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Abstract
The double-pendulum (DP) phenomenon, effectuated by the fact that the payload configuration and the chain length between
the hook and the payload are usually unknown, is a typical issue in actual cranes. This phenomenon is considered in the current
study to enhance tracking accuracy and sway regulation for overhead cranes subject to perturbations and multiple frictions.
A novel smooth super-twisting algorithm hybridized with the integral sliding mode control (ISMC) is proposed to solve
the problems. The closed-loop system’s finite time stability has been examined using a strict quadratic Lyapunov function.
Compared to an existing modified super-twisting algorithm (MSTC), it has been shown that the proposed algorithm mitigates
both the sliding surface overshoot and the initial peaking of the control effort that can be encountered using the MSTC
algorithm. Furthermore, simulation experiments and error analysis show improved effectiveness of the proposed technology
against the existing MSTC and the conventional ISMC technologies. The paper contribution primarily dwells on devising a
novel structure of super-twisting algorithm that ensures the nonlinear perturbed DP overhead crane’s desired performance.

Keywords Under-actuated mechanical systems · Super-twisting control · Lyapunov · Double-pendulum cranes

1 Introduction

The overhead crane is an indispensablemanipulation system.
It offers heavy cargo transportation services in areas such as
the transportation sector, automated assembly lines, shipping
yards, automotive industries, mining sector, power plants,
and marine industries. Traditionally, the crane is controlled
manually. However, due to the human operator’s incompe-
tence in handling the crane, flexibility of the system, and the
presence of unexpected endogenous and exogenous distur-
bances, it may suffer from excessive payload sway. Thus,
crane manufacturers devote colossal efforts to build fully
automated cranes thatmeet particular safety andperformance
criteria. Besides the effects of extraneous perturbations (such
as winds, collisions), the hoisting rope’s flexibility makes
the system lightly damped. Thus, the trolley motion induces
undesirable oscillations that make fast and precise payload
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positioning time-consuming. Additionally, its operation may
even be risky, especially when the payload is of a hazardous
type. It should be understood that the crane system is highly
nonlinear, under-actuated (primarily when DP phenomenon
exists). Stabilization of under-actuated mechanical systems
is challenging since it is difficult to evaluate the complex
nonlinear behaviour of the uncontrolled dynamics with tra-
ditional analysis methods [1–3].

As control scheme developments have progressed, efforts
have been devoted to the control of under-actuated over-
head cranes in recent decades [4–31]. The similarity in these
works is that they all consider the payload’s sway as a
simple pendulum. That is, compared with the payload, the
hook’s mass is wholly ignored. Additionally, the payload
is treated as a point mass. However, in practical opera-
tions, the payload size is usually large, and the hook mass
cannot be neglected. Consequently, as the trolley acceler-
ates/decelerates, the hook oscillates around the trolley. The
payload oscillates around the hook simultaneously, produc-
ing rather complex DP swing dynamics. The appearance of
DP effects further complicates the control problem due to the
increased under-actuation degree. Furthermore, the system
dynamics are entirely different, consequently deteriorating
the performances of traditional control algorithms that are

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-021-05340-0&domain=pdf
http://orcid.org/0000-0002-2158-7619


7250 Arabian Journal for Science and Engineering (2021) 46:7249–7263

developed without considering the DP effects. Hence, con-
sidering this common scenario in real-world applications
alongside the effects of parasitic dynamics, nonzero initial
conditions, frictions, and external disturbances (such as noise
and wind), the effectiveness of the proposed feed-forward
techniques such as [7–13] may not always be reliable since
they are susceptible to perturbations. That being said, the
merits of these techniques, such as design simplicity (since
no feedback sensors are required), cannot be suppressed.
On the other hand, the effectiveness of the proposed clas-
sical feedback control algorithms, such as pole placement
[14], proportional integral derivative control [15–17], linear
quadratic regulator [18], and model predictive control [19],
designed using small-angle approximation is limited to the
closeness of this approximation to the real crane system.

A feedback strategy observed to be the most robust
in dealing with uncertainties and external disturbances for
single-pendulum cranes is the sliding mode control (SMC)
[20–36]. TheSMC is a variable structure control systemchar-
acterized by a discontinuous control structure that switches
as the system crosses a specific manifold in the state space. It
drives the system trajectory to reach and subsequently slide
along themanifold alongwhich the system is entirely insensi-
tive to the so-called matched perturbations. However, during
this transient reaching phase, the tracking error is difficult
to control since the sliding mode is yet to be reached, and
the crane may be sensitive to perturbations. One would ide-
ally like to shorten the reaching duration or even eliminate it.
One easy way to shorten the reaching duration is to employ
more considerable control gains. Using higher gains could
increase robustness when one is dealing with large pertur-
bations. However, using higher gains may result in extreme
crane sensitivity to parasitic dynamics, actuator saturation,
and higher unwanted chattering (a well-known drawback
of first-order SMC). It is worth noting that the switching
gain should be small for SMC to be practically realizable.
Nevertheless, small gains may result in SMC’s performance
degradation. Nevertheless, small gains may result in SMC’s
performance degradation. To eliminate the reaching phase for
cranes with actuator nonlinearities, Defoort et al. [31] pro-
posed a control solution based on integral SMC (ISMC). To
circumvent the unwanted chattering, second-order twisting
control was proposed by [29]. However, the use of twist-
ing algorithms increases design complexity since the sliding
variable’s time derivative is needed. To improve robustness to
perturbations, have finite time convergence, and suppress the
chattering without the need of sliding variable time deriva-
tive, the most preferred second-order SMC algorithm is the
super-twisting control (STC) [37].

Considering the highlighted DP problem in actual cranes,
it is crucial to design an effective controller that considers the
DP effects. Regarding this DP topic, fewer works on SMC
were reported in the literature compared to those for tradi-

tional single-pendulum cranes, for instance, in [38–41]. The
majority of the available control algorithms for DP cranes
are using nonlinear Lyapunov-based energy methods [42–
48] with complex control algorithms. Elsewhere, the PID
[49] and feed-forward strategies like input shaping technique
[50–52] and trajectory planning techniques (TP) [53,54] have
been proposed. Although input shaping technology or other
trajectory planning control techniques have been used to
tackle theDP problem in cranes and good results achieved, as
classic feed-forward control techniques, they primarily rely
on the crane’s linear model. Input shaping only deals with
sway suppression of the payload, neglecting the positioning
accuracy and trolley speed. Elsewhere, in TP control, the
crane trajectory planning problem is not fully solved yet, but
only provides reasonable solutions for many practical prob-
lems.More so, using these feed-forwardmethods, the control
effectiveness might deteriorate when external disturbance or
parameter variations occurred. Hence, it is needed to include
state feedback into the control strategy for better robustness.

Many studies were without simultaneous regards to the
DP effect (a common scenario in practice due to large hook
mass or irregular payload), friction, model uncertainties, and
disturbances. However, these perturbations’ effects could
induceDPeffects andpositioning error in practice, increasing
the difficulty to guarantee control effectiveness. Concerning
the highlighted research gap, these problems are simultane-
ously considered in this paper to work with a more practical
crane case. Also, an event that occurs in practice is that
when the target position is issued to the controller, the initial
control effort may be enormous to overdrive the trolley. In
this work, a novel smooth super-twisting control algorithm
(NSSTC) is proposed. We will show that using the proposed
NSSTC algorithm, the initial peaking of the control effort
and the overshoot in the sliding surface variable that may be
obtained using a recently proposed modified super-twisting
algorithms (MSTC) in [55] and [56]may be alleviated. Addi-
tionally, the proposed NSSTC technique can achieve some
superior performance than the MSTC technique. The stabil-
ity of the closed-loop system is proved using a strict quadratic
Lyapunov function. Lastly, the effectiveness of the proposed
control technique is demonstrated by numerical simulations
and tracking error analysis.

The paper’s contribution is summarized as follows.

(1) The mathematical model of a perturbed overhead crane
that considers the DP effect, actuator dynamics, and fric-
tion is presented.

(2) The paper proposes a hybrid control strategy using ISMC
and novel smooth super-twisting control (NSSTC) for
position tracking and sway regulation for DP cranes.

(3) It will be shown that the novel algorithm mitigates the
sliding surface overshoot and the initial peaking of the
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control effort, as well as improved performance com-
pared to the MSTC algorithm.

(4) To our best knowledge, it will be the first time the algo-
rithm is tested on overhead cranes subject to DP effect,
parasitic dynamics, disturbances, and various frictions.
To our best knowledge, few works have been reported in
control of these effects simultaneously.

(5) The proposed algorithm is simple, and sufficient closed-
loop stability analysis is proved, implying the proposed
algorithm’s effectiveness.

In this paper, �,�+, and �n refer to the spaces of real
numbers, positive real numbers, and real n-vectors, respec-
tively. ‖X‖ is theFrobenius norm ofX, σ is a stable manifold
in space with boundary ω, while x ∈ �, r ∈ �+,X ∈ �n,
and n is a natural number.

Paper organization is as follows. Section 2 presents the
model of the nominal and perturbed overhead crane. Section
3 is devoted to the design of the proposed NSSTC-ISMC
hybrid strategy and the stability analysis of the closed-loop
system from a mathematical perspective. In Sect. 4, con-
trol experiments, performance evaluation, and comparative
analysis of the obtained results based on mean absolute error
(MAE) andmean squared error (MSE) criteria are presented.
Section 5 concludes the paper.

2 Problem Formulation

2.1 Nominal Crane Dynamics

The schematic diagram of the system under study is shown
in Fig. 1: a three-degree-of-freedom, 2D overhead crane. The
parameters of the system are defined in Table 1. Derivation of
themodel of the overhead crane system is based on theEuler–
Lagrange method. For simplicity, the following assumptions
are considered: (1) hoisting cable is massless; (2) all joints
are well lubricated; (3) hoisting is only needed for obstacle
avoidance; and (4) information about themass of the payload,
cart position, payload and hook sways, and hoisting height
is available through sensors.

By defining independent generalized coordinates as q �[
q1 q2 q3

]T = [
x θh θp

]T
, and non-conservative forces

as Qc �
[

Q1 Q2 Q3
]T = [

Fc 0 0
]T
, using the Euler–

Lagrange method, the system’s equations of motion (EOM)
can easily be obtained in matrix compact as

Mc(q)q̈ + Cc(q, q̇)q̇ + Gc(q) = Qc; (1)

where the acceleration-related inertia matrixMc(q) ∈ �3×3,
the velocity-related Coriolis–centrifugal matrix Cc(q, q̇) ∈
�3×3, and the gravity vector Gc(q) ∈ �3 are defined as:

Fig. 1 Overhead crane schematic diagram

Table 1 Model parameters and variables

Notation Description Unit

mc Mass of travelling cart kg

mp Mass of payload kg

mh Mass of hook kg

L1 Length between cart and hook m

L2 Length between hook and payload m

θh Hook’s sway angle rad

θp Payload’s sway angle rad

θ̇h Hook’s sway angular velocity rad/s

θ̇p Payload’s sway angular velocity rad/s

x Horizontal position of cart from datum m

ẋ Linear velocity of travelling cart m/s

Fc Cart’s physical driving force N

Ff Cart’s frictional force N

g Acceleration by gravity m/s2

rp Radius of travelling cart’s pulley m

R DC motor electrical resistance �

Tm DC motor torque Nm

Km DC motor torque constant Nm/A

KE DC motor electrical constant V/rad/s

VDC DC motor input voltage V

Mc(q) =
⎡

⎣
Mchp MhpL1 cos θh mpL2 cos θp

MhpL1 cos θh MhpL2
1 mpL1L2 cos θhp

mpL2 cos θp mpL1L2 cos θhp mpL2
2

⎤

⎦ ;

Cc(q, q̇) =
⎡

⎣
0 −MchpL1θ̇h sin θh −mpL2θ̇p sin θp
0 0 mpL1L2θ̇p sin θhp
0 −mpL1L2θ̇h sin θhp 0

⎤

⎦ ;

Gc(q) = [
0 MchpgL1 sin θh mpgL2 sin θp

]T ;
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where Mchp = (mc + mh + mp), Mhp = (mh + mp) and
θhp = (θh − θp).

A form more suitable for control design is to separate
the EOM into actuated and non-actuated subsystems. Iso-
lating ẍ , θ̈h and θ̈p from (1) and using the notation X =
[

x1 x2 x3 x4 x5 x6
]T
, where x1 = x , x2 = ẋ , x3 = θh,

x4 = θ̇h, x5 = θp and x6 = θ̇p. The state-space representa-
tion for the nominal crane model is obtained as:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2;
ẋ2 = g1(X) + b1(X)Fc;
ẋ3 = x4;
ẋ4 = g2(X) + b2(X)Fc;
ẋ5 = x6;
ẋ6 = g3(X) + b3(X)Fc.

(2)

In (2), gi (X) and bi (X) are smooth nonlinear functions
of the state vector X, given by gi (X) = Gi (X)/D(X) and
bi (X) = Bi (X)/D(X). After dropping the state dependency
notations, Gi (X), Bi (X) and D(X), (i = 1, 2, 3) are, respec-
tively, defined as:

G1 =[MhpmpL2
1L2

2 − m2
pL2

1L2
2 cos

2 x35][MhpL1x24 sin x3

+ mpL2x26 sin x5] + [MhpmpL1L2
2 cos x3 − m2

pL1L2
2

× cos x5 cos x35][mpL1L2x26 sin x35 + MhpgL1 sin x3]
+ [MhpmpL2

1L2 cos x5 − mpL2
1L2 cos x3 cos x35]

× [mpgL2 sin x5 − mpL1L2x24 sin x35];
G2 =[m2

pL1L2
2 cos x5 cos x35 − MhpmpL1L2

2 cos x3][MhpL1x24

× sin x3 + mpL2x26 sin x5] + [m2
pL2

2 cos
2 x5 − Mthpmp

× L2
2][mpL1L2x26 sin x35 + MhpgL1 sin x3] + Mthpmp

× L1L2 cos x35 − MhpmpL1L2 cos x3 cos x5][mpgL2

× sin x5 − mpL1L2x24 sin x35)];
G3 =[MhpmpL2

1L2 (cos x3 cos x35 − cos x5)][MhpL1x24 sin x3

+ mpL2x26 sin x5] + [MthpmpL1L2 cos x35 − Mhpmp

× L1L2 cos x3 cos x5][mpL1L2x26 sin x35 + MhpgL1 sin x3]
+ [M2

hpL2
1 cos

2 x3 − MthpMhpL2
1][mpgL2 sin x5

− mpL1L2x24 sin x35];
B1 = MhpmpL2

1L2
2 − m2

pL2
1L2

2 cos
2 x35;

B2 = m2
pL2

1L2
2 cos x5 cos x35 − MhpmpL1L2

2 cos x3;
B3 = MhpmpL2

1L2 cos x3 cos x35 − MhpmpL2
1L2 cos x5;

D = MhpmpL2
1L2

2[Mthp − Mhp cos
2 x3] − m2

pL2
1L2

2[Mhp

× cos2 x5 + Mthp cos
2 x35 − 2Mhp cos x3 cos x5 cos x35];

where x35 = x3 − x5 = θh − θp.

2.2 Perturbed Crane Dynamics

In practice, cranes are with un-modelled dynamics, vari-
ous frictions, and external disturbances. When matched and

unmatched uncertainties are considered, the uncertain sys-
tem can be represented as:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2;
ẋ2 = {g1(X) + δg1(X)} + {b1(X) + δb1(X)} F ′

c + Δ1(X);
ẋ3 = x4;
ẋ4 = {g2(X) + δg2(X)} + {b2(X) + δb2(X)} F ′

c + Δ2(X);
ẋ5 = x6;
ẋ6 = {g3(X) + δg3(X)} + {b3(X) + δb3(X)} F ′

c + Δ3(X).

(3)

The terms δgi (X) and δbi (X) (i = 1, 2, 3) depict
matched uncertainties due to parametric variations, un-
modelled dynamics, neglected nonlinearities, and external
disturbances. The so-called matched uncertainties mean that
the perturbations δgi0(X), δbi0(X) ∈ span {bi (X)}; and enter
the same channel as the control Fc. This statement can be
explicitly expressed as:

{
δgi (X) = bi (X)δg̃i (X);
δbi (X) = bi (X)δb̃i (X).

(4)

On the other hand, the terms Δi (X) (i = 1, 2, 3) depict
unmatched uncertainties (due to friction,measurement noise,
for example) and can be expressed as:

Δi (X) = Δgi (X) + Δbi (X). (5)

Moreover, F ′
c = Fc−Ff , where Ff denotes the trolley friction

along x-axis that opposes the trolley force Fc. When (4) and
(5) apply, in (3) we have the following modifications:

ẋ2i = gi (X) + bi (X)
[
δgi (X) + δb̃i (X)F ′

c + F ′
c

]

+ [Δgi (X) + Δbi (X)] , (i = 1, 2, 3). (6)

In practice, friction model parameter identification is not
trivial. Also, traditional discontinuous friction models like
[57] may not be suitable for smooth control efforts. Since
using discontinuousmodels in the analysis is rather challeng-
ing, this study adopted a recently developed continuously
differentiable model given as [58]:

Ff = α1 (tanh (β1 ẋ) − tanh (β2 ẋ)) + α2 tanh (β3 ẋ) + α3 ẋ;
(7)

where α1, α2, α3, β1, β2, and β3 are positive constants. In (7),
the terms [tanh (β1 ẋ) − tanh (β2 ẋ)] captured Stribeck fric-
tion, the term α2 tanh (β3 ẋ) captured Coulomb friction, α3 ẋ
capturedViscous friction, whileα1 andα2 are stiction friction
coefficients. By selecting α1 = 3.9, α2 = 2.2, α3 = 0.15,
β1 = 50, β2 = 0.9, and β3 = 70, the friction uncertainties
described by the model (7) are as shown in Fig. 2.

Remark 1 In practice, the payload is always suspended below
the trolley; hence, L1 ∈ �+ and L2 ∈ �+, ∀t . Moreover,
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Fig. 2 Friction uncertainty profile

for safe operation, sway angles θh and θp satisfy the range
−π

2 < (θh, θp) < π
2 , ∀t .

The below assumptions will be invoked for the design and
stability analysis of the control system presented in Sect. 3.

Assumption 1 The drifting terms, gi (X); and the control
channel terms, bi (X); for i = 1, 2, 3, are smooth nonlinear
functions. Additionally, along Remark 1, the terms bi (X),
are invertible ∀X.

Assumption 2 The uncertainties are Lipschitz continuous
and bounded such that |δg̃i (X)| ≤ δg, |δb̃i (X)| ≤ δb, |Δgi

(X)| ≤ Δg and |Δbi (X)| ≤ Δb, (i = 1, 2, 3), where
δg ∈ �+, δb ∈ �+, Δg ∈ �+, and Δb ∈ �+ are known
upper bounds.

2.3 DC Actuator Dynamics

Since the cart’s physical force (Fc), in (2) is generated by
a DC motor, actuator dynamic is taken into account. The
following equation set relates the linear force, Fc; withmotor
torque, Tm; and motor input voltage, VDC:

{
Tm = rpFc = Km

R VDC − KmKE
R ωm;

ωm = x2
rp

,
(8)

where rp, Km, VDC, KE, and R have been earlier defined in
Table 1, while ωm is the angular velocity of the DC motor.
From (8), one can easily obtain Fc as

Fc = Km

Rrp
VDC − KmKE

Rr2p
x2. (9)

3 Control Design and Stability Analysis

3.1 Controller Design

The control objective is to design a controller that drives
the states of the system, X ∈ �6, to their respective desired
trajectories, Xd ∈ �6, in the presence of the perturbations
(4) and (5), and friction (7). The controller is required to
maintain robust stability and robust performance despite the
perturbations.

In conventional SMC, the system’s motion under sliding
mode has a dimension less than the state space. In the ISMC
developed by Utkin and Shi [59], the integral term breaks out
of this point and increases sliding mode dimension to equal
that of the state space and system trajectory emanates from
the slidingmanifold.Hence, the reaching phase is eliminated,
and robustness against matched uncertainties is guaranteed
throughout the state space.

When (6) applies, the perturbed crane model (3) can be
rewritten in compact form given by:

Ẋ = AX + B
(
F ′
c + δ

)+ G + Δ; (10)

where X ∈ �6 is the state vector, F ′
c is the perturbed control

input, δ ∈ R6 is the vector of matched uncertainties, and
Δ ∈ �6 is the vector of unmatched uncertainties. When we,
for simplicity, drop the state and time dependency notations,
the vectors δ andΔ, and the matricesA ∈ �6×6,B ∈ �6 and
G ∈ �6 are here defined as:

A =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤

⎥⎥
⎥⎥⎥⎥
⎦

; B =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

0
b1
0
b2
0
b3

⎤

⎥⎥
⎥⎥⎥⎥
⎦

; G =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

0
g1
0
g2
0
g3

⎤

⎥⎥
⎥⎥⎥⎥
⎦

;

δ =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0
δg1 + δb̃1Fc

0
δg̃2 + δb̃2Fc

0
δg̃3 + δb̃3Fc

⎤

⎥⎥⎥⎥⎥⎥
⎦

; Δ =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0
Δg1 + Δb1

0
Δg2 + Δb2

0
Δg3 + Δb3

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

Define the state tracking error as e(t) = X − Xd, where
e(t) ∈ �6 is the error between the actual states trajectories
(X ∈ �6), and the desired states trajectories (Xd ∈ �6).
Design the integral ISMC surface as:

ξ(e, t) = � [e(t) − e(0)] −
∫ t

0
�(A − BF)e(τ )dτ ; (11)

where � ∈ �6, and F ∈ �6 are design parameters that char-
acterize the sliding surface.
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Assumption 3 The input distribution matrix, B, has full rank
∀X ∈ �6.

Remark 2 The vector� is designed to ensure that the product
�B is non-singular. It is easy to achieved this since matrix B
has full rank and� is a free parameter. On the other hand,F is
designed using pole placement technique such that (A−BF)

is Hurwitz.

Due to its merits, we adopt the equivalent control (12),
where ueq, and usw (to be designed) are known as the equiv-
alent control, and the switching control, respectively.

Fc = ueq + usw. (12)

Only ueq is applied during the sliding phase to maintain the
variables sliding along the manifold ξ(e, t) = 0 and eventu-
ally converge to the origin. For the reaching phase, both ueq

and usw are applied. The time derivative of (11) is given by:

ξ̇ (e, t) = �Ẋ − �(A − BF)e(t). (13)

When (10) applies, and argument notation henceforth drop-
ped, ξ̇ (e, t) can be expressed as:

ξ̇ = �
[
AX + B

(
F ′
c + δ

)+ G + Δ
]− �AX + �BFe(t);

(14)

which by invoking (12), and simplifying; one obtains:

ξ̇ = �B
(
ueq + usw

)+ �Bδ + �G + �Δ + �BFe(t). (15)

One’s objective is to have ξ = ξ̇ = 0 in finite time (i.e.,
sliding motion along ξ = 0). Hence, considering (15) and
Assumption 1, ueq is here designed as:

ueq = −(�B)−1�G − Fe(t). (16)

Applying (16) to (15), one easily obtains ξ̇ as:

ξ̇ = �Busw + �Bδ + �Δ. (17)

Remark 3 In conventional SMC, the law usw makes the con-
trol effort to suffer from high-frequency switching (i.e., the
chattering issue). Chattering makes control effort difficult to
track by most practical actuators. One solution is boundary
layer control. However, the boundary method may result in
the degradation of tracking and robustness. Chattering can
be significantly attenuated using STC (a second-order SMC)
that ensures a continuous control effort.

3.1.1 The STC andMSTC Algorithms

The second-order STC algorithm has been defined as [37]:

{
uSTC = −λ1|ξ |1/2 sgn(ξ) + w;

ẇ = −λ3 sgn(ξ),
(18)

where λ1, and λ3 are the controller design parameters. The
signum function sgn (·) is defined as:

sgn(ξ) :=
⎧
⎨

⎩

−1, if ξ < 0;
0, if ξ = 0;
1, if ξ > 0.

(19)

The controller gains λ1 and λ3 in (18) are usually required
to be high in order to accelerate the convergence of the sling
variable ξ(e, t) to the origin. However, for chattering to have
low amplitudes, it is required that these gains have small
values. To circumvent this problem, researchers such as [55]
and [56] proposed the following modified algorithm, here
referred to as the MSTC:

{
uMSTC = −λ1|ξ |1/2 sgn(ξ) − λ2ξ + w;
ẇ = −λ3 sgn(ξ) − λ4ξ,

(20)

where λ1, λ2, λ3, and λ4 are the controller parameters, with
λ1, and λ3 as in (18).

3.1.2 The Proposed NSSTC Algorithm and Its Application

Using (20), one can achieve faster convergence of ξ to the
origin. However, when the auxiliary variable ẇ increases and
consequently w increases, a longer settling time and larger
overshoot of ξ is produced. These result in higher control
effort amplitude. To address this issue, we propose the fol-
lowing novel NSSTC algorithm:

⎧
⎨

⎩

uNSSTC = −λ1|ξ |y sgn(ξ) − λ2ξ e−γ t +w;
ẇ = −λ3|ξ |M sgn(ξ) − λ4ξ ;
y = θ−1

θ
, M = θ−2

θ
.

(21)

The parameter θ ≥ 2 in (21) is referred to as the ‘smoothness
factor,’ while λ1, λ2, λ3 and λ4 are the controller parameters,
with λ1 and λ3 as in (18) and (20), and γ is a small positive
constant used to penalize the sliding surface overshoot and
settling time. We will show that the control structure in (21)
does not suffer, severely, the problems of (20) and relatively
has some improved performance.

In summary, the objective here is to improve the classical
STC algorithm (18) so as to improve the convergence speed
of the sliding variable ξ while avoiding the earlier highlighted
problems of (20).
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Remark 4 The ‘smoothness factor,’ θ can be exploited to
improve the control effort’s smoothness. Also, the design
parameter γ can be used to penalize the sliding surface and
the control force peaks. Intelligent turning algorithms like
neural networks or fuzzy logic may be employed to obtain
these parameters’ optimal values online.

Considering (17) and the proposed NSSTC algorithm
(21), we design the switching control law, usw, as:

usw = − (�B)−1 [λ1|ξ |y sgn(ξ) + λ2ξ e
−γ t

+
∫ t

0

(
λ3|ξ |M sgn(ξ) + λ4ξ

)
dτ

]
. (22)

And by submitting the foregoing into (17), one gets ξ̇ as:

ξ̇ (e, t) = − λ1|ξ |y sgn(ξ) − λ2ξ e
−γ t

−
∫ t

0

(
λ3|ξ |M sgn(ξ) + λ4ξ

)
dτ + �Bδ + �Δ.

(23)

Set the uncertainty in (23) to be represented by (�Bδ +
�Δ) = φ. In this connection, the ξ -dynamics (23) can be
represented by the following closed-loop system.

{
ż1 = −λ1|z1|y sgn(z1) − λ2z1 e−γ t +z2 + φ;
ż2 = −λ3|z1|M sgn(z1) − λ4z1,

(24)

where [ξ w]T � [z1 z2]T = z.
To simplify the subsequent analysis, we let

|φ| ≤ �1 + �2||h||, (25)

where �1 ∈ �+, �2 ∈ �+, �1 	= 0, and h as in (29), where
�2 is sufficiently small.

Remark 5 It may have been noticed that the lumped uncer-
tainty, φ, in (24) does not vanish at the origin since �1 	= 0
in (25). As a result, the trajectories will not converge to the
origin but will be ultimately bounded [60].

To this length, the control objective has been narrowed to
steering to zero the sliding variable ξ and its time derivative
ξ̇ (or equivalently, dynamics (24)) in finite time with per-
turbations satisfying (24). Hence, the design of the NSSTC
controller is formulated in the following theorem.

Theorem 1 Consider system (24)with perturbation term sat-
isfying (25) and controller parameters λ1, λ2, λ3, λ4, γ , and
y designed in a way that matrix AL is Hurwitz, then the tra-
jectories of the system are globally ultimately bounded by:

b =
√

λmax(P)

λmin(P)

2�1ε

(1 − τ)
[
λmin (Q) − 2�2ε

] , (26)

for �1 ∈ �+, �2 ≤ λmin (Q) /2ε with a positive definite (PD)
symmetric matrixP, and τ ∈ (0, 1). Also, the trajectories will
enter the manifold σω = {

z ∈ �2 | V (t, z) ≤ λmax(P)ω2
}

containing the origin in a time less than Tr , given by:

Tr = θ
λ
y
max(P)

τ (λmin (Q) − 2�2ε)

(
V

1
θ

0 − λ
1
θ
max(P)ω

2
θ

)
, (27)

where

ω � 2�1ε

(1 − τ) (λmin (Q) − 2�2ε)
.

The proof of Theorem 1 is presented in Sect. 3.2.

3.2 Stability Analysis

At this juncture, the proof for Theorem 1 is presented.
Like in Moreno’s work [55], we examine a PD and radially
unbounded Lyapunov function candidate given by:

V (t, z) = hTPh. (28)

For the system to be globally stable, V̇ (t, z) needs to be
ND [61]. In (28), h ∈ �2 is a new state vector introduced
representing system (24), which is defined as:

h = [h1 h2]T = [|z1|y sign (z1) z2
]T

, (29)

whileP ∈ �2×2 is a PD symmetricmatrix, and is the solution
to the algebraic Lyapunov equation given by:

AT
LP + PAL = −Q. (30)

Since the matrix AL is Hurwitz, a PD matrix Q exists such
that the foregoing is satisfied.

The time derivative of (29) is given by:

ḣ =
[

∂

∂t
|z1|y sign (z1)

∂

∂t
z2

]T
=
[
y|z1|y−1 ż1 ż2

]T

=
[
y |z1|y−1 (−λ1|z1|y sgn(z1) − λ2z1 e−γ t +z2 + φ

)

−λ3|z1|M sgn(z1) − λ4z1

]

= 1

|z1| 1θ
[
y
(−λ1|z1|y sgn(z1) − λ2z1 e−γ t +z2 + φ

)

−λ3|z1|y sgn(z1) − λ4 |z1|1/θ z1

]

= 1

|z1| 1θ

{[
−y(λ1 + λ2

|z1|
1
θ

eγ t ) y

−λ3 − λ4 |z1| 2θ 0

][
h1

h2

]
+
[
yφ
0

]}

= |z1|− 1
θ (ALh + �) , (31)

where � = [
yφ 0

]T. Hence, the transpose of (31) can be
expressed as:

ḣT = |z1|− 1
θ

(
hTAT

L + �T
)

. (32)
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The total time derivative of (28) is given by:

V̇ (t, z) = ḣTPh + hTPḣ. (33)

Invoking (31) and (32), the foregoing can be expressed as:

V̇ (t, z) = |z1|− 1
θ

[
hTAT

LPh + hTPALh + 2�TPh
]
, (34)

where the fact that �TPh = hTP� has been applied. The
term �TPh can further be simplified as follows:

�TPh = [
yφ 0

] [ P11 P12

P12 P22

] [ |z1|y sign (z1)
z2

]

= yφhT
[

P11

P12

]
. (35)

Hence, considering (30) and (35) one can represent (34) as:

V̇ (t, z) = − |z1|− 1
θ

[
hTQh − 2φhTε

]
, (36)

where ε = [yP11 yP12]T.
One can easily show that the candidate Lyapunov function

(28) can be both sides bounded as follows:

λmin(P)‖h‖2 ≤ V (t, z) ≤ λmax(P)‖h‖2, (37)

where λmin and λmax are, respectively, the smallest and the
largest eigenvalues of the matrix P and ‖h‖ is the Frobenius
norm of h. From (37), the below inequalities also hold.

⎧
⎪⎪⎨

⎪⎪⎩

‖h‖2 ≥ V (t, z)

λmax(P)
;

‖h‖2 ≤ V (t, z)

λmin(P)
.

(38)

Similarly, it can easily be shown that the following inequality
set holds for V̇ (t, z).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1

|z1| 1θ
λmax(Q)‖h‖2 ≤ V̇ (t, z) ≤ − 1

|z1| 1θ
λmin(Q)‖h‖2;

‖h‖2 ≥ −V̇ (t, z)

|z1|− 1
θ λmax(Q)

;

‖h‖2 ≤ −V̇ (t, z)

|z1|− 1
θ λmin(Q)

.

(39)

Along (25), it is easy to show that (36) is given by:

V̇ (t, z) ≤ − |z1|− 1
θ

[
hTQh − 2 (�1 + �2‖h‖) ‖h‖ε

]
, (40)

which along inequality (39) and using the fact that |z1| 1θ ≤
‖h‖ and Q is PD and symmetric, can be expressed as:

Fig. 3 Control system configuration

V̇ (t, z) ≤ − |z1|− 1
θ
[
λmin(Q)‖h‖ − 2 (�1 + �2‖h‖) ‖h‖ε]

≤ − |z1|− 1
θ ‖h‖ [(λmin(Q) − 2�2ε) ‖h‖ − 2�1ε

]
.

(41)

If we set ‖h‖ = τ‖h‖ + (1 − τ)‖h‖ (which is true ∀τ ∈
(0, 1)), then for small enough �2 such that the following
holds:

�2 ≤ λmin(Q)

2ε
; (42)

then for every �1 > 0, and τ ∈ (0, 1), it can be obtained,
from (41), that

V̇ (t, z) ≤ −
√

VM(·)
λMmax(P)

[
βτ‖h‖ + β(1 − τ)‖h‖ − 2�1ε

]
,

(43)

where β = (λmin(Q) − 2�2ε).

Remark 6 In the preceding equation, whether or not V̇ (t, z)
is negative definite (ND) depends on whether or not the fol-
lowing two conditions are satisfied:

C1. λmin (Q) ≥ 2�2ε;
C2. β(1 − τ)‖h‖ ≥ 2�1ε.

Along (38), condition C2 can be equivalently expressed as:

‖h‖ ≥ 2�1ε

β(1 − τ)
≥
√

V (·)
λmax(P)

= ω, (44)
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Table 2 Simulation model
parameters

Parameters

mc = 50 kg mh = 12 kg mp = 4.5 kg L1 = 3m

L2 = 0.3m g = 9.8m/s2 α1 = 3.9 α2 = 2.2

Km = 0.24Nm/A β1 = 50 β2 = 0.9 β3 = 70

KE = 0.24V/rad/s rp = 0.07m/s α3 = 0.15 R = 3.35�

where ω denotes the boundary of the manifold σ . Hence,
one gets the systems stable manifold as V (·) ≤ λmax(P)ω2,
describing the interior of the manifold. When condition (44)
applies, along the boundary of σ , (43) reduces to:

V̇ (t, z) ≤ −
√

VM(·)
λMmax(P)

βτ

√
V (·)

λmax(P)
,∀‖h‖ ≥ ω

≤ −τ (λmin (Q) − 2�2ε)
V y(t, h)

λ
y
max(P)

,∀‖h‖ ≥ ω.

(45)

Ultimately, any trajectory starting from initial state z0 will
converge to the set σ = z ∈ �2|V (t, z) ≤ λmaxω

2 in finite
time, Tr, which by using Bihari’s inequality [60] and the
separation principle can be computed as:

Tr = θ
λ
y
max(P)

τ (λmin(Q) − 2�2ε)

(
V

1
θ

0 − λ
1
θ
max(P)ω

2
θ

)
, (46)

and remain in σ such that ‖z‖ ≤ ω for all future times t ≥
t0 + Tr with b as in (26).

Remark 7 Since �1 	= 0, trajectories will not converge to
the origin, but may converge to the set σ which may con-
tain the origin, and will be globally ultimately bounded. This
means that ∃b > 0 and for every a > 0, ∃T = T (a, b) ≥
0 | ‖z(t0)‖ ≤ a → ‖z‖ ≤ b, ∀t ≥ t0 + Tr.

The following assumption is considered for the purpose
of the control applications in Sect. 4.

Assumption 4 For the purpose of simulation, the matched
uncertainties due to un-modelled dynamics, parametric vari-
ations, and external disturbance that enter the system through
the same channel as the control force, Fc, are taken as
δg̃i (X) + δb̃i (X) = 2 sin 3t + cos t + 2. Additionally, the
unmatched uncertainties are taken asΔgi (X)+Δbi (X), (i =
1, 2, 3), representing some random fluctuations in the range
[−0.1 0.1].

Figure 3 shows the configuration of the overall system
with the proposed NSSTC-ISMC strategy. The error vector,
e(t) ∈ �6, is obtained as the discrepancy between the actual
states,X(t) ∈ �6, and their corresponding set points,Xd(t) ∈
�6. This error vector is taken as an input by the equivalent
control and sliding variable blocks. As it can also be seen,

Table 3 Control design parameters

Strategy Design parameters

MSTC-ISMC F = [
105 190 − 2000 − 815 55 60

]

� = [
950 480 2150 2250 − 1950 − 1200

]

λ1 = 30 λ2 = 30 λ3 = 20 λ4 = 5

NSSTC-ISMC F = [
105 190 − 2000 − 815 55 60

]

� = [
950 480 2150 2250 − 1950 − 1200

]

λ1 = λ2 = 30 λ3 = 20 λ4 = 5 γ = −50

the sliding variable ξ(t) is taken as an input by the switching
control block to generate the usw(t). As the sum of usw(t)
and ueq(t), the input to the trolley actuator is then obtained.
The actuator physical force Fc(t) minus the frictional force
Ff(t) is used to drive the perturbed system (3).

4 Results and Discussion

Below this section, the effectiveness of the proposedNSSTC-
ISMC algorithm will be demonstrated. The NSSTC-ISMC
is compared with those obtained using the existing MSTC
algorithm in the literature. For fair comparative analysis, the
ISMC method is used to design the sliding surface for the
existing MSTC algorithm (forming a hybrid MSTC-ISMC
control scheme). Simulations experiments were conducted
within theMATLABsoftware using theRunge–Kutta numer-
ical solver with an iteration step size of 0.001. It is to be noted
that Assumption 4 applies. Crane and control parameters are
accepted as in Tables 2 and 3, respectively.

The performances of the NSSTC-ISMC is also compared
against those of MSTC-ISMC and the classical ISMC algo-
rithms. The ISMC is designed based on the exponential
reaching law given by:

Fc(ISMC) = ueq − �B[kξ(e, t) + η sgn{ξ(e, t)}], (47)

where kξ(e, t) is the exponential term and k, η > 0. For the
purpose of comparison, ueq in (47) is the same as in (16).

Figure 4 shows the responses obtained when the pro-
posed NSSTC-ISMC control strategy’s efficacy is compared
against those of theMSTC-ISMCand the conventional ISMC
methods. Zero initial conditions for the crane states were
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Fig. 4 Tracking responses, a
cart position, b cart velocity, c
hook sway, d hook sway
velocity, e load sway, f load
sway velocity
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assumed. Moreover, for comparison, the same model param-
eters and sliding manifold parameters are used.

One can see from the responses that the cart tracked the
desired 1 m position in about 4 s, and the controllers effec-
tively suppress both hook and payload sways. Additionally,
as respectively shown in Fig. 4c and e, the performance of
the proposed NSSTC-ISMC is slightly more effective with
regards to hook sway and payload sway suppression as com-
pared to the other two controllers.

In Fig. 5a and b, the control efforts and the sliding surfaces
for the three controllers are compared, respectively. It may
have been noted that the control effort for the conventional
ISMC chatters, while no chattering was observed for the case
using the MSTC-ISMC. However, a much greater control
effort is required, and the sliding variable overshoots. Simi-
lar to the MSTC-ISMC, the proposed NSSTC-ISMC has no
chattering. However, a relatively much lower control effort
is required, and the sliding variable overshoot is suppressed.
The profiles for thematched and unmatched uncertainties are
depicted in Fig. 5c and d, respectively. It is to be noted that,
until otherwise expressed, below this section, all horizontal
axes represent time in seconds.

To further investigate the claims of improvements in the
control effort and the sliding variable achieved using the
proposed NSSTC-ISMC algorithm, like in the works of [32–
36,62] we employ the MAE and the MSE criteria computed
using (48) and (49), respectively.

MAE =
∑N

i=1 |S(τ )|
N

; (48)

MSE =
∑N

i=1 S(τ )2

N
, (49)

where S(τ ) is signal sampled at the τ th instance, while N
represents total samples count. TheMAEandMSEvalues for
the control application in Figs. 4 and 5 are depicted in Fig. 6.
One can argue that theMAEandMSE analysis results further
support the claims in the preceding paragraph.

Zero initial conditions were taken for the previous control
application. Nevertheless, in real cranes, this is not always
the scenario. Control application was repeated to test the
effectiveness of the three control strategies for nonzero initial

conditions given by X0 = [
1.5 0.4 0.1 0 0.1 0.1

]T
, i.e., the

driving cart was assumed to be at an initial position of 1.5 m
from the datum point. The payload and the hook angles were
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Fig. 5 Zero initial conditions
tracking responses, a control
effort, b sliding variable, c
matched uncertainty, d
unmatched uncertainty
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Fig. 6 Error analysis for the
ISMC, MSTC-ISMC and
NSSTC-ISMC controllers from
zero initial states, a MSE, b
MAE
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at an angle of about 60 from the vertical reference of 00 when
the command to track a 1 m position was applied. Figure 7
shows the evolution of the state trajectories from nonzero
initial conditions. From the figure, one can see that the cart
tracked the desired 1 m position in about 7 s, and the con-
trollers effectively suppress both hook and payload sways.
Like in the previous control application, the performance of
the proposed NSSTC-ISMC is slightly more effective when
compared to the other two controllers. It is worth pointing
out that the driving cart reached the desired position in about
7 s, slower than the case where zero initial conditions are
assumed (see Fig. 4). This is because, since the payload and
hook sways are non-actuated state variables, the controllers
used thedriving cart’smotion (i.e., the actuated state variable)
to regulate or suppress the initial and residual sways indi-
rectly. The reader may refer to the cart’s velocity (Fig. 7b)
to see how the cart’s direction of travel changed while the
driving cart tracked the desired trajectory, and at the same
time, attenuated the pendulum-like motions of the payload
and hook.

In Fig. 8a and b, the control efforts and the sliding sur-
faces for the three controllers are compared. It may have
been noticed that the control effort for the conventional ISMC

chatters, while no chattering is observed for the case using
theMSTC-ISMC, but a greater control effort is required, and
the sliding variable overshoots. Similar to the MSTC-ISMC,
the proposed NSSTC-ISMC has no chattering; however, a
relatively lesser control effort is required, and the sliding
variable overshoot is suppressed.Theprofiles for thematched
and unmatched uncertainties are depicted in Fig. 8c and d,
respectively.

Like in the previous control application, the MAE and
MSE values for the control application in Figs. 7 and 8 (for
nonzero initial conditions) are depicted in Fig. 9. Based on
the MAE and MSE results, one can argue that the proposed
NSSTC-ISMC algorithm’s effectiveness is better compared
to the two other controllers.

Remark 8 The chattering problem affects the fatigue life of
actuators. Besides that, driving a system with such a high-
frequency signal may excite the system’s parasitic dynamics
(which are of high frequencies). Nevertheless, one may
employ boundary layer control to circumvent this problem
when using conventional first-order SMC algorithms. How-
ever, studies have shown that using boundary layer control
may reduce control resilience. This robustness reduction is
attributed to the fact that the sliding variable is no longer con-
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Fig. 7 Tracking responses for
nonzero initial states, a cart
position, b cart velocity, c hook
sway, d hook velocity, e load
sway, f load velocity
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Fig. 8 Nonzero initial
conditions tracking responses, a
control effort, b sliding variable,
c matched uncertainty, d
unmatched uncertainty
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Fig. 9 Error analysis for ISMC,
MSTC-ISMC, and
NSSTC-ISMC controllers from
nonzero initial states, a MSE, b
MAE
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fined to the sliding manifold but the neighbourhood around
themanifold. Hence, control strategies (such as second-order
STC) that attenuate chatteringwithout compromising robust-
ness are always preferred in practice.

5 Conclusions and FutureWorks

In overhead cranes, the presence of the double-pendulum
effect, disturbances, and frictions make control more chal-
lenging. The paper devised a novel structure of a super-
twisting algorithm that ensured the desired performance
of a sixth-order nonlinear perturbed overhead crane. A
hybrid control strategy formed by blending NSSTC and
ISMC is proposed. The proposed method’s efficacy has been
investigated compared to those of a hybrid MSTC-ISMC
and conventional ISMC control algorithms. The proposed
NSSTC algorithm has been found to mitigate the sliding
surface overshoot and alleviate the initial peak of the trol-
ley control effort that can be encountered using the existing
MSTC algorithm. By using a strict quadratic Lyapunov func-
tion, the closed-loop system has been shown to be finite-time
stable.

In future work, the assumption that crane states are avail-
able for full-state feedback design may be addressed using a
state observer. In thisway, the efficacyof the proposed control
method could be investigated on an industrial crane. Addi-
tionally, the ‘smoothness factor,’ θ and the design parameter
γ may be optimally obtained by exploiting intelligent turning
algorithms like neural networks or fuzzy logic.
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