M ∗ LCW∕m3
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• The previous velocity, v1∶n
i

 , is multiplied by the weight 
function ω to enhance the stability of searching perfor-
mance. This value can be used as a constant around 0.7, 
or it can be linearly decreased from 0.9 to 0.4 to enhance 
the social confidence at the beginning of iterations and 
to enhance the self-confidence at the end of searching 
procedures and many modification strategies [50].

• The second term is using the difference between the 
particle’s best value and the current solution and mul-
tiplies this difference by a factor called self-experience 
parameter, cl. Increasing the value of this parameter will 
enhance the self-confidence of searching, and it increases 
the convergence speed, but it may increase the possibility 
of capturing a local peak.

• The third term is the difference between the global best 
obtained from the previous iteration and the current 
solution and multiplies this difference by a factor called 
a social experience parameter, cg. Increasing the value 
of this parameter will enhance the social confidence of 
searching.

The values of cl and cg should be compromised to balance 
between the self- and social search, which differ from fitness 
function to another. This velocity or trajectory was added to 
the previous position of particles d1∶n

i
 to get the new values 

of particles [51]. The flowchart showing the logic used in the 
optimal sizing of RES in RODS by PSO is shown in Fig. 3.

where ω is called the inertia weight cl and cg are the self- 
and social experience parameters, respectively. d1∶n

best
 is the 

personal best position of each particle, Gbest is the global 
best position, n is the number of searching agents (swarm 
size), and rl and rg are random values in between [0 1], i is 
the iteration order, which starts at one to the end of itera-
tions when i = it.

5.3  The BA in Designing of the RES for RODS 
Applications

Like most of the swarm optimization techniques, BA imitates 
bats in search of their food or prey. The BA was first devel-
oped by Yang [28]. This optimization technique is very fast 
and provides an accurate convergence. The results obtained 
from this technique were compared to the results obtained 
from PSO and SMO techniques. In nature, bats search for 
their food by using the echolocation technique, in which they 
emit numbers of impulses with different levels and different 
frequencies and receive an echo of these sound pulses. The 

(32)v1∶n
i+1

= � v1∶n
i

+ clrl(d
1∶n
best

− d1∶n
i

) + cgrg(Gbest − d1∶n
i

)

(33)dk
i+1

= dk
i
+ vk

i+1
,

bats get information about the food or prey from the received 
sounds to decide on their direction and speed in the next move-
ment. Bats can identify the distance and size of the prey by 
measuring the time between pulses and the intensity of ech-
oed sound pulses, respectively. The searching behavior of bats 
has inspired researchers to imitate them in searching for the 
optimal solution for different life problems. Many generalized 
rules should be taken into consideration in the mathematical 
modeling of the BA [28]. The following sections explain the 
logic of using the BA to optimally design the RES system 
to supply the RODS with electric power. As with the other 
optimization techniques used in this paper, the BA will use the 
number of WTs, NWT, the area of the PV array, PVA, and the 
size of the batteries, EBR as optimization variables. The fitness 
function is introduced in Eq. (32).

The initial velocity v1∶n
0

 and initial frequency f 1∶n
0

 of all bats 
are set to zero (where n is the swarm size). The initial values of 
pulse rate, r0, loudness, A0, and many initialization parameters 
are set as recommended in [28].

The new position of the particles, d1∶n
i

 , can be determined 
from Eq. (36) after determining the bat velocity, v1∶n

i
 as shown 

in Eq. (35). The frequency of the particles can be determined 
from Eq. (34).

where the values of fmin and fmax are the minimum and maxi-
mum frequency range and are chosen to be 0 and 2, respec-
tively [28]. β is a random value, β ∈ [0,1], and ω is the inertia 
weight.

After determining the new position from Eq. (36), a random 
walk around this position should be performed to get the new 
position of the bats, as shown in Eq. (37) [29]. If the pulse 
emission ri is less than a random number, then the position di 
is replaced by the value obtained from Eq. (37).

where ε is a random number, ε ∈ [− 1,1], and ϕ is a positive 
constant equal to 0.001 [11], while 

⟨
A1∶n
i

⟩
 is the average 

loudness of bats at the current iteration.
The value of loudness (Ai) decreases with iterations; mean-

while, the pulse rate, ri, increases. The variation in Ai and ri 
with iteration numbers is shown in Eq. (38) and Eq. (39), 
respectively [7].

(34)f 1∶n
i

= fmin +
(
fmax − fmin

)
�

(35)v1∶n
i

= � v1∶n
i−1

+
(
dbest − d1∶n

i−1

)
f 1∶n
i

(36)d1∶n
i

= d1∶n
i−1

+ v1∶n
i

(37)d
1∶n(new)

i
= dbest + ��

⟨
A1∶n
i

⟩

(38)A1∶n
i

= �A1∶n
i−1



9888 Arabian Journal for Science and Engineering (2021) 46:9879–9897

1 3

where the values of α and γ have been chosen to be equal to 
0.9 in many types of research [28].

The new values of the bat’s positions, d1∶n
i

 , were fed 
into the fitness function (EBCE) to obtain its correspond-
ing objective values F1∶n

i
 . After performing the above 

logic, the iterations start and repeated until the logic stops 
based on the stopping criterion. The flowchart of using BA 
in the design of RODS is shown in Fig. 4.

(39)r1∶n
i

= r1∶n
0

[1 − e(−�i)] 5.4  The SMO in Designing of the RES for RODS 
Applications

A modern optimization technique called the SMO [31] 
was used to compare with the PSO and BA in designing 
the RODS. This algorithm mimics the human face and 
body reactions. This newly proposed technique has been 
used with many optimization functions, and it shows good 
convergence performance. This technique is characterized, 
but there are no control parameters to be optimized, as 

Fig. 3  Flowchart showing the 
logic used in the optimal sizing 
of RES in RODS by PSO
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in the case of BA and PSO, which make it a good option 
to use with low experience optimization researchers. The 
operating logic of SMO is shown in Fig. 5 and detailed in 
the following steps:

SMO1: The first step is to initialize the particles d1∶n
0

 and 
then calculate the fitness function F1∶n

0
.

Fig. 4  Flowchart of the bat 
algorithm used for optimal siz-
ing of RES in RODS applica-
tion
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SMO2: Determine the minimum optimization function, 
FFbest (called a leader), and set its corresponding posi-
tion to dbest.
SMO3: Determine the difference between the value of 
best fitness function (leader) and the value of a function 
of each particle “Flower” as shown in the following 
equation:

SMO4: Check if DFk
i
= 0 , set it its value to–rand and go 

to the next step, otherwise go to the next step.
SMO5: Determine the new position of the particles 
using the following equation:

(40)DFk
i
= (FFbest − Fk

i−1
)∕Fk

i−1

Fig. 5  Flowchart of the SMO, 
which was used for optimal 
sizing of RES in RODS applica-
tion
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SMO6: Send the new position of particles dk
i
 to the EBCE 

and determine the corresponding fitness function f k
i
.

SMO7: Check if Fk
i
< FFbest , then FFbest = Fk

i
 , and go 

to the next step, otherwise go to the next step without 
modification.
SMO8: Check if all particles are performed, if yes go to 
the next step otherwise go to SMO3.

(41)dk
i
= dk

i−1
+ DFk

i
× dk

i−1
SMO9: Check the stopping criterion is valid, print the 
values of dbest and FFbest,, otherwise go to SMO3.

6  Simulation Results

The simulation study was performed for Arar City in the 
northeast part of Saudi Arabia (30.9599° N, 41.0596° E). 
With 2.44 kWh/m specific energy consumption, the required 

Fig. 6  Monthly weather data for 
Arar City

Table 1  Wind speed, solar 
irradiance on a horizontal 
surface, temperature for Arar 
City, collected at 40 m above 
sea level [52]

Month Jan Feb March April May June July Aug Sep Oct Nov Dec Average

Wind speed 5.6 5.5 6.5 6.1 5.9 6.3 6.8 5.7 5.4 5.5 4.9 5.4 5.8
kWh/m2/day 5.58 6.15 7.07 7.29 7.61 7.48 7.78 7.55 7.39 6.66 5.64 4.85 6.75
Ta (°C) 9.3 13.5 17.4 23.3 28.2 33.0 34.8 36 30.4 25.3 15.7 8.8 26.53
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power from the RES to produce 1000  m3 of fresh water was 
2440 kW. The weather data for this site were collected, such 
as hourly wind speed, solar irradiance, and temperature [53]. 
Figure 6 shows the wind speed distribution in this site on 
40 m elevations. The maximum and average monthly wind 
speed is shown in Table 1, which shows the monthly average 
wind speed, solar irradiance on the horizontal surface, tem-
perature for Arar City on 40 m height [52]. The wind speed 
distribution is shown in Fig. 6. The average wind speed at 
40 m height is 5.8 m/s [52]. The hourly solar irradiance and 
temperature for the Arar site were collected from the PV 
geographical information system [53].

6.1  Pairing Between the Study Site and Wind 
Turbines

The frequency distribution of the wind speed of Arar City 
at a 40 m elevation is shown in Fig. 7. These data will be 
used with the data of WTs to get the best WT for this site. 
Ten WTs have been used to choose the best WT among them 

where the WT with the best CF was selected. The data of 
WTs and the CF of each WT are shown in Table 2. It is 
clear from this table that the highest CF was associated with 
the AE-Italia [54] WT. Therefore, this WT was used in the 
simulation.

6.2  Overall Data of the Proposed System

After selecting the best WT to be used in the Arar site, the 
data for all systems used in the simulation are shown in 
Table 3. These data were collected from many references, 
and the reasonable values of each component were selected.

The optimization results of using the RES to feed the 
RODS were calculating PSO, BA, and SMO optimization 
tools. Three different studies are introduced in the simulation 
results, as shown in the following sections:

1. Evaluation of the best optimization technique
2. The variation in the weight factor, M
3. The detailed results of the optimization technique for the 

best solution obtained.

6.3  Evaluation of the Best Optimization Technique

We evaluated the detailed results of using the three differ-
ent strategies PSO, BA, and SMO to choose the best one. 
In all the optimization techniques used in this study, the 
program suggests size value for each RES component and 
these components are used as input to the power dispatch 
unit where it can determine the hourly generated power 
and the SoC of the batteries and how the power flows in 
each component. After determining the total generated 
energy from the power dispatch unit, it will be used in the 
cost estimation part to determine the LCW which depends 
on the cost analysis (Sect. 3) section introduced above. 
In this part, the program calculates the capital cost for all 
components as shown in Eq. (27). The replacements of 
each component should be calculated based on the formula Fig. 7  Wind speed distribution of Arar City on 40 m elevation

Table 2  Wind turbine data, capacity factor, and number of wind turbines at the Arar site

Name Power (kW) Height (m) UC (m/s) UR (m/s) UF (m/s) C (m/s) K CF NWT

ADES ADES 60 [55] 60 27 3.5 8 20 5.4830 2.5649 0.2834 77
Hummer H25 [56] 100 50 2.5 10 20 5.9875 2.5649 0.2417 54
Aeolos-H [57] 100 36 3 10 25 5.7130 2.5649 0.2021 65
Norvento nED [58] 100 40 3 10 20 5.7997 2.5649 0.2109 62
AIRCON 10S [59] 100 40 2.5 10 25 5.7997 2.5649 0.2223 59
AWD-D2CF [60] 200 40 3 10.9 20 5.7997 2.5649 0.1698 39
AIR 19 [61] 100 45 3.5 14 24 5.8981 2.5649 0.0862 151
Allgaier StGW-34 [62] 100 23 3.7 9.5 25 5.3588 2.5649 0.1684 78
AE-Italia [54] 60 30 2.5 8 25 5.5661 2.5649 0.3325 66
Dencon Tornado [63] 200 32 3 12 25 5.6177 2.5649 0.1202 55
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shown in Eq. (28). The operation and maintenance cost 
will be after that calculated from Eq. (29). The present 
salvage values of each component of the RES should be 
calculated from Eq. (30) to be subtracted from all expenses 
of the RES to determine the total present value (TPV) as 
shown in Eq. (26). The TPV will be used to determine the 
levelized cost of water (LCW) as shown in Eq. (24). These 
cost study uses the sizes of the RES components and their 
price as shown in Table 3. The evaluation criteria were 
based on the lowest failure rate and the fastest convergence 
time. In this analysis, the weight value, M, which is shown 
in Eq. (31), was selected to be M = 10. For fair evaluation, 
the swarm size for all optimization tools was equal to 50. 
Also, the parameters used in each technique are shown in 
Table 3. The optimization performance of these optimi-
zation tools was performed for 10 different optimization 
runs, as shown in Figs. 8, 9 and 10, respectively.  Figure 8 
shows that the PSO captured the minimum fitness value in 
10 runs out of 10 with about nine iterations. Meanwhile, 
as shown in Fig. 9, the BA captured the minimum value of 
fitness functions in all the 10 runs and about six iterations. 

Table 3  Input data for the optimization program [12, 27, 64–73]

10 Parameter Value Item Parameter Value

General parameters l 4% PV parameters PV_COST 200/m2 [64]
r 10% PV_OMC 0.01 * PV_cost
T 20 years PV_SL 25%
Load 2440 kW Area_module 1.67  m2

RODS Unit RO cost = $532/m3 efficiency 17%
RO_OMC = $0.2 /m3 TPV 30 year
RO_salvage = 0.25 βt 0.005 per °C
Membrane replacement cost = $0.06/m3 Tcr 25 °C
Number of replacement of mem-

brane per year
= 2 Battery BA_cost $100/kWh [68]

Cost of chemicals = 0.06/  m3 BA_OMC $0.02/kWh/year
Water tank cost = $255.4/  m3 BA_SL 20% * BA_cost
Water tank_OMC 0.01 * 255.4/  m3/year Battery life 5 years
Water production/hour 1000  m3/h �

BC
0.9

WT parameters WT_cost $1500/kW �
BD

0.95
OMC $100/kW/year [64] σ 0.02%
uc 2.5 m/s DOD 70%
ur 8 m/s Inverter INV_cost $532/kW
uf 25 m/s INV_OMC $10/kW/year
PR 60 kW per WT INV_SL $50/kW
TWT 20 year Tinv 10 years

BA fmin 0 �
inv

0.95
fmax 2 PSO n 50
ω 1 ω 0.9–0.4
A0 1 cl 1.49
r0 0.5 cg 1.49
α, γ 0.95 it 100

Fig. 8  Convergence performance of the particle swarm optimization 
technique
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For SMO, as shown in Fig. 10, this technique captured the 
minimum fitness value in nine runs out of 10 with about 
13 iterations to capture the optimal solution. From these 
results, it is evident that the BA is the fastest optimization 
technique, as it captured the minimum solution with six 
iterations compared with nine and 13 for PSO and SMO, 
respectively. Also, BA and PSO captured the optimal solu-
tion without any failure. Meanwhile, SMO failed one time 
out of ten times. Therefore, we advise using the BA for 
this application, and it was used in the following simula-
tion studies. The simulation results shown in Figs. 8, 9 
and 10 are showing how the fast and reliable response of 
BA compared to the obtained results from PSO and SMO 
which proves the superiority of using BA optimizing in the 
sizing problem of the HES in water desalination applica-
tion and other applications.

6.4  The Variation in Weight Factor, M

From the above study, the BA provided the best perfor-
mance compared with the other two techniques. Therefore, 
it was used in the next two simulation studies. The objective 
function used to reduce the cost and the LOSP is shown 
in Eq. (31). The weight value, M, was multiplied by the 
LCW to provide the required weight to the LCW compared 
with LOSP. The simulation in this study was performed 
for different values of M to determine the response of the 
LCW and LOSP. Figure 11 shows the variation in the fit-
ness function, LCW, and LOSP along with the value of M. 
Figure 11 shows that with a low value of M, the cost is drop-
ping very fast where it drops from $0.92/m3 when M = 2 
to $0.754/m3 when M = 10. Meanwhile, during this period, 
the LOSP increased from 0.1% to 0.6%. When there was a 
high value of M, the cost was saturated at $0.6/m3, while the 
LOSP increased to about 9%. Therefore, it is appropriate to 
choose M = 10 to reduce the cost from $0.92/m3 to $0.754/
m3 while the LOSP is still 0.6%. The variation in the number 
of WTs, PV area, and size of the batteries along with M is 
shown in Fig. 12. It is evident from this figure that when 
M is increased, it gives the cost more weight than LOSP 
and the WT number increases while the area of the PV and 
the size of the batteries are reduced. This indicates that the 
cost is directly proportional to the wind energy system size 
and inversely with the PV area and battery size for optimal 
operation.

Fig. 9  Convergence performance of the bat algorithm technique

Fig. 10  Convergence performance of the social mimic optimization 
technique

Fig. 11  Variation in the fitness function, LCW, and LOSP along with 
the weight value, M



9895Arabian Journal for Science and Engineering (2021) 46:9879–9897 

1 3

6.5  The Detailed Results of Optimization Technique 
for the Best Solution

As indicated in the first study, the BA is the best optimi-
zation technique compared with the other two techniques 

under study. Therefore, it was selected for use in this study. 
Also, the value of M is a function in the cost and LOSP 
(Fig. 11). The value of M was chosen to be M = 10 to reduce 
the cost from $0.92/m3 to $0.754/m3 and LOSP to 0.6%. 
The hourly variation in wind speed, solar irradiance, gener-
ated power from WT, generated power from the PV system, 
and SOC of the batteries are shown in Fig. 13. It is evident 
from this figure that the SOC of the batteries varied between 
100 and 30%. The batteries were not able to provide the 
energy required when their SOC was 30%, which occurred 
at t ≈8000 h, as shown in Fig. 13. The optimum design of 
the hybrid RES was 126 WTs, 36,560  m2 of PV area, and a 
75.45 kWh battery size. These results shown in Fig. 13 show 
the stable operation and the superiority of using BA optimi-
zation techniques in sizing of the RES for water desalination 
application.

7  Conclusions

The reverse osmosis desalination systems (RODSs) are a 
good option to supply fresh water to remote communities. 
Supplying a RODS from renewable energy sources (RES) 
can feed these remote communities with their required fresh 
water without a need for extending the electric utility grid 
to these communities. Moreover, renewable energy sources 
can increase the security of the power supply because they 
do not need fuels or emits any pollutions. Moreover, RES 
can avoid the dependency of the fossil fuels transportation 
which can increase the system security. Wind and photovol-
taic (PV) power can secure the required electric power for 
the RODS. Due to the intermittent nature of these sources, 
a battery storage bank is used to store the energy when the 
generated power is more than the RODS requires, and it can 
feed it when the generated power is less than required. The 
sizing of the components of the hybrid RES requires smart 
techniques to get the lowest cost at the minimum loss of sup-
ply probability (LOSP). Three different swarm techniques 
have been used to design the hybrid RES. These techniques 
are PSO, BA, and SMO. The results showed that the BA has 
the best convergence performance compared with the other 
two techniques. The cost of producing a cubic meter of fresh 
water is $0.75, with 99.4% reliability.
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