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Abstract
In this study, an elasticity solution is presented for monoclinic functionally graded beams subject to a transverse pressure 
distributed sinusoidally. Monoclinic material properties are assumed to vary exponentially throughout the thickness of the 
beam’s layers. An analytical formulation based on the classical Euler–Bernoulli beam theory is also derived for comparison 
purposes of simply supported monoclinic functionally graded beams. In benchmark examples, the numerical results of normal 
stresses, transverse shear stress, as well as axial and vertical displacements are presented. The effect of material grading, 
fiber angle, and beam length to thickness ratio on the stress and displacement distributions is comprehensively investigated. 
The proposed elasticity-based analytical solution and presented numerical results can be used for verification or comparison 
purposes of numerical procedures.
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1 Introduction

Functionally Graded Materials (FGMs) as a relatively new 
class of nonhomogeneous composite materials have superior 
advantages compared to conventional laminates regarding 
their mechanical performance and minimized stress concen-
trations [1]. These advantages lead them to be preferred in 
numerous application fields such as electronics, aerospace, 
biomedicine, civil and mechanical engineering, etc. Due to 
their critical role in structural systems, FGM structures have 
to be analyzed in great accuracy and detail [2]. In addition, 
the accurate determination of elastic parameters and fracture 

properties of nonhomogeneous composites [3, 4] contributes 
greatly to the reliability of the structural analysis. Although 
numerical formulations such as finite element procedures are 
crucial for general design purposes of structural systems, e.g. 
nonlinear analyses [5, 6], nonstandard geometries [7], multi-
field problems [8], exact and analytical solution procedures 
are essentially required for verification purposes. Hence, the 
exact solutions of FGM structures have attracted great atten-
tion from researchers and engineers recently [9–19]. Sankar 
[20] investigated the stress fields and displacements of FG 
beams subjected to transverse loadings by using the exact 
solutions of the plane elasticity equations. Venkataraman 
and Sankar [21] presented the stress and displacement fields 
of a sandwich beam having a FG core regarding the elasticity 
analysis. Ding et al. [22] studied the plane stress problem 
of anisotropic FG beams by adopting a unified formulation. 
Lü et al. [23] presented elasticity solutions for the bending 
and thermal deformations of bi-directional FG beams. Ying 
et al. [24] evaluated the bending characteristics and natu-
ral frequencies of orthotropic FG beams resting on a Win-
kler–Pasternak elastic foundation using 2D elasticity solu-
tions. Wang and Liu [25] investigated the elasticity solutions 
for the stresses and displacements of orthotropic FG curved 
beams under uniform loads based on the Airy stress func-
tion method. Nie et al. [26] solved the plane stress problem 
of orthotropic FG beams for various boundary conditions 
using the displacement function approach. Daouadji et al. 
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[27] studied the displacement and stress fields of cantilever 
FG beams under distributed loads. Xu et al. [28] calculated 
the stress and displacement fields of simply supported FG 
beams with variable thickness using the 2D elasticity theory. 
Alibeigloo [29] investigated the temperature, displacement, 
and stress fields of a simply supported sandwich panel with 
a FG core under thermo-mechanical and mechanical loads 
using the elasticity theory. Alibeigloo and Liew [30] stud-
ied the natural frequencies of a simply supported sandwich 
panel with a FG core using an exact 3D free vibration solu-
tion. Arefi [31] obtained the stresses of a FG curved beam 
subjected to pure bending analytically. Zafarmand and Kad-
khodayan [32] analyzed the static and dynamic behaviors of 
multi-directional FG plates using the 3D elasticity theory. 
Chu et al. [33] investigated the mechanical behavior of FG 
beams subjected to uniaxial tension and bending using the 
2D theory of elasticity. Demirbas [34] discussed the tran-
sient thermal residual stresses of FG plates using the 3D 
theory of elasticity. Benguediab [35] presented an elasticity 
solution for the displacements, strains and stresses of a canti-
lever FG beam under uniform loads. He et al. [36] presented 
the displacements and stresses of FG beams having different 
moduli in tension and compression under uniformly distrib-
uted loads analytically. Bhaskar and Ravindran [37] derived 
a 3D elasticity solution for the displacements and stresses 
of simply supported plates with dissimilar orthotropic stiff-
ness coefficient variations. In the very recent studies, Yang 
et al. [38] derived a two-dimensional elasticity solution for 
time-dependent behavior of FG beams bonded by viscoelas-
tic interlayers. Wu et al. [39] examined the time-dependent 
mechanical behavior of multilayer FG beams with viscoe-
lastic interlayer analytically. Li et al. [40] investigated the 
vibrational characteristics of simply supported beams with 
varying thickness based on the two-dimensional elasticity 
theory. Ravindran and Bhaskar [41] tackled the elasticity 
solution of sandwich plates with composite stiffeners hav-
ing in-plane grading. Huang and Ouyang [42] studied the 
bending of bidirectional FG Timoshenko beams analytically.

In recent decades, thin-walled structures, particularly 
involving material anisotropy, became very popular due to 
their various advanced engineering applications, e.g. modern 
devices, aircrafts, and piezoelectric sensors [43]. In addition, 
as a result of the miniaturization needed with the develop-
ing technology, recent years witnessed an increasing num-
ber of studies on the size-dependent analysis of composite 
structures [44]. Alam and Mishra [45] employed a two-step 
perturbation method to investigate the nonlinear vibration 
of FG beams interacting with a nonlinear compliant sub-
strate based on nonlocal strain gradient theory. Alam et al. 
[46] obtained a closed-form solution of the critical exter-
nal pressure exerted on a shallow spherical shell based on 
nonlocal strain gradient theory. Zhang et al. [47] presented 
an exact solution for bending of FG curved Timoshenko 

nano-beams. Zhang et al. [48] discussed the bending of 
curved Timoshenko microbeams analytically based on Erin-
gen’s two-phase local/nonlocal integral model. Isotropic or 
orthotropic material structures have been comprehensively 
investigated in the literature, but the fact remains that materi-
als of general anisotropy and monoclinic configurations gain 
more importance by researchers in the recent times. Tovstik 
and Tovstik [49] derived the two-dimensional equilibrium 
equations of a thin elastic inhomogeneous plate of general 
anisotropy by an asymptotic approach. Morozov et al. [50] 
obtained the equations reflecting second-order accuracy for a 
monoclinic material multilayered plate of nonuniform thick-
ness. Schneider and Kienzler [51] introduced a second-order 
consistent plate theory having a monoclinic material con-
figuration and examined various theories originating from 
the presented theory through a pseudo-reduction technique. 
Belyaev et al. [52] treated bending and vibration formula-
tion of generally anisotropic plates based on an asymptotic 
approach. Çömez and Yilmaz [53] and Yilmaz et al. [54] 
investigated the frictional contact problem of a monoclinic 
half plane and a monoclinic coating half plane using the 
elasticity theory and integral transform technique. Çömez 
[55] studied the frictional contact problem of a FG mono-
clinic layer using the linear elasticity theory. The purpose 
of this study is to introduce the elasticity solution of the 
FG monoclinic beam which has not been addressed before. 
The considered beam is subjected to a sinusoidally varying 
transverse loading and material properties of it are assumed 
to vary exponentially through the thickness of the beam’s 
layers. In addition to the presented elasticity solution, an 
analytical solution based on Euler- Bernoulli beam theory 
is derived for the same problem. A comprehensive inves-
tigation of the FG monoclinic beam is conducted through 
numerical analyses. Stress and displacement component 
distributions and variations are examined regarding fiber 
angle, stiffness ratio, and length to thickness ratio of the 
beam, deeply.

2  Elasticity Analysis for FG Orthotropic 
Beam

Figure 1 shows a functionally graded monoclinic beam of 
thickness h and length L . The beam is assumed to be in a 
state of plane strain normal on the xz plane, and the width 
in the y-direction is taken as unity. While the upper surface 
of the beam is free of tractions, the bottom surface of the 
beam is subjected to a symmetrically distributed sinusoidal 
pressure:

where

(1)p(x) = p0 sin � x



5137Arabian Journal for Science and Engineering (2021) 46:5135–5155 

1 3

The differential equations of equilibrium stated by elastic-
ity theory are.

Assuming that the beam is FG monoclinic, the Hooke’s 
law can be written as follows:

where u , v and w are the x-, y- and z- components of the 
displacement vector.
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It is assumed that Poisson’s ratios are constant and the 
coefficients of the stiffness matrix are functionally graded in 
the thickness direction according to the definitions

where � is the inhomogeneity parameter and Γ is the stiffness 
ratio of the beam top surface to the bottom surface. Note 
that, primes “ 0 ” and “ h ” denote the bottom and top surfaces 
of the beam, respectively.

Cij are the transformed stiffness coefficients in the global 
axes x , y and z and given as a function of the fiber orienta-
tion angle � as follows (see Fig. 2):

(5)Cij(z) = C
0

ij
e�z, �h = Log(Γ), Γ = C

h

ij
∕C

0

ij

Fig. 1  Geometry of an FG monoclinic beam subjected to a symmetric transverse loading

Fig. 2  Variation of the material properties with the fiber angle
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where Cij  are the stiffness coefficients of the beam in the 
parallel and perpendicular directions to the fiber and they 
are functions of the elastic material properties of the beam 
as follows:

where

(6a)
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Note that the following relation exists between the Pois-
son’s ratios

By substituting Eq. (4) into Eqs. (3), the following system 
of partial differential equations in terms of u(x, z),v(x, z) , and 
w(x, z) is obtained:

The solutions are assumed in a form such that they satisfy 
the boundary conditions on the left and right end faces of the 
simply supported beam [20],

By substituting Eqs. (10) into Eqs. (9), the following ordi-
nary differential equation system can be obtained:
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w(x, z) = w̃(z) sin(𝛽x)

(11a)

C
0

11
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The solutions of Eqs. (11) can be obtained as:

where sj (j = 1, ..., 6) satisfies the following characteristic 
equation:

The expressions of the mj , kj and Lj (j = 1,… 6) are given 
in Appendix A .

After substituting Eqs. (12) into Eqs. (11), stress com-
ponents for the FG monoclinic beam can be obtained as 
follows: [53]:

where
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ṽ − C

0

33

dw̃

dz

)
= 0

(12)ũ =
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where Aj(j = 1,… , 6) are the unknowns that will be deter-
mined from the boundary conditions on the top and bottom 
surfaces of the beam.

As the bottom surface is free of tangential tractions and 
the top surface is free of all tractions, the boundary condi-
tions of the problem can be written as follows:

Using the boundary conditions given by (16), the follow-
ing algebraic equations for Aj can be obtained

After unknowns Aj computed from Eq. (17), the stresses 
and the displacements at any point of the layer can be 
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3  Euler–Bernoulli Beam Theory Solution 
of FG Monoclinic Beam

In the classical Euler–Bernoulli beam theory, it is assumed 
that the plane sections remain plane and normal to the beam 
axis after the beam deforms. Further, if it is assumed that the 
vertical displacements are independent of z , the following 
can be written

where u0(x) denotes the displacements of points on the bot-
tom surface of the beam. Assuming that the out of plane 
normal stress �y(x, z) is negligible, the constitutive equations 
can be written as follows:

From Eqs. (18) and (19) the axial stress �x(x, z) can be 
derived as follows:

where

The equivalency between the axial force N and bending 
moment M , and the axial stress �x can be written as follows:
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For the given loading N and M can be derived as follows:

Thus, the expressions of the �x can be obtained as follows:
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from Eq. (3a) as follows:
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Using Eq. (21a), (27) and (18b) the expression of the 
axial displacement u can be derived in the form:

4  Results and Discussion

The results concern the simply supported FG monoclinic 
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mechanical behavior of these structural members by pro-
viding several characteristics (stress and displacement 
components) benefiting from the abilities of the presented 
elasticity solution. Some of the results produced by the elas-
ticity solution procedure are also compared with the results 
of classical beam formulation, when available. In order to 
observe the sensitivity of the beam’s response to the govern-
ing parameters, a set of values are dedicated for the para-
metric analysis. With this intension, three different fiber 
directions � = 0◦, 45◦, 90◦ , and stiffness ratios Γ = 0.2, 1, 5 
are selected where Γ = 1 corresponds to a homogeneous 
material distribution along the thickness direction. The role 
of beam thickness is reflected by choosing a small length-to-
thickness ratio L∕h = 1 and a moderate length-to-thickness 
ratio L∕h = 10 by means of the beam theory limitations. 
In what follows, it is assumed that the bottom surface of 
the FG monoclinic beam is made of Glass/Epoxy (Gl/Ep). 
The material constants of the Gl/Ep composite are listed 
as follows: [56]: E11 = 42.7GPa , E22 = E33 = 11.7GPa , 
�12 = �13 = 0.27 , �23 = 0.55 , G12 = G13 = 8.238GPa , and 
G23 = 3.778GPa.

Firstly, in order to verify the proposed elasticity solution a 
comparison study is performed. For this purpose numerical 
results of a special case obtained from the presented elastic-
ity solution are compared with the elasticity solution given 
by Sankar [20] where isotropic FG beams are considered. 
Figure 3 reflects the axial displacement and the axial stress 
distribution of an isotropic beam of thickness L∕h = � for 
Γ = 0.1, 10 calculated by this formulation and by the study 
of Sankar [20]. It is apparent from Fig. 3 that the results of 
the presented elasticity solution are consistent with those of 
Sankar [20]. It can be stated that the validity of the proposed 

elasticity solution is supported by literature and the proposed 
solution can be safely implemented for further studies to 
produce some benchmark results.

Figure 4 presents the distribution of axial stress �x along 
the thickness of the beam at its midspan. From the figure, it 
is apparent that the axial stress is independent of material 
direction by means of classical beam theory. This behavior 
is analogous with the elasticity theory for slender beam case 
where all plots just coincide. Although material direction 
influences axial stress when the beam gets thicker, its effect 
is at low order. Nevertheless, this effect is more evident in 
the region close to the loaded surface. For both classical 
beam and elasticity solutions, the neutral axis deviates from 
the centroid of the beam’s cross-section when a nonhomoge-
neous material distribution is considered. Besides, even for 
the homogeneous material case, the elasticity solution gives 
the neutral axis at a point other than the centroid when the 
beam becomes thicker. For Γ = 0.2 the axial stress distribu-
tion approaches to an almost homogeneous state at tension 
zone where the material is less stiff. It is also apparent from 
the figure that as the parameter Γ increases, the absolute 
value of extremum compressive stress of slender and thick 
beams reduces while the maximum of tensile stress grows.

Figure 5 provides the distribution of out of plane stress 
component �y along the thickness of the beam at its midspan. 
The plane strain assumption of elasticity analysis makes it 
possible to obtain this stress component, which cannot be 
extracted from the classical beam solution. In contradistinc-
tion to �x component, �y stress is more influenced by mate-
rial orientation and this influence can be detected in both 
slender and thick beam cases. As it may be followed from 
the figure, �y is more sensitive to a change in the material 

Fig. 3  Comparison of the axial displacement and axial stress of isotropic case with literature (L∕h = �)
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direction for smaller values of orientation angle � especially 
when the beam is slender. Another important finding is that 
in all cases �y reaches its extremum values at material orien-
tation � = 45◦ . The figure also reveals that as the parameter 
Γ grows, the absolute value of extremum compressive stress 
decreases while maximum stress increases for both slender 
and thick beam cases.

Figure 6 displays the variation of stress component �z 
along the thickness at the beams’ midspan which is paral-
lel to the loading direction and cannot be extracted from 
the classical beam solution. The characteristics of the stress 
component �z are similar to axial stress �x . For example, the 
influence of material orientation is minor for thick beam 
configuration and becomes negligible as the beam gets slen-
der. The gradient of the stress �z becomes smaller at the 

Fig. 4  Axial stress �x(L∕2, y)  
distribution along the thickness 
of the FG monoclinic beam for 
various values of fiber angle θ 
and inhomogeneity for thick and 
slender beams
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regions close to the top and bottom surface of the beam. It 
must be pointed out that the stress component �z is slightly 
affected by a change in the stiffness ratio Γ.

The only nonzero shear stress component in the examined 
problem is the transverse shear stress �xz and its distribution 
along the left face of the FG monolithic beam is displayed 
in Fig. 7. Alike the cases of the stresses �x and �z , the mate-
rial orientation does not affect the shear stress �xz when the 

beam is slender. Additionally, the results of the elasticity 
and classical beam solutions overlap for the slender beam. 
On the other hand, as the beam becomes thicker, material 
orientation influences transverse shear stress considerably 
and classical beam solution diverges from elasticity solu-
tion. In the case of the slender beam, a parabolic distribution 
of the shear stress along the beam thickness is presented 
where the maximum value is obtained at the centroid when 

Fig. 5  Out of plane normal 
stress �y(L∕2, y) distribution 
along the thickness of the FG 
monoclinic beam for various 
values of fiber angle � and 
inhomogeneity for thick and 
slender beams
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Γ = 1 . However, the location of maximum shear stress slides 
towards the stiffer zone of the section for Γ ≠ 1 . In the case 
of the thick beam, for Γ = 0.2 and 1 , the maximum shear 
stress is obtained when material direction � = 0 whereas, 
for Γ = 5 , it is obtained when � = 90◦ . Additionally, as the 
stiffness ratio Γ increases, the maximum value of the shear 
stress over the cross-section reduces and the shear stress 
distribution tends to be in a more uniform pattern.

The distribution of axial displacement u along the left 
face of the FG monoclinic beam is depicted in Fig. 8. Elas-
ticity solution gives a linear distribution of axial displace-
ments for slender beam as classical beam theory does, but 
for thick beam case, the distribution becomes nonlinear. The 
axial displacement is remarkably influenced by a change 
in material orientation. One may observe from the figure 
that as the beam becomes slenderer and material direction 
approaches to � = 0◦ , classical beam theory and elasticity 

Fig. 6  Vertical normal stress 
�z(L∕2, y) distribution along the 
thickness of the FG monoclinic 
beam for various values of fiber 
angle � and inhomogeneity for 
thick and slender beams
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theory produce almost identical results, whereas for � = 90◦ 
they diverge from each other utmost. Extremum values of 
axial displacement are obtained for material orientation 
� = 90◦ for both slender and thick beams and also for all 
stiffness ratios. Axial displacements have their smallest 
values when Γ = 5 and largest values when Γ = 0.2 which 
corresponds to the highest rigidity and lowest rigidity con-
figurations, respectively.

Figure 9 reflects the variation of vertical displacement 
w(L∕2, z) through the thickness at the midspan of the FG 
monoclinic beam. The vertical displacements obtained by 
elasticity solution are almost constant when the beam is 
slender which verifies the no-strain assumption in this direc-
tion made in classical beam theory. However, as the beam 
becomes thicker, a considerable change in vertical displace-
ment along the thickness is noticed which is most apparent 
when Γ = 5 . Material orientation has a great influence on 

Fig. 7  Transverse shear stress 
�xz(0, z) distribution along the 
left face of the FG monoclinic 
beam for various values of fiber 
angle � and inhomogeneity for 
thick and slender beams
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the vertical displacement values and the level of its influence 
increases as the beam gets slenderer. Material orientation 
is also effective in the proximity of elasticity and classical 
beam solutions where the level of the proximity decreases 
with growing � . Overall, the vertical displacements grow 
with decreasing value of Γ and they take their maximum 
values when the material direction is set to � = 90◦.

In the following section, further results are provided to 
assess the variation of stress and displacement parameters 
throughout the beam domain. Distribution of the axial stress 

�x and out of plane normal stress �y , along the loaded surface 
of the FG monoclinic beam are presented in Figs. 10 and 
11, respectively. Overall, the influence of length to height 
ratio and stiffness ratio on the axial stress and out of plane 
normal stress characteristics is consistent with the findings 
from Figs. 4 and 5, where �x and �y distributions along the 
beam thickness were presented, respectively. Although the 
influence of material orientation on the axial stress �y is con-
siderable for both slender and thick beam cases, that influ-
ence becomes remarkable for �x when the beam is thick. 

Fig. 8  Axial displacement u(0, 
z) distribution along the left 
face of the FG monoclinic beam 
for various values of fiber angle 
� and inhomogeneity for thick 
and slender beams
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Transverse shear stress �xy distribution along the axis of the 
FG monoclinic beam is shown in Fig. 12. Considering the 
characteristics of all stress components, �xz is the one which 
is least affected by material orientation � and stiffness ratio 
Γ . In other respects, the classical beam solution and elastic-
ity solution are more compatible with the calculated results 
of �xz compared to the results of �x.

Finally, axial displacement u and vertical displacement 
w distribution along the loaded surface of the FG mono-
clinic beam are represented in Figs. 13 and 14, respectively 
(see Appendix B). It is apparent from figures that, results of 
classical beam theory and elasticity theory are less compat-
ible for the vertical deflection w values compared to axial 
displacement u.

Fig. 9  Vertical displacement 
w(L∕2, z) distribution along the 
thickness of the FG monoclinic 
beam at its midspan for vari-
ous values of fiber angle � and 
inhomogeneity for thick and 
slender beams
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5  Conclusions

This paper presents an analytical elasticity-based solution 
procedure for the static analysis of functionally graded mon-
oclinic beams with simply supported edge conditions. The 
transversely loaded beam is assumed to be in a plane strain 
state where out of loading plane deformations are prevented. 
An exponential variation of the monoclinic material prop-
erties is considered throughout the beam’s thickness. Fur-
thermore, an analytical solution for the functionally graded 

monoclinic beam by means of the classical Euler–Bernoulli 
theory is developed. In the numerical examples, the influ-
ence of governing parameters namely, stiffness ratio, mate-
rial orientation, beam length to height ratio on the stress 
and displacement components are comprehensively evalu-
ated. Concurrently, the results of the elasticity solution are 
compared with the results of the classical beam solution. 
Additionally, for verification purposes an isotropic case of 
the FG beam is considered and the results obtained from 
the present elasticity solution are compared with the results 

Fig. 10  Axial stress �x(x, 0) 
distribution along the loaded 
surface of the FG monoclinic 
beam for various values of fiber 
angle � and inhomogeneity for 
thick and slender beams
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of an elasticity-based solution from the literature. A high 
consistency between the results from both procedures is 
reported. The results presented by this study indicate that 
the axial stress distribution over the cross-section of the 
beam is less influenced from the material direction when 
the beam’s length to thickness ratio increases. The find-
ings indicate that the extremum value of the axial stress is 
strongly related to the inhomogeneous distribution of the 
material throughout the beam’s cross-section. The elasticity 

solution also revealed that the transverse normal stress is 
slightly affected by the inhomogeneity characteristics of 
the material. Another major finding of this study indicates 
that as the length to thickness ratio of the beam decreases 
the transverse shear stress is considerably influenced by the 
material orientation. It is believed that some useful outcomes 
are presented for a better understanding of the characteristics 
of FG monoclinic beams. Overall, this study has identified 
that for slender beams, classical beam theory captures the 

Fig. 11  Out of plane normal 
stress �y(x, 0) distribution along 
the loaded surface of FG mono-
clinic beam for various values 
of fiber angle � and inhomo-
geneity for thick and slender 
beams
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axial stress and transverse shear stress well enough. How-
ever, the findings clearly indicate that the elasticity theory 
and classical beam theory differ from each other especially 
in the determination of displacement components which is 
more apparent with the growing thickness of the beam.

Appendix A: Details of some expressions

Expressions of mj , kj and Lj appearing in Eqs. (12) and (13) 
are given below

(A1)mj = −
C
0

55
(kj + nj)� + (C

0

13
− C

0

33
kjnj)(nj� + �)

C
0

45
nj� + C

0

36
(nj� + �)

Fig. 12  Transverse shear stress 
�xz(x, h∕2) distribution along the 
length of FG monoclinic beam 
for various values of fiber angle 
� and inhomogeneity for thick 
and slender beams
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Appendix B: Figures of displacement 
components along the beam axis

See Figs. 13 and 14
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Fig. 13  Axial displacement 
u(x, 0) distribution along the 
loaded surface of the FG mono-
clinic beam for various values 
of fiber angle � and inhomo-
geneity for thick and slender 
beams
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