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Abstract
In this study, an effective dependent competing failure model is proposed for systems suffering from shocks. Under worse 
system degradation, shocks with the same magnitudes can bring larger sudden degradation increments. However, this rela-
tionship was ignored in most existing research. To address this problem, in the proposed failure model, a time-dependent 
rate is included for the sudden degradation increments by shocks. This time-varying rate is applied for the consideration 
that system degradation is closely related to operation time. Two dependent competing failure processes, i.e., soft failure 
and hard failure, are involved in the dependent competing failure model. The distribution of the total sudden degradation 
increments is then deduced, and its accuracy is verified by Monte Carlo simulation. The developed reliability model is illus-
trated by the reliability analysis of a microelectromechanical system. The sensitivity analyses of important parameters are 
also performed. The analysis results show that the proposed time-varying model effectively considers the impact of system 
degradation on sudden degradation increments, and by using this model, the change of sudden degradation increments can 
be well reflected under different system performances. These advantages make the reliability model more practical and help 
achieve more effective maintenance policies.
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1  Introduction

Systems suffer from failures usually due to internal degra-
dation (e.g., corrosion, fatigue or wear) and external shocks 
[1]. The failure process is then a comprehensive result of 
various influencing factors which dependently and com-
petitively contribute to failures. Also, when different failure 
modes exist, the system will fail with the type that occurs 
first, i.e., competing relationship [2]. Hence, if this depend-
ency between shocks and degradation is ignored, the system 
reliability may be overestimated, which can cause unex-
pected failures and unpunctual maintenance activities, and 
followed by an economic loss [3]. Therefore, the depend-
ent competing failure model with shocks and degradation 
is essential especially for systems requiring high safety and 
accuracy. In this paper, a new and effective dependent com-
peting failure model is proposed for systems suffering from 

shocks, considering the impact of system degradation on 
sudden degradation increments by shocks.

1.1 � Background

There have been significant research studies on shock and 
degradation models. Huang et al. [4] evaluated the reliabil-
ity of elective devices subject to catastrophic failure and 
degradation failure, and they derived a probability function 
to predict the significant failures of product. Some schol-
ars focused their studies on competing failure modes. For 
example, Bunea and Mazzuchi [5] analyzed the failure rate 
of items in accelerated life testing, based on Bayesian esti-
mation under competing failure modes. Cui et al. [6] gave 
some reliability indexes for Markov repairable systems, 
under competing risks modes composed of N-Phase-type 
distribution and τ-Phase-type distribution. Various methods 
were used to analyze the reliability of systems experienc-
ing dependent competing failure. Che et al. [2] developed 
a facilitation model-based Markov point process, to study 
the reliability of systems undergoing dependent competing 
failures. Liu et al. [7] discussed the reliability of a system 
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subject to dependent competing failure processes under four 
shock-failure modes, considering Weibull inter-arrival shock 
process. Liu et al. [8] calculated the reliability of degraded 
systems subject to multiple dependent competing failures, 
by using Monte Carlo simulation and considering the deg-
radation self-healing phenomenon. Kong et al. [9] made an 
improvement of system reliability under dependent com-
peting failure processes by the calibrations of degradation 
process. Wang and Pham [10] investigated a system subject 
to multiple degradation processes by time-varying copulas.

Some research considered the mutual relationship of 
failure processes and discussed different kinds of random 
shocks. Hao et al. [11] developed a reliability model for 
systems suffering from continuous degradation and random 
shocks, with considering the mutual relationship between 
dependent competing failures. Fan et al. [12] analyzed the 
reliability of systems experiencing dependent competing 
failures, in which random shocks were classified into three 
types according to the magnitude. An et al. [13] concluded 
that for the components with high reliability, random shocks 
have an influence on the degradation process of components, 
if and only if the magnitudes of shocks exceed a critical 
level under multiple dependent competing failure modes. 
Hao et al. [14] discussed the reliability of systems subject 
to dependent competing failures, where the system degrada-
tion rate and hard failure threshold are non-constant. There 
is some research evaluated system reliability by using soft 
computing-based technique [35] and analyzed reliability, 
availability, and maintainability together by using PSO and 
Fuzzy Methodology [36].

It is worth mentioned that stochastic process has been 
extensively used to model the whole degradation process. 
For example, Zhang et al. [15] predicted the remaining use-
ful life of systems with nonlinear multi-degradation states 
based on Wiener process. Li et al. [16] developed a nonlinear 
Wiener process degradation model for system degradation 
analysis considering autoregressive measurement errors. Ni 
et al. [17] modeled the shock damage by a Gamma distribu-
tion for a two-stage degradation system with a nonlinear 
degradation process and a time-varying degradation rate. 
Mercier and Castro [18] developed a degradation model 
according to a non-homogeneous gamma process and ana-
lyzed two imperfect repair models under this degradation 
model. For some other important research on system reli-
ability, Niwas and Garg [19] presented a reliability model for 
a single-unit system, by using a Markov decision process and 
under a cost-free warranty policy. Garg [20] solved the reli-
ability redundancy allocation problems for systems subject 
to nonlinear constraints by a penalty guided Biogeography-
based optimization method. Garg [21] investigated the fuzzy 
multi-objective reliability optimization problem for systems 
with uncertain data by cuckoo search algorithm. Garg [22] 
developed fuzzy Kolmogorov’s differential equations to 

evaluate system reliability by using vague data and based 
on a Markov decision process. Garg et al. [23] considered 
the effect of preventive maintenance actions on system reli-
ability in the maintenance scheduling of a pulping unit.

1.2 � Motivation of this Study

Although plenty of contributions have been devoted to the 
reliability analysis for systems suffering from shocks, most 
of them considered a constant rate for sudden degradation 
increments. However, the system performance or state gets 
worse with increasing running time, and the ability to with-
stand shocks also decrease. In this situation, considering a 
constant rate for sudden degradation increments can cause 
a certain error in reliability assessment. In [10], a Gamma 
distribution with a time-varying parameter was used to 
model the shock damage. This model described the shock 
damage from the perspective of variable Gamma distribu-
tion, but the time-varying parameter was not focused on 
the relationship between shock damage and the magnitude 
of shocks. Besides, Wei et al. [24] considered binary-state 
deteriorating systems, where the shock damage follows a 
normal distribution with different means and variances in 
different degradation states. Although the effect of system 
states on shock damage was considered in [24], it seems that 
no further study is focused on the growth rate between shock 
damage and the magnitude of shocks.

The study is performed under a reasonable assumption 
that the sudden degradation increments caused by shocks are 
dependent with the current system degradation. An effective 
dependent competing failure model is proposed. This model 
includes an innovative stochastic model for the sudden deg-
radation increments by shocks, to reflect the relationship 
between sudden degradation and system degradation. How-
ever, the current system degradation is really complicated, 
consisting of normal degradation and sudden degradation 
accumulations. During the previous operation time, a system 
may undergo various random shocks with different magni-
tudes, subject to the change of temperature and humidity, 
overloading, vibration and so on. Also, the normal degrada-
tion is significantly influenced by changing environment. 
Hence, when modeling the relationship between sudden 
degradation increments and system degradation, it is very 
difficult to utilize the current degradation amount directly.

Therefore, in this study, we transform the impact of the 
current degradation into a simplified form when modeling 
the sudden degradation increments by shocks. Then, the cur-
rent operation time when shocks arrive is used to reflect this 
impact approximately. It is reasonable, because in practical 
systems the current degradation amount is closely related 
to the operation time. First, the accumulated normal degra-
dation gets larger with running time. Also, during a larger 
operation time, more shocks occur and followed with more 
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sudden degradation. This means the accumulated sudden 
degradation is closely related to the current operation time. 
Second, both the effects of normal degradation and sud-
den degradation on total system degradation are regularly 
dependent with time, under the common assumption that the 
occurrences of normal degradation and shocks both follow 
some known distributions. All the above reasons imply the 
close relationship between operation time and total system 
degradation. Actually, the total degradation amount over 
time has been provided, for example see [13]. However, very 
few of existing research considered this transformation for 
the impact of system degradation on sudden degradation. 
In this study, the effect of the current degradation amount 
is indirectly reflected by operation time, and then a time-
varying model is constructed for the sudden degradation 
increments caused by shocks. In the proposed time-varying 
model, the rate of sudden degradation increment varies over 
time, and it is described by a nonlinear regression model. 
In this study, the power-law model is applied here, because 
power-law model is a commonly and effectively used non-
linear regression model, and its character is very suitable for 
the assumption that the rate of sudden degradation increment 
increases with time [25].

Additionally, in the proposed dependent competing fail-
ure model, the normal degradation is assumed to be a gen-
eral degradation path or linear degradation path, similar to 
most research, for example see [12]. Random shocks in this 
study are classified into three types according to their mag-
nitudes: safe shock, damage shock and destructive shock, 
similar to [24]. Two dependent competing failure processes, 
soft failure and hard failure [26], are both involved in the 
dependent competing failure model. Specifically, the total 
accumulative degradation amount of a system is assumed to 
be the sum of normal degradation and sudden degradation 
increments caused by damage shocks.

The remainder of this study is structured as follows. 
Section 2 provides a description for the system, including 
normal degradation process and random shock process. Sec-
tion 3 develops a reliability model for the system subject 
to dependent competing failure, where the rate of sudden 
degradation increments is modeled by a time-varying model. 
In Sect. 4, the developed reliability model is illustrated by an 
example of a microelectromechanical system (MEMS), and 
sensitivity analyses are also performed. Section 5 provides 
a conclusion and gives future work.

2 � System Degradation Process 
and Assumptions

The investigated system works in a relatively stable envi-
ronment and deteriorates gradually under prescribed situ-
ations, such as rated voltage, normal humidity, permitted 

load and so on. The normal continuous working environ-
ment makes the system suffer from a normal degradation 
process. Besides, the investigated system subjects to some 
external damage factors, such as high voltage, shock load, 
and so on, which can accelerate system degradation or 
even destroy the system directly. For example, a working 
gear may suddenly break down when encountering a huge 
shock load. Additionally, in the investigated system, the 
shocks with the same magnitudes can bring larger sud-
den degradation increments under a worse system perfor-
mance. Therefore, the investigated system simultaneously 
undergoes normal degradation and external shocks and 
will suffer from different failure processes.

The related notations in this study are as the following.

Notations

X(t) Normal degrada-
tion at time t

N(t) Total number of 
random shock at 
time t

S(t) Cumulative deg-
radation amount 
caused by dam-
age shocks at 
time t

P1 Occurrence prob-
ability of safe 
shock

XS(t) Total degradation 
amount of sys-
tem at time t

P2 Occurrence prob-
ability of damage 
shock

D Threshold of hard 
failure

P3 Occurrence prob-
ability of destruc-
tive shock

H Threshold of soft 
failure

� Arrival intensity of 
random shock

S Threshold of dam-
age shock

T(i) The time interval 
between the i th 
and (i − 1) th dam-
age shocks

Yi Sudden degrada-
tion increment 
caused by the i 
th random shock

Ti Arrival time of the i 
th damage shock

Wi the i th random 
shock

φ Initial degradation 
of normal degra-
dation

N1(t) Number of safe 
shock at time t

β Degradation rate of 
normal degrada-
tion

N2(t) Number of dam-
age shock at 
time t

μβ, σβ Mean and standard 
deviation of β

N3(t) Number of 
destructive 
shock at time t

μw, σw Mean and standard 
deviation of WI

a, b Variable parameters

For the investigated system, its total degradation X
S(t) 

is the accumulated effect by normal degradation and sud-
den degradation. In the following, we use Fig. 1a, Fig. 1a, 
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and c to illustrate the system degradation processes more 
clearly.

Figure 1a shows the normal degradation process of this 
system. In this figure, X(t) represents the degradation amount 
over time, while H is the allowable maximum amount of 
degradation. The normal degradation process is closely 
related to system operation time, and then a longer operation 
time can cause a larger degradation. In fact, the degradation 
of a system is very complicated, and most existing degrada-
tion processes were fitted based on a large amount of degra-
dation data. Different degradation models can be referred to 
[27]. This study considers the normal degradation process 
as a continuous linear process for simplicity, similar to [13].

Figure 1b presents the random shock process of this 
system. The classification method of the three types of 
shocks is similar to [24]. In this figure, D indicates the 
allowable maximum magnitude of random shock, while 
S represents the damage shock threshold. The safe shock 
( W2 ), with a magnitude lower than S , has no effect on deg-
radation. The damage shocks ( W1 , W3 , W4 and W5 ), with 
magnitudes greater than S but less than D , can accelerate 

the degradation process. The destructive shock ( W6 ) with 
a magnitude reaching or exceeding D will cause a system 
failure immediately.

Figure 1c shows the total degradation process of the 
investigated system. The total degradation process is com-
posed of normal degradation and shock degradation. X

S(t) 
represents the total degradation amount over time. The 
symbols Y1 , Y3 , Y4 , and Y5 , respectively, denote the sudden 
degradation increment caused by W1 , W3 , W4 , and W5.

From the above, two dependent competing failure pro-
cesses are involved in the system: (1) the system encoun-
ters a failure when a destructive shock arrives with a mag-
nitude not lower than D , i.e., hard failure [26]; (2) The 
system suffers from a failure when the total accumulative 
degradation amount reaches the threshold H, i.e., soft fail-
ure [26]. The system fails when any type of failure hap-
pens first [13]. In contrast, the system normally operates 
when all the random shocks are not destructive shocks, 
and the total accumulative degradation amount is below 
the soft failure threshold H.

Fig. 1   Dependent competing failure processes: a normal degradation process; b random shock process; c total degradation process under ran-
dom shocks
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3 � Reliability Modeling

In this section, the reliability analyses for a hard failure pro-
cess and a soft failure process are performed for the inves-
tigated system, respectively. Further, the system reliabil-
ity model is derived. A time-varying model is included to 
describe the change rate for sudden degradation increments. 
This makes the reliability model can well reflect the changes 
of sudden degradation increments.

3.1 � Reliability Analysis for a Hard Failure Process

Safe shocks and damage shocks cannot lead to failures 
directly, while the system encounters a hard failure if a 
destructive shock arrives. F(⋅) is the cumulative distri-
bution function of the magnitude of a random shock W

i
 . 

Hence, when experiencing the i th shock, the probability 
that a system does not break down due to a hard failure is 
as the following:

Most research considered W
i
 as an independent and 

identically distributed random variable following a normal 
distribution, for example see [13]. A normal distribution is 
also adopted for the assumption of W

i
to develop our model. 

Then, Eq. (1) can be rewritten as Eq. (2), when the magni-
tude of a random shock follows a normal distribution, i.e., 
W

i
∼ N(�

w
, �2

w
):

where Φ(⋅) denotes the cumulative distribution function of 
random variables following a standard normal distribution.

3.2 � Reliability Analysis for a Soft Failure Process

A homogeneous Poisson process with intensity � is 
employed to describe the arrival number of random shocks 
in the time interval [0, t] , similar to [13]. Then, the probabil-
ity that a system has undergone n random shocks from the 
initial time to time t is as the following:

The number of safe shocks, damage shocks and destruc-
tive shocks are expressed as N1(t) , N2(t) and N3(t) , respec-
tively. Obviously, the sum of the three numbers is equal to 
N(t):

(1)P
(
W

i
< D

)
= F(D), i = 1, 2,… ,∞

(2)P
(
W

i
< D

)
= F(D) = Φ

(
D − 𝜇

w

𝜎
w

)
, i = 1, 2,… ,∞

(3)P(N(t) = n) =
e−�t(�t)

n

n!
, n = 1, 2…

(4)N1(t) + N2(t) + N3(t) = N(t)

When a shock arrives, the occurrence probability of a safe 
shock, a damage shock or a destructive shock are, respec-
tively, P1 , P2 or P3 , and the sum of them is 1:

where P1=P(Wi
< S) = F(S) , P2=P(S <W

i
< D) = F(D)

−F(S) and P3=P(Wi
≥ D) = 1 − F(D).

Based on the decomposition approach of Poisson pro-
cess [28], the arrival times of safe shocks, damage shocks 
and destructive shocks follow Poisson processes with inten-
sity λP1 , λP2 and λP3 , respectively. Additionally, the arrival 
of one shock, no matter of which type, does not affect the 
occurrence probabilities of other two types of shocks, i.e., 
N1(t) , N2(t) and N3(t) are independent of each other.

3.2.1 � Sudden Degradation Increments Based 
on a Time‑Varying Model

The sudden degradation increment caused by one damage 
shock is represented by Y

i
 , i = 1, 2,… ,∞ . Most studies 

assumed that Y
i
 is a linear function of the magnitude of the 

random shock, with a constant change rate during the whole 
shock-degradation process; or assumed that Y

i
 is a random 

variable following a normal distribution, for example see [12]. 
However, the degradation process in shock environments is 
quite complicated, and the related errors may rise during reli-
ability evaluation if ignoring the impacts of operating states 
or system degradation. In the following section, we provide a 
time-varying model (developed based on a power-law model), 
for the sudden degradation increments, by using operation 
time to reflect the effect of system degradation on Y

i
.

Symbol T
i
 represents the operation time when the ith dam-

age shock arrives. Then, according to the general form of 
a power-law model, the proposed time-varying model for 
sudden degradation increments is shown as:

in which, a and b are two parameters reflecting the influence 
of operation time on Y

i
 , and they can be adjusted based on 

practical systems.aTb

i
 denotes the rate of sudden degrada-

tion increments caused by the i th damage shock. This model 
implies a linear relationship between the sudden degrada-
tion increment and the shock magnitude, similar to [13]. 
Differently, this model considers the effect of the current 
degradation, and it includes a time-varying rate for sudden 
degradation increments rather than a constant rate.

The random shock arrivals are assumed to follow a 
known homogeneous Poisson process. Then, the time inter-
vals between two successive random shocks follow an expo-
nential distribution [13]. Let T(i) represent the time interval 
between the i th and (i − 1)th damage shocks, and then the 

(5)P1 + P2 + P3 = 1

(6)Y
i
=
(
aT

b

i

)
⋅

(
W

i
− S

)
, W

i
> S
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operation time when the i th damage shock arrives can be 
written as:

As mentioned, the arrival intensity of damage shocks is 
�P2 , so we can have:

where E(⋅) represents an exponential distribution.
Referring to [29], the moment generating function of T(i) 

is as the following:

where t denotes the operation time, and its unit can be deter-
mined depending on actual systems. Due to the independ-
ence between different T(i) , and the relationship between T(i) 
and T

i
 , the moment generating function of T

i
 can be derived 

as the following:

which is exactly the moment generating function of a 
Gamma distribution. Hence, T

i
 follows a Gamma distribu-

tion, since the distribution of T
i
 can be determined by its 

moment generating function [29]. Therefore, the distribution 
of T

i
 is written as Eq. (11):

The expected value of T
i
 is as the following:

For simplicity, in the time-varying model for sudden 
degradation increments (see Eq. (6)), T

i
 is approximately 

replaced by the expectation of T
i
 , as the following:

By using the expression of T
i
 in Eqs. (13), (6) can be 

transformed as:

This transformation is reasonable, because the occurrence 
time of a random shock is approximately equal to its expec-
tation in a long run. After the approximate replacement of 
T
i
 , the right side of Eq. (14) only has a random variable W

i
 . 

(7)T
i
= T(1) + T(2) + T(3) +⋯ + T(i)

(8)T(i) ∼ E
(
�P2

)

(9)�
T(i)
(t) =

�P2

�P2 − t

(10)�
Ti
(t) =

(
�
T(i)
(t)

)i

=

(
λP2

λP2 − t

)i

(11)T
i
∼ Ga

(
i, �P2

)

(12)E
(
T
i

)
=

i

�P2

(13)T
i
≈ E

(
T
i

)
=

i

�P2

(14)Y
i
=

(
a ⋅

(
i

𝜆P2

)b
)

⋅

(
W

i
− S

)
, W

i
> S

Hence, Y
i
 is a random variable following a normal distribu-

tion, and its distribution is derived as the following:

Furthermore, referring to [30], the cumulative degrada-
tion amount caused by damage shocks from operation time 
0 to t , can be written as Eq. (16):

In the situation of N2(t) > 0 , S(t) also follows a normal 
distribution due to the additivity of normal distributions and 
is obtained as:

where the expectation and variance of S(t) are expressed as 
follows:

With the replacement of T
i
 by E

(
T
i

)
 in Eq. (6), Eq. (17) 

is obtained as an approximate distribution of S(t) . We verify 
the accuracy of this approximation by comparing the expec-
tation and variance of S(t) got by Monte Carlo simulation 
and by Eq. (17). In the Monte Carlo simulation, the expecta-
tion and variance of S(t) are obtained when not replacing T

i
 

in Eq. (6). The result shows that this replacement only gen-
erates very few errors in both the expectation and variance 
of S(t) . Please see the Appendix for the detailed verification 
process and result.

3.2.2 � The Total Degradation and Survival Probability

A continuous linear degradation is used as the normal deg-
radation process, and then the normal degradation amount 
at operation time t is as follows:

Similar to [18], the initial degradation � is considered to 
be a constant value and the degradation rate � is assumed as 
a random variable following a normal distribution, i.e., 

(15)

Y
i
∼ N

(
a

(
i

�P2

)b(
�
w
− S

)
, a2

(
i

�P2

)2b

�2
w

)
i = 1, 2, 3,… ,∞

(16)S(t) =

⎧
⎪⎨⎪⎩

N2(t)∑
i=1

Y
i
if N2(t) > 0

0 if N2(t) = 0

(17)S(t) ∼ N

(
a
(
�
w
− S

)
(
�P2

)b
N2(t)∑
i=1

i
b,

a2�2
w(

�P2

)2b
N2(t)∑
i=1

i
2b

)

(18)E(S(t)) =
a
(
�
w
− S

)
(
�P2

)b
N2(t)∑
i=1

i
b

(19)Var(S(t)) =
a2�2

w(
�P2

)2b
N2(t)∑
i=1

i
2b

(20)X(t) = � + �t
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� ∼ N

(
�� , �

2
�

)
 . Then, the normal degradation X(t) also fol-

lows a normal distribution:

in which �
X(t) = �� t + � and �

X(t) = t��.
According to [30], the total degradation of a system from 

0 to t can be calculated as:

Even though we consider the influence of system degra-
dation on sudden degradation, this influence and relationship 
have been transformed into operation times at the time-vary 
model. Therefore, it is assumed that S(t) is independent 
with X(t) , and the total degradation can still be calculated 
as Eq. (22). Consequently, the total degradation amount of a 
system from 0 to t can be derived as a random variable fol-
lowing a normal distribution, shown as the following:

From the above, if the system does not encounter a soft 
failure, the total degradation will not reach the soft failure 
threshold H . Then, the survival probability of the system is 
as the following:

Combining Eqs. (24) and (20), the survival probability of 
the system can be further derived as:

3.3 � Reliability Modeling for Systems Undergoing 
a Hard Failure Process and a Soft Failure Process

To model the reliability for systems undergoing a hard fail-
ure process and a soft failure process, two situations of ran-
dom shocks are investigated:

Situation 1: No shocks occur during the operation period 
[0, t].

(21)X(t) ∼ N

(
�� t + �, t2�2

�

)

(22)X
s(t) = X(t) + S(t)

(23)

X
s(t) ∼ N

(
�� t + � +

a
(
�
w
− S

)
(
�P2

)b
N2(t)∑
i=1

i
b, t2�2

�
+

a2�2
w(

�P2

)2b
N2(t)∑
i=1

i
2b

)

(24)

P
(
X
s(t) < H

)
=

∞∑
i=1

P
(
X(t) + S(t) < H|N2(t) = i

)
⋅ P

(
N2(t) = i

)

(25)

P
�
X
s(t) < H

�
=

∞�
i=1

P
�
X(t) + S(t) < H�N2(t) = i

�
⋅ P

�
N2(t) = i

�

=

∞�
i=1

Φ

⎛⎜⎜⎜⎜⎝

H −

�
𝜇𝛽 t + 𝜑 +

a(𝜇w
−S)

(𝜆P2)
b

∑i

i=1
ib

�

�
t2𝜎2

𝛽
+

a2𝜎2
w

(𝜆P2)
2b

∑i

i=1
i2b

⎞⎟⎟⎟⎟⎠
⋅

e−𝜆P2 t
�
𝜆P2t

�i
i!

In this situation, a system does not experience any random 
shock. This is an idea situation, and the system only fails 
due to normal degradation. If the total degradation amount 
is greater than the threshold H , then the system will break 
down. Therefore, the reliability of the system in this situation 
is as the following:

Situation 2: Shocks occur during the operation period [0, 
t], but not contain destructive shocks.

In this situation, the system experiences random shocks, 
when the number of damage shock and safe shock are, respec-
tively, i and k . The safe shocks have no influence on the total 
degradation. If a system operates normally, the total degrada-
tion amount should not exceed the critical threshold H. So, in 
this situation, the system reliability is as the following:

Finally, integrating the above two situations, the system 
reliability under dependent competing failure processes can 
be obtained as:

(26)
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where P2 = P(S < W
i
< D) = F(D) − F(S) = Φ

(
D−𝜇

w

𝜎
w

)
− Φ

(
S−𝜇

w

𝜎
w

)
 

and P3 = P(W
i
≥ D) = 1 − F(D) = 1 − Φ

(
D−�w

�w

)
.

4 � Numerical Example: A MEMS Application

In this section, the proposed model is applied to a micro-
electromechanical system (MEMS), which was exploited 
in Sandia National Laboratories, and has been widely used 
in the research on reliability evaluation [30]. As shown in 
Fig. 2 taken from [31], A MEMS is composed of orthogo-
nal linear comb drive actuators mechanically connected to 
a rotating gear. During operation, the linear displacement of 
comb drive actuators is converted into the circular motion 
of gear via pin joints.

The major failure mechanisms of a MEMS are as fol-
lows: (1) The considerable wear of the contact surface 
between the gear and the pin joint can cause a damaged pin 
joint (Fig. 3), and the system encounters a soft failure; (2) 
Destructive shocks such as loads with great magnitudes can 
lead to spring fracture (Fig. 4), and the system fails directly, 
i.e., hard failure. In addition, smaller shocks also can pro-
duce certain amounts of wear debris between the pin joint 
and the gear, when these wear debris are large enough. The 
two failure modes both can cause system failure [13]. There-
fore, a MEMS experiences dependent competing failure pro-
cesses. According to [33], a MEMS can withstand shock 
loads due to system structure and material strength. Hence, 
a safe shock should be considered in this example.

(28)
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In the following numerical examples, the reliability analy-
sis by the proposed model is given and compared to existing 
research, and sensitivity analyses on related parameters are 
also conducted.

4.1 � Reliability Model Application and Comparison

In this section, the reliability of MEMS is analyzed by the 
proposed model in Sect. 3. The related parameters are pre-
sented in Table 1.

By using Eq. (28) and the parameters in Tables 2, the 
reliability curve of the system can be obtained, as shown 
in Fig. 5. It shows that the system reliability R(t) decreases 
monotonically with increasing operation time t  . When the 
operation time is close to 1.7e5, the reliability decreases to 
0. It is seen that the trend of reliability presents two styles on 
different sides of time 1.3e5. From 0 to 1.3e5, the reliabil-
ity decreases with increasing operation time in an approxi-
mately constant rate. When arriving at the time 1.3e5, the 
reliability starts to decline dramatically, and the rate is much 
greater than the former rate.

This phenomenon can be explained as the following. 
Based on the proposed time-varying rate model, the rate 
of sudden degradation increments aTb

i
 get larger with sys-

tem operation time. Hence, when the system operation time 
is not large (from 0 to 1.3e5 in the example), this rate is 

Fig. 2   Scanned electron microscopy image of the micro-engine taken 
from [31]

Fig. 3   Scanned electron microscopy image of a worn pin taken from 
[31]

Fig. 4   Scanned electron microscopy image of a shock-induced failure 
of a suspension spring taken from [32]
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relatively small, and also results in a small sudden degrada-
tion increment, under the assumption that the shock mag-
nitudes follow a normal distribution with a small mean. 
In this situation, the system total degradation process is 
mainly influenced by the normal degradation process, and 
it decreases at an approximately constant rate during the 
operation time from 0 to 1.3e5 (see Fig. 5). In contrast, 
when the system performance gets worse (during the opera-
tion time after 1.3e5), sudden degradation increments can 
increase rapidly with a greater Tb

i
 . Then, the system total 

degradation process is accelerated obviously by the large 
sudden degradation increments. This finally makes the sys-
tem undergo an increased risk of failure, and also makes the 
reliability decrease much faster during the operation time 
after 1.3e5 (see Fig. 5).

In order to compare with the situation containing a con-
stant rate for sudden degradation increments by shocks, 

Fig. 6 is presented based on the reliability model in [13]. It 
provides a reliability curve generated with a constant rate 
h , which is set to be 1e−4, for sudden degradation incre-
ments. When comparing Figs. 5 and 6, the system reliabili-
ties decrease to 0 at different operation time points, because 
the rates for sudden degradation increments in them are set 
very differently although other parameters are the same.

Additionally, under the assumption of normal distribu-
tion, most random shocks occur with close magnitudes. 
Then, in the proposed model (See Fig. 5), the sudden deg-
radation increments caused by shocks are influenced much 
by the rate aTb

i
 . Differently, in the constant rate model (see 

Fig. 6), the sudden degradation increments increase with 
a fixed rate during the whole system lifetime, and then the 
system reliability decreases almost with a constant rate.

Besides, we take Fig. 7 from [24] for a better comparison 
and illustration. In [24], two linear models with different but 

Table 1   Related parameters 
for the numerical example of a 
MEMS

Parameters Description Value Sources

H threshold of soft failure 0.00125�m3 Tanner et al. [31]
D threshold of hard failure 1.5Gpa Tanner et al. [31]
S Threshold of damage shock 0.2Gpa An et al. [13]
X(t) Normal degradation at time t X(t) = � + �t An et al. [13]
� Initial degradation of normal degradation 0 Tanner et al. [31]
�w Mean of Wi 1.2Gpa An et al. [13]
�w Standard deviation of Wi 0.4Gpa An et al. [13]
� Arrival intensity of random shock 5× 10−5 Jiang et al. [34]
�� Mean of � 8.4823× 10−9�m3 Peng et al. [30]
�� Standard deviation of � 6.0016× 10−10�m3 Peng et al. [30]
a Variable parameter 1.0e − 12 Assumption
b Variable parameter 1.2 Assumption

Fig. 5   Change of reliability with increasing operation time Fig. 6   Change of reliability with a constant rate of sudden degrada-
tion increment h
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constant rates of sudden degradation increments are pre-
sented. These two models are corresponding to two different 
system states during the whole operation time, which makes 
the reliability curve present two styles (see Fig. 7). The phe-
nomenon of two styles is similar to the proposed reliability 
model (see Fig. 5).

This means that the proposed time-varying model is effec-
tive to describe the sudden degradation increments caused 
by random shocks. Compared to [24], the reliability curve 
by the proposed reliability model decreases faster before the 
system enters a considerably poor state (see Fig. 5). This is 
because the rate in the time-varying model increases with 
operation time, while the rate in [24] is a fixed value in the 
first system state, then the system total degradation process 
is more accelerated in the proposed model. Additionally, the 
proposed time-varying model is considered to involve con-
tinuously changing rates of sudden degradation increments, 
while the models in [24] had two discrete rates. Hence, the 
proposed time-varying model is more general and can con-
sider much more different system states.

4.2 � Further Comparisons with Different Rate 
Parameter Settings

In this section, a further comparison for the proposed model 
and existing research is given in situations with different 
rate parameter settings. Compared to the sudden degradation 
increments model in [13], the proposed model differently 
includes a constant rate or a time-varying rate. For clarity, 
the proposed model is called as the time-varying model here, 
and the model of [13] is represented as the constant-rate 
model. Figure 8 presents several reliability curves according 
to the two models. Parameters a (in the time-varying model) 
and h (in the constant-rate model) are both equal to 1e−4, 

while parameter b (in the time-varying model) is changed 
from 1e−8 to 2e−2. We can observe that the features of 
these reliability curves are similar, but the results from the 
two models get closer when parameter b becomes smaller.

The explanation of Fig. 8 can be given as the follow-
ing. In the proposed time-varying model, the rate for sudden 
degradation increment aTb

i
 is closely related to two param-

eters, i.e., a and b. Differently, the corresponding rate in the 
constant-rate model is a fixed value h. Hence, in the example 
of Fig. 8 that a and h are equal, aTb

i
 is highly close to the 

fixed value h when b is small enough. Then, the reliability 
curves are also close, such as the red, green, and blue reli-
ability curves in Fig. 8. This implies that under some special 
situations, i.e., a quite small parameter b, the time-varying 
model’s behavior is similar to models with a constant rate 
for sudden degradation increments. However, the reliabil-
ity model based on the proposed time-varying model can 
present several different features with different parameter 
b, even when the parameter a is equal to the constant rate h.

Therefore, compared to constant rate models, the pro-
posed time-varying model is more general and can better 
describe the change of sudden degradation increments. And 
then it is necessary to consider the time-varying rate model 
for the sudden degradation increment, to reflect systems’ 
sensitivity due to shocks.

4.3 � Sensitivity Analysis

In this section, sensitivity analyses are conducted to evaluate 
the influences of important parameters on system reliability. 
These parameters include the arrival intensity of random 
shock � , the two parameters related to the proposed time-
vary model, a and b , and the threshold of damage shock S . 

Fig. 7   The plot of the reliability function taken from [24]
Fig. 8   Comparison of the time-varying rate and the constant-rate 
model
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The values of the parameters used in the sensitivity analysis 
are most set as those in Table 1. And in Table 1, parameters 
are taken from existing research (Please see the references 
in Table 1 On Page 16), except that the parameters a and b 
are especially assumed for our model. For the parameters 
taken from literature, their authors obtained them according 
to actual situations and requirements. Therefore, these val-
ues of parameters are reasonable, and they can well reflect 
practical situations, which can be used in this study. For a 
few parameters, they are changed in certain examples for 
special purposes and not set as Table 1. For example, in the 
sensitivity analysis for the threshold of damage shock S, the 
value of S is changed in a reasonable range according to 
that in Table 1 (Please see Fig. 11 on Page 23), while other 
parameters are still set as those in Table 1. These settings can 
make the analysis reasonable and related to actual situations.

(1)	 Sensitivity analysis for the arrival intensity of shocks
	 The effect of random shocks is an essential part for sys-

tem total degradation. And the occurrence of random 
shocks is directly influenced by the arrival intensity of 
shocks. For this reason, the arrival intensity of shocks 
is very important, and its impact on system reliability 
is necessary to be analyzed.

	   Figure 9 exhibits three reliability curves with differ-
ent arrival intensities of random shock � . It is observed 
that the system reliability is susceptible to the value of 
� . When the arrival intensity is increased from 2.0e-5 to 
5.0e-5, the reliability curve moves to the left. It implies 
that the reliability will decrease rapidly when random 
shocks arrive with a higher intensity. This phenome-
non is reasonable, because the higher arrival intensity 
makes the occurrence probability of damage shocks �P2 

larger. Then, the system is more likely to be impacted 
by shocks. Correspondingly, the system will deterio-
rate faster. Therefore, the reliability decreases quickly 
compared to the situation with a lower arrival intensity 
of shocks. Additionally, the reliability decreases more 
rapidly in the later stage when the system enters a con-
siderably poor state with a longer running time.

(2)	 The sensitivity analysis for parameters a and b
	 The parameters, a and b, are two critical factors in the 

proposed time-varying rate model and indirectly influ-
ence the sudden degradation increments caused by 
damage shocks. They are especially set in our model 
and combined to determine the change rate of sudden 
degradation increments. Although they are not directly 
from true systems, they are closely related to actual 
situations and exiting research. First, the values of a 
and b can be adjusted according to actual systems when 
the degradation data are available. When the actual data 
of sudden degradation increments are known, the rate 
of sudden degradation increments aTb

i
 can be fitted by 

adjusting parameters a and b. Second, in the numeri-
cal examples, we assumed parameters a and b accord-
ing to existing literature of constant-rate models with 
a constant rate. Therefore, system reliability is closely 
related to the two parameters, and it is meaningful to 
perform the sensitivity analysis of parameters a and b 
for system reliability.

	   Figure 10 includes two subplots, respectively, related 
to the sensitivity analysis of a and b . Each subplot pre-
sents three or four reliability curves, corresponding to 
the situation with different a and the same b , or the 
situation with different b and the same a.

	   As shown in Fig. 10a, the value of parameter b is 1.2, 
while parameter a is changed from 1.0e-12 to 11.0e-12 
in increments of 5.0e-12. It is seen that the reliability 
is not sensitive to a in the early stage (approximately 
before the time 1.2e5). After the time 1.2e5, some dif-
ferences emerge among the three reliability curves. 
This shows that the corresponding reliability gradu-
ally decreases with increasing a . The phenomenon is 
possible, because in the proposed reliability model, the 
parameter a can impact the rate of shock degradation. If 
a is greater, then the rate of shock degradation becomes 
larger, and the system reliability will be reduced. How-
ever, this difference is not very big, and it only appears 
when the system has run for a long time. This implies 
that parameters a can be determined according to the 
operation time. Especially, when a system has oper-
ated for a long time, it is more necessary to estimate an 
appropriate a , because it can be meaningful for effec-
tive maintenance planning.

	   In Fig. 10b, the value of parameter a is 1.0e-12, while 
parameter b is changed from 0.7 to 2.2 in increments 

Fig. 9   The change of R(t) with different arrival intensities of random 
shock �
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of 0.5. Obviously, the reliability curve shifts to the left 
when parameter b increases. This phenomenon is rea-
sonable, because the parameter b is positively related to 
the rate of shock degradation. When b becomes greater, 
the rate of shock degradation also gets greater, and the 
total degradation of system is accelerated. It is noted 
that the reliability is not very sensitive to b when b 
is relatively small. This situation can be explained as 
follows. First, when b is relatively small, the impact of 
the sudden degradation rate on degradation process is 
also small. In contrast, when the system enters a con-
siderably poor state, the reliability can show obvious 

difference for situations with different b. Second, when 
the parameter b is large, the impact of the sudden deg-
radation rate on degradation process is also large. Then, 
the system reliability will be significantly different 
even after a short running time. Figure 10b shows that, 
there is some relationship between parameter b and 
system lifetime. If the lifetime is larger, it corresponds 
to a smaller b ; otherwise, it corresponds to a larger b. 
Therefore, in engineering applications, the parameter 
b can be estimated by considering the lifetime.

(3)	 Sensitivity analysis for the thresholds of damage shock 
and hard failure

	 The damage shock threshold determines whether one 
shock can influence the system reliability, while the 
hard failure threshold determines whether one shock 
results in a sudden failure. Hence, the sensitivity anal-
yses of the two parameters for system reliability are 
necessary. The analysis result will also be beneficial to 
improve system performance when designing system 
reliability.

	   In Fig. 11, 5 reliability curves are given for situa-
tions with a constant threshold of hard failure (D) and 
different thresholds of damage shock (S). It shows 
that the system reliability shifts to the right while the 
threshold of damage shock is changed from 0.2 to 1.4 
in increments of 0.3. It means that the system reliability 
becomes better with increasing damage shock thresh-
old. However, the reliability is not sensitive to S in the 
early stage, approximately before the time 1.35e5 (see 
Fig. 11).

Fig. 10   Sensitivity analysis of a and b : a Sensitivity analysis of a ; b Sensitivity analysis of b

Fig. 11   Sensitivity analysis for the threshold of damage shock (S)
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	   The phenomenon in Fig. 11 can be explanted as fol-
lows: First, if the system has not run a long time and 
its state is not so poor, the effect of the damage shock 
threshold on system reliability is very small. Second, 
when the system enters a considerably poor state, the 
system resistance can be obviously different between 
situations with high and different damage shock thresh-
olds (e.g., when S is larger than 0.8 in Fig. 11). Sys-
tems with a higher damage shock threshold mean a 
stronger ability to resist shocks and followed with a 
better reliability. Consequently, in engineering appli-
cations, improving the damage shock threshold can be 
an effective way to extend the lifetime of deteriorating 
systems.

	   Figure 12 presents 3 reliability curves considering 
different thresholds of hard failure D and a constant 
threshold of damage shock S. It is seen that the system 
reliability shifts to the right when the threshold of hard 
failure D is changed from 1.5 to 1.9 in increments of 
0.2. Evidently, the reliability is sensitivity to the thresh-
old of hard failure. The reason is that larger values of 
D make the occurrence probability of hard failures 
lower. However, the difference becomes much smaller 
when the operation time exceeds a certain time point. 
This means that a system with a high threshold of hard 
failure can have a relatively high reliability. Besides, 
improving the threshold D can be very effective when 
the operation time is close to a certain value (around 
1.3e5 in this example).

From the above analyses, there are several advantages 
and findings of our model: First, the proposed time-var-
ying model can reflect different change rates for sudden 

degradation increments in different operation times. Sec-
ond, the two parameters a and b in the time-varying model 
are closely related to the operation time. Third, the system 
reliability can be improved effectively when increasing the 
threshold of hard failure around a certain operation time.

5 � Conclusions

In this study, an innovative dependent competing failure 
model is developed for deteriorating systems. Two failure 
processes, i.e., hard failure and soft failure, are involved. 
A time-varying rate of sudden degradation increments is 
included in the failure model, to describe the sudden degra-
dation increments caused by damage shocks. This study con-
siders the effect of system degradation on sudden degrada-
tion increments, and the operation time when shocks arrive 
is used to reflect this effect indirectly. The distribution of the 
accumulated sudden degradation increments is deduced, and 
its accuracy is verified by Monte Carlo simulation. Based on 
the above, the total degradation containing normal degrada-
tion and sudden degradation is obtained, and the reliability 
model is constructed.

Furthermore, the proposed reliability model is illustrated 
by a MEMS application, and the sensitivity analyses of 
some parameters are performed. According to the results of 
numerical examples, some important conclusions are given 
as follows:

(1) The proposed time-varying model is more general, 
compared with situations including a constant rate for sud-
den degradation increments. This implies the significance of 
our model to consider the effect of system degradation on 
sudden degradation increments by shocks.

(2) The system reliability can be effectively improved by 
reducing the occurrence intensity of shocks, and by increas-
ing the threshold of hard failure. These improvements are 
especially obvious when near a certain operation time. The 
greater threshold of damage shock can also provide a higher 
reliability, only when the system enters a considerably poor 
state.

(3) The parameter b has a greater impact on system reli-
ability than the parameter a, while parameter a only makes 
some differences under a longer operation time. It is rea-
sonable due to the form of the power-law model used in the 
time-varying model. Based on the reliability data obtained 
in different operation stages, the values of a and b can be 
estimated and adjusted.

Then the importance of the proposed reliability model 
can be summarized as the following. The proposed time-
varying model considers a more comprehensive system deg-
radation process, and the effect of system degradation level 
on sudden degradation increments is included. Compared 
with constant-rate models, the proposed time-varying model Fig. 12   Sensitivity analysis for the threshold of hard failure (D)

Arabian Journal for Science and Engineering (2021) 46:10137–10152 10149



	

1 3

is more general and can dynamically describe the change 
rate of sudden degradation increments with different opera-
tion times. Then, by using the proposed time-varying model, 
system reliability can be evaluated more comprehensively 
and can help achieve more effective maintenance strategies 
for systems.

For the further research, this study can be extended as fol-
lows: (1) Analyze the reliability and maintenance of indus-
trial systems by using PSO and fuzzy methodology based 
on the proposed model; (2) Evaluate multi-item system reli-
ability by using soft computing-based technique.

Appendix: Accuracy verification 
of the derived distribution of S(t)

Because of the replacement of T
i
 by E

(
T
i

)
 , Eq. (17) is an 

approximate distribution of S(t) , i.e., the accumulated sud-
den degradation increments by damage shocks at opera-
tion time t. We verify the accuracy here, by comparing the 
expectation and variance obtained from Monte Carlo and 
from Eq. (17). In the Monte Carlo simulation, we obtain 
the expectation and variance of S(t) when not replacing T

i
 

in Eq. (6).
The Monte Carlo simulation and comparison method are 

described as follows:

Step 1. Set parameters and generate random shocks.
Five thousand sets of damage shocks are generated, while 

each set includes 200 arrival time points, corresponding to 
the operation times when damage shocks arrive. Let �P2

,S , �
w
 and �

w
 be 1, 0.2, 1.2 and 0.4, representing the arrival 

rate of damage shock, the threshold of safe shock, the mean 
of random shock and the standard deviation of random 
shock, respectively. The two variable parameters a and b 
are assumed to be 1 and 1.2, respectively. Clearly, the arrival 
time of the ith damage shock in each set is the sum of the 
previous i time intervals.

Step 2. Determine the comparison time span.
Without loss of generality, the comparisons are performed 

at 20 time points, i.e., 20 different values of t , because the 
expectation and variance of S(t) is different with time t . The 
investigated range of t is from 691.6400 to 881.6400 here, 
with 881.6400 not exceeding the arrival time of the last 
shock in each set.

Step 3. Calculate the expectation and variance of S(t) 
when not replacing T

i
.

For each time point t , if t is extremely great, all the damage 
shocks in each set are considered. Otherwise, only the damage 
shocks have arrived until t in each set are considered. For each 
set, we can calculate S(t) , the accumulated sudden degrada-
tion by shocks. Then, by dealing with the values of S(t) in all 

Table 2   The relative errors of expectations and variances for 20 sets of time

Time (t) Expectations obtained by 
Monte Carlo simulation 
(EM)

Expectations 
obtained by 
Eq. (17) (ER)

Variances obtained by 
Monte Carlo simulation 
(VM)

Variances 
obtained by Eq. 
(17) (VR)

The relative errors 
of expectations (RE)

The relative 
errors of vari-
ances (RV)

691.6400 8.030325e+05 8.047403e+05 2.126179e+08 2.138333e+08 2.126664e−03 5.716202e−03
701.6400 8.289680e+05 8.306903e+05 2.233242e+08 2.245746e+08 2.077610e−03 5.598698e−03
711.6400 8.552758e+05 8.570084e+05 2.343718e+08 2.356538e+08 2.025817e−03 5.469922e−03
721.6400 8.818412e+05 8.835888e+05 2.457167e+08 2.470350e+08 1.981797e−03 5.364796e−03
731.6400 9.089335e+05 9.107000e+05 2.574804e+08 2.588389e+08 1.943490e−03 5.275879e−03
741.6400 9.363566e+05 9.381294e+05 2.695850e+08 2.709735e+08 1.893278e−03 5.150353e−03
751.6400 9.64513le+05 9.662868e+05 2.822163e+08 2.836308e+08 1.839032e−03 5.012270e−03
761.6400 9.930823e+05 9.948676e+05 2.952388e+08 2.966892e+08 1.797796e−03 4.912838e−03
771.6400 1.022078e+06 1.023870+e06 3.086655e+08 3.101481e+08 1.753326e−03 4.803299e−03
781.6400 1.051484e+06 1.053286e+06 3.224954e+08 3.240135e+08 1.713388e−03 4.707407e−03
791.6400 1.081179e+06 1.082986e+06 3.366773e+08 3.382278e+08 1.672011e−03 4.605291e−03
801.6400 l.111516e+06 1.113339e+06 3.513877e+08 3.529796e+08 1.639872e−03 4.530352e−03
811.6400 1.141967e+06 1.143794e+06 3.663758e+08 3.679986e+ 8 1.599736e−03 4.429157e−03
821.6400 1.173025e+06 1.174858+06 3.818907e+08 3.835472e+08 1.562455e−03 4.337667e−03
831.6400 1.204706e+06 1.206540e+06 3.979493e+ 08 3.996348e+08 1.521855e−03 4.235283e−03
841.6400 1.237183e+06 1.239022e+06 4.146504e+08 4.163703e+08 1.486221e−03 4.147786e−03
851.6400 1.269862e+06 1.271715+06 4.316970e+08 4.334607e + 08 1.459046e−03 4.085314e−03
861.6400 1.302888e+06 1.304757e+06 4.491691e+08 4.509787e +08 1.433866e−03 4.028782e−03
871.6400 1.336136e+06 1.338017+06 4.670051e+08 4.688583e+08 1.407701e−03 3.968297e−03
881.6400 1.370004e+06 1.371887e+06 4.854262e +08 4.873120e+08 1.374208e−03 3.884864e−03
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set, we obtain the expectation and variance of S(t) by Monte 
Carlo method.

Step 4. Calculate the expectation and variance of S(t) when 
replacing T

i
 by E

[
T
i

]
.

For each t , number the arrival times of damage shocks 
from 0 to t in each set obtained by Step 1, starting from 1 in 
sequence. Then, calculate the expectation of each numbered 
arrival time of damage shocks in each set with Eq. (12). By 
using these expectations of the arrival times of shocks, for 
each set, calculate the expectation and variance of each shock 
degradation by Eq. (17). Finally, estimate the expectation 
and variance of S(t) by average the expectation and variance 
obtained in all sets.

Step 5. Compare the expectation and variance of S(t) 
obtained by Step 3 and Step 4.

For different t , calculate the relative errors of expectation 
and variance of S(t) obtained by Step 3 and Step 4.

Table 2 presents the comparison results, including two 
types of relative errors. One is the relative errors of the expec-
tation of S(t) , can be calculated as the following:

where E
M

 and E
R
 are the expectations obtained by Monte 

Carlo simulation and Eq. (17) for each t , respectively. The 
other is the relative errors of the variance of S(t) , which can 
be expressed as the following:

where V
M

 and V
R
 are the variances obtained by Monte Carlo 

simulation and Eq. (17) for each t  , respectively. It is seen 
that the replacement of T

i
 with E

(
T
i

)
 only leads to a quite 

small error for both the expectation and variance of S(t).
Based on the simulation data in Table 2, we can easily 

observe that the relative errors of expectation and variance are 
greatly small and decrease gradually with the incensement of 
operation time. So, combining the above analysis, the expecta-
tion of T

i
 can be used to replace T

i
 , approximately.
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