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Abstract
Economic emission dispatch with valve-point effect in power systems is a complex multimodal, nonconvex and constrained 
multi-objective optimization problem. To solve this problem, a hybrid multi-objective algorithm with effective constraint 
handling method based on Harris hawks optimization and differential evolution is proposed: (1) the concept of Pareto domi-
nation is integrated into Harris hawks optimization to deal with economic emission dispatch problem with two conflicting 
objectives; (2) the optimization mechanism of Harris hawks optimization is modified to enhance its optimization capabilities; 
(3) a non-dominated sorting method based on new crowding distance, which can obtain Pareto optimal front with excel-
lent uniformity, is used to maintain the external archive and to select the guiders; (4) aiming at the constraints of economic 
emission dispatch problem, a feasible solution dominated constraint processing method is adopted to obtain feasible solu-
tions; (5) moreover, to enhance the convergence performance of the algorithm, a differential evolution is used to evolve the 
individuals in the archive. Experimental results on the IEEE 30-bus 6-unit test system demonstrate that the quality of the 
solutions obtained by the suggested approach is better than that of several existing algorithms.

Keywords  Hybrid multi-objective algorithm · Economic emission dispatch · Valve-point effect · Constraints handling · 
Multi-objective optimization

1  Introduction

Most thermal power plants in the world use coal as their 
main fuel to generate electricity. How to reasonably allo-
cate the active power outputs of the thermal generator set 
to minimize the fuel cost, while satisfying various equality 
and inequality constraints, that is, economic dispatch (ED), 
has been an important research topic [1, 2]. However, with 
the enhancement of people’s awareness of environmental 
protection, reducing the emission of pollutants has become 
another important objective of thermal power plants. Eco-
nomic emission dispatch (EED) that considers both fuel cost 
objective and pollution emission objective has gradually 
attracted widespread attention [3].

There are two aspects to be considered when solving EED 
problems. One is to establish a reasonable model of the EED 

problem, and the other is to find a suitable method to solve 
the established model.

In terms of the EED problem model, Dhanalakshmi et al. 
[4] used a quadratic function to establish the function model 
of the fuel cost. However, the influence of the valve point 
effect is not considered in the fuel cost function. Zhao et al. 
[3] and Zhang et al. [5] established the fuel cost function 
model with valve point effect, but the valve point effect is 
ignored in the simulation experiments of the IEEE 30-node 
6-unit test system.

In terms of solving the EED problem model, many tech-
niques have been suggested at present. The numerical opti-
mization methods were initially developed. Chen and Chen 
[6] presented an alternative Jacobian matrix-based direct 
Newton–Raphson method for solving the EED problem 
with line flow constraints. Farag et al. [7] proposed a linear 
programming optimization algorithm by adding the envi-
ronmental constraints in the economic dispatch problem to 
obtain an optimal dispatch scheme. El-Keib et al. [8] sug-
gested a Lagrangian-relaxation-based method to deal with 
environmentally constrained economic dispatch. However, 
these conventional numerical optimization methods are 
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sensitive to their initial solutions and easy to fall into local 
optimum, they are difficult to obtain satisfactory results [9].

Recently, heuristic optimization methods have been more 
and more used to solve EED problems, which can make up 
for the shortcomings of conventional numerical optimization 
methods [10]. The methods of solving the multi-objective 
EED problem by the heuristic algorithms are mainly divided 
into two categories: The methods based on single objective 
optimization algorithms and the methods based on multi-
objective optimization algorithms.

The first solution method solves EED problems by a 
single-objective optimization algorithm, which is not effi-
cient and has some shortcomings. Srivastava and Das [11] 
adopted the price penalty factor to convert the emission of 
pollution gas into cost, then solved the EED problem by a 
new Kho–Kho optimization algorithm, which failed to give 
the trade-off relations between objectives and failed to form 
the Pareto optimal front. Singh et al. [12] utilized the lin-
ear weighting method to transform the multi-objective EED 
problem into a single objective problem, then introduced 
an adaptive predator–prey optimization algorithm to find 
the Pareto optimal front of the EED problem. However, this 
method requires multiple runs of a single-objective algo-
rithm to get the Pareto optimal front, and it is difficult to 
select appropriate weight coefficients.

The second method uses the multi-objective optimization 
algorithm to optimize the two objectives of the EED prob-
lem simultaneously, and a set of Pareto optimal solutions 
can be obtained in one operation, which is very efficient and 
overcomes the shortcomings of the first solution method. 
Modiri-Delshad and Rahim [13] applied the multi-objective 
backtracking search algorithm with one control parameter 
to optimize the EED problem as a multi-objective problem. 
Liang et al. [14] developed a multi-objective hybrid bat algo-
rithm based on the non-dominated sorting method to deal 
with the EED problem with power flow constraints. Some 
other multi-objective optimization algorithms such as multi-
objective ant colony optimization (MMACO_R) [15], Non-
dominated Sorting Genetic Algorithm-II (NSGA-II) [16] 
and multi-objective bacterial algorithm (MBFO-cl) [17] are 
also used to solve the EED problems. Although the above 
algorithms can achieve certain results in the EED problem, 
the evaluation of the quality of the solutions obtained by 
the multi-objective algorithms and the consideration of the 
distribution uniformity and convergence of Pareto optimal 
front are slightly inadequate. In addition, for the EED prob-
lem, finding a better multi-objective optimization algorithm 
to further improve the scheduling performance of the EED 
problem will be a continuous hot spot in the field of power 
system optimization scheduling.

This paper presents a hybrid multi-objective optimization 
approach (MHHO-DE) based on Harris hawks optimization 
(HHO) and differential evolution (DE) to solve the highly 

constrained EED problem considering the valve point effect. 
The algorithm modifies and extends HHO appropriately, and 
combines with the DE algorithm to achieve better perfor-
mance. A feasible solution dominated constraint processing 
method is integrated into the algorithm to deal with the con-
straints of the EED problem. In addition, a modified crowd-
ing distance is proposed to improve the uniformity of Pareto 
optimal front distribution. The simulation experiments are 
carried out on the IEEE 30-bus 6-unit test system and com-
pared with several existing algorithms. Three different per-
formance metrics including the Spacing Metric (SP), the 
Normalized Distance (ND), and the Two Set Coverage (SC) 
are used to evaluate the quality of the solutions obtained 
by the multi-objective algorithms. The effectiveness of the 
proposed algorithm for solving the EED problem is proved 
by comparison with several other algorithms.

The rest of this paper is organized as follows: Sect. 2 
describes the EED problem model with valve-point effect 
and optimization objectives. Section 3 briefly reviews the 
principles of Harris hawks optimization. Section 4 intro-
duces the proposed MHHO-DE. Section 5 analyzes the per-
formance of the MHHO-DE. Section 6 is the conclusion of 
this paper.

2 � Problem Formulation of the EED 
and Optimization Objectives

The economic emission dispatch (EED) problem requires 
that the fuel cost and the pollution emission are minimized 
simultaneously on the premise of satisfying the constraints. 
In this section, the mathematical model of the EED problem 
is first established. Then optimization objectives and objec-
tive functions of the EED problem are described. Finally, 
various constraints are taken into consideration.

2.1 � Mathematical Model

The EED problem is a constrained multi-objective optimi-
zation problem with two competing objectives and several 
constraints. Its mathematical model can be described as: find 
a vector x∗ =

[
P∗
1
,P∗

2
,… ,P∗

N

]
 such that

where x =
[
P1,P2,… ,PN

]
 (N is the number of the genera-

tors in the power system), and Pi is the real power output of 
the ith generator. f1(x) and f2(x) are two objective functions 
related to x. 

∑N

i=1
Pi − PD − PL = 0 is the power balance 

(1)

⎧⎪⎪⎨⎪⎪⎩

f (x∗) = min
�
f1(x), f2(x)

�
s.t.
N∑
i=1

Pi − PD − PL = 0

Pmin
i

≤ Pi ≤ Pmax
i

, i = 1, 2,… ,N
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constraint [18], where PD is the power load demand and PL 
is the total power loss. Pmin

i
 and Pmax

i
 are the minimum 

and maximum bounds of the real output power of the ith 
generator.

2.2 � Optimization Objectives

The EED problem is a bi-objective optimization problem, 
and its two objectives are in conflict with each other. The 
dominance relationship needs to be used to judge the rela-
tionship between two feasible solutions. Here, feasible solu-
tions refer to solutions that satisfy all the constraints of the 
EED problem. Suppose that x∗

1
 and x∗

2
 are two feasible solu-

tions. For the minimization problem, x∗
1
 is said to dominate 

x∗
2
 and the symbolic representation is f

(
x∗
1

)
≺ f

(
x∗
2

)
 , which 

meets one of the following conditions:

In the feasible domain, if no other solution dominates 
x∗
1
, x∗

1
 is called the Pareto optimal solution of the problem, 

also known as the non-dominated solution. All Pareto 
optimal solutions constitute the optimal solution set. The 
surface formed by the objective function corresponding to 
the optimal solution set is called the Pareto optimal front. 
Solving the EED problem is to find a set of Pareto optimal 
solutions and make their corresponding objective function 
values widely and evenly distributed on Pareto optimal front, 
and the obtained Pareto optimal front has good convergence.

2.3 � Objective Functions

2.3.1 � Fuel Cost Function

Typically, the fuel cost of each generator unit is represented 
by a quadratic function. The total fuel cost f1(x) (dollars per 
hour) is expressed as [19]:

where ai, bi and ci are fuel cost coefficients of the ith 
generator.

However, in the actual power generation process, when 
the steam turbine is suddenly turned on, a ripple curve will 
be added to the generator’s fuel cost curve to produce a valve 
point effect, which is shown in Fig. 1 [20]. The fuel cost of 
a generator unit is a unimodal function when the valve point 
effect is ignored. Adding the valve point effect into the fuel 
cost function can make the model more realistic, but the fuel 

(2)

⎧⎪⎨⎪⎩

f1
�
x∗
1

�
≤ f1

�
x∗
2

�
and f2

�
x∗
1

�
< f2

�
x∗
2

�
or

f1
�
x∗
1

�
< f1

�
x∗
2

�
and f2

�
x∗
1

�
≤ f2

�
x∗
2

�

(3)f1(x) =

N∑
i=1

(
ai + biPi + ciP

2
i

)

cost function becomes multimodal and nonconvex. The total 
fuel cost with valve point effect can be expressed as [21]:

Here ei and gi are the valve-point effect coefficients of the 
ith generator.

2.3.2 � Pollution Emission Function

The total pollution emission f2(x) (tons per hour) of ther-
mal power units includes carbon oxide, nitrogen oxide, etc., 
which can be expressed as the sum of quadratic function and 
exponential function:

where αi, βi, γi, ζi and i are the emission coefficients of the 
ith generator.

2.4 � Constraints

In this paper, an equality constraint of power balance and 
several inequality constraints of power output limits are 
considered.

2.4.1 � Equality Constraint

The total real power must include the power load demand 
PD and the total power lost PL in the transmission network, 
which can be:

(4)

f1(x) =

N∑
i=1

(
ai + biPi + ciP

2
i

)
+
||||ei sin

(
gi

(
Pmin
i

− Pi

))||||

(5)f2(x) =

N∑
i=1

[
10−2

(
�i + �iPi + �iP

2
i

)
+ �i exp

(
�iPi

)]

(6)
N∑
i=1

Pi = PD + PL

Fig. 1   Illustration of the valve point effect
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Here, PL is usually expressed by Kron’s loss formula [22] 
as:

where Bij, Boi and B00 are the transmission line power loss 
coefficients.

2.4.2 � Inequality Constraints

The generation capacity of each generator is limited by its 
minimum and maximum bounds [23] during operation.

3 � Standard Harris Hawks Optimization

The standard Harris hawks optimization is a heuristic opti-
mization technique based on the hunting behavior of Harris 
hawks proposed by Heidari et al. [24], which is used to solve 
the single objective unconstrained optimization problems. In 
the Harris hawks optimization, an eagle swarm is composed 
of many hawks, each eagle represents a possible solution, 
and the rabbit represents the optimal solution. Each eagle 
moves in the multi-dimensional search space, and the eagle 
group adopts different arrest strategies according to the 
energy change of the rabbit to achieve the purpose of catch-
ing the rabbit. The process of catching a rabbit by the hawks 
consists of the exploration phase and exploitation phase.

3.1 � Exploration Phase

At this stage, the Harris hawks randomly inhabit some 
locations and wait for a rabbit according to two strategies 
expressed by the following equation:

where X(t) is the location of hawks in the current itera-
tion t X(t + 1) is the location of hawks in the next iteration, 
Xrabbit(t) is the location of rabbit, Xm(t) is the average loca-
tion of population in the current iteration t, Xrand. is a ran-
domly selected hawk from the current hawks, UB and LB 
is the maximum and minimum bound of variables, r1, r2, r3, 
r4 and q are real numbers between 0 and 1. Xm(t) is attained 
using the following equation:

(7)PL =

N∑
i=1

N∑
j=1

PiBijPj +

N∑
i=1

B0iPi + B00

(8)Pmin
i

≤ Pi ≤ Pmax
i

, i = 1, 2,… ,N

(9)

X(t + 1) =

{
Xrand(t) − r1

||Xrand(t) − 2r2X(t)
|| q ≥ 0.5

Xrabbit(t) − Xm(t) − r3
(
LB + r4(UB − LB)

)
q < 0.5

(10)Xm(t) =
1

n

n∑
i=1

Xi(t)

where Xi(t) is the position of i-th hawk in current iteration t 
and n indicates the number of all hawk the population.

3.2 � Transition from Exploration to Exploitation

The HHO transforms between exploration and exploitation 
through the energy change of the rabbit. The energy E of the 
rabbit can be modeled as:

where T denotes the maximum number of iterations, and 
E0 indicates the initial energy of the rabbit. E0 changes ran-
domly within (− 1, 1) at each iteration. Exploration occurs 
when |E| ≥ 1, while exploitation occurs according to Sect. 3.3 
when |E| < 1.

3.3 � Exploitation Phase

r, which represents the rabbit escape’s chance, is a random 
number between 0 and 1. In this phase, the energy of the rab-
bit is less than 1. According to the chance of rabbit escape 
and the change of energy, there are four possible capture 
strategies.

3.3.1 � Soft Besiege

When r ≥ 0.5 and |E| ≥ 0.5, update the positions of the hawks 
according to the following equation:

where r5 is a random number between (0, 1) and 
J = 2

(
1 − r5

)
.

3.3.2 � Hard Besiege

When r ≥ 0.5 and |E| < 0.5, the current positions of the hawks 
are modeled as:

3.3.3 � Soft Besiege with Surprise Pounce

When r < 0.5 and |E| ≥ 0.5, the positions of the hawks is:

where F(·) represents the fitness function of the single-objec-
tive unconstrained optimization problem to be solved. Y and 
Z can be obtained from the following equations:

(11)E = 2E0

(
1 −

t

T

)

(12)X(t + 1) = Xrabbit(t) − X(t) − E||JXrabbit(t) − X(t)||

(13)X(t + 1) = Xrabbit(t) − E||Xrabbit(t) − X(t)||

(14)X(t + 1) =

{
Y if F(Y) < F(X(t))

Z if F(Z) < F(X(t))
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where D is the dimension of the problem to be solved, S is 
a random vector by 1 × D, u and v are vectors composed of 
random numbers based on the normal distribution N(0, 1), 
β is 1.5, Γ is a Gamma function.

3.3.4 � Hard Besiege with Surprise Pounce

When r < 0.5 and |E| < 0.5, this strategy is performed accord-
ing to the following equation:

where Y and Z can be obtained using the following new 
rules:

where Xm(t) can be obtained by Eq. (10).

4 � Hybrid MHHO‑DE with Constraints 
Handling Method

This section introduces the proposed MHHO-DE with con-
straint handling method. The main idea of MHHO-DE is to 
construct a powerful multi-objective optimizer by combin-
ing several approaches like external archive based on new 
crowding distance, modified HHO, DE, constraint handling 
method and guider selection strategy for solving the con-
strained EED problem with valve-point effect. The steps of 
the proposed algorithm MHHO-DE to solve the EED prob-
lem are given in Sect. 4.6.

4.1 � External archive Based on New Crowding 
Distance

Single-objective algorithms have only one optimal solu-
tion, while multi-objective algorithms usually have multiple 
optimal solutions (non-dominated solutions). Most multi-
objective optimization algorithms use a fixed-size external 

(15)Y = Xrabbit(t) − E||JXrabbit(t) − X(t)||

(16)

Z = Y + S × LF(D), LF(D) = 0.01 ×
u(D) × �

�v(D)� 1

�

,

� =

⎛
⎜⎜⎜⎝

� (1 + �) × sin
�

��

2

�

�

�
1+�

2

�
× � × 2 ∧

�
�−1

2

�
⎞
⎟⎟⎟⎠

1

�

(17)X(t + 1) =

{
Y if F(Y) < F(X(t))

Z if F(Z) < F(X(t))
.

(18)Y = Xrabbit(t) − E||JXrabbit(t) − Xm(t)
||

(19)Z = Y + S × LF(D)

archive to store the non-dominated solutions obtained in the 
iterative process. When the number of non-dominated solu-
tions exceeds the archive size, a certain diversity preserv-
ing strategy is used to prune the external archive. In this 
paper, a non-dominated sorting method based on crowd-
ing distance [25] is adopted to prune the external archive 
to maintain a fixed number of non-dominated solutions. In 
[25], the individuals in the merged group are sorted based 
on their dominance relationship and crowding distances. 
All non-dominated individuals are marked as rank 1, those 
solutions dominated by rank 1 are marked as rank 2, and so 
on. Then, those individuals in different ranks are classified 
based on ranks from small to large. Those individuals in the 
same rank are arranged in descending order based on their 
crowding distance. And in [25], the algorithm deletes all 
individuals that exceed the archive size at once according 
to the rank and the crowding distance. Taking Fig. 2a as an 
example, the crowding distance of individual C except the 
boundary point is calculated as

where m is the number of optimization objectives, fk(A) and 
fk(B) are the function values of individuals A and B on the 
kth objective, respectively.

However, the above formula is insufficient to evaluate 
the uniformity of individual C. As can be seen from Fig. 2b, 
when there is only one individual between individual A and 
individual B, it is obvious that individual C is more uniform 
than individual C’, although they have the same crowding 
distance. To obtain the excellent even Pareto optimal front, 
this paper presents a new formula for calculating the crowd-
ing distance. The new crowding distance of individual C can 
be defined as:

(20)CD(C) =

m∑
k=1

||fk(A) − fk(B)
||

(21)

CD(C) =

m∑
k=1

||fk(A) − fk(B)
|| +

min(|AC|, |BC|)
|AB| ×

m∑
k=1

||fk(A) − fk(B)
||

f2

f1

A

B

D

EC

f2

f1

A

B

D

EC
C’

(a) (b)

Fig. 2   Crowding distance of individual C 
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where |AC| is the Euclidean distance between individual A 
and individual C.

In addition, the one-time deletion strategy in [25] may 
cause large gaps on the Pareto optimal front. To prevent the 
occurrence of gaps of the Pareto optimal front, a dynamic 
deletion strategy [26] is introduced: each time a solution 
with the smallest crowding distance and the largest rank 
is deleted, then the crowding distances and ranks of the 
remaining non-dominated solutions are recalculated, and 
thus repeated until the archive size is reached.

4.2 � Modified Harris Hawks Optimization

In this subsection, some modifications have been made to 
HHO to improve its exploratory performance and exploita-
tive performance. In addition, the comparison of the function 
values in the standard HHO is changed to their dominance 
relationship to adapt to the multi-objective optimization 
problem.

4.2.1 � Improved Exploration Phase

The standard HHO algorithm produces a new solution 
X(t + 1) in the exploration phase with Eq. (9) in which the 
range of the new solution is limited. Replacing Eq. (9) with 
an improved exploration formula inspired by Bare Bones 
particle swarms [27] is proposed as follows:

where N(a, b) is a Gaussian sampling with expectation a 
and variance b.

4.2.2 � Improved Transition from Exploration to Exploitation

In Eq. (11) of the standard HHO, the rabbit energy E is a 
linearly decreasing function, which can control HHO from 
exploration to exploitation but is not conducive to exploita-
tion. To aid local exploitation, a modified rabbit energy E1 
used to replace E is expressed as:

where E1 simulates the escape energy of the rabbit, and it 
changes randomly between the interval (− 2, 2) at each itera-
tion. When E1 decreases from 0 to − 2, it means that the rab-
bit’s escape strength is weakened exponentially, and when E1 
increases from 0 to 2, the rabbit’s escape strength increases 
exponentially. E1 shows a decreasing trend as the iteration 
progresses, and its changes are shown in Fig. 3.

(22)

X(t + 1) =

⎧⎪⎨⎪⎩

N
�
Xrand(t),

��Xrand(t) − 2r2X(t)
��2
�

q ≥ 0.5

N
�
Xrabbit(t) − Xm(t),

�
LB + r4(UB − LB)

�2�
q < 0.5

(23)E1 = 2E0 exp

[
−

(
2.4t

T

)2
]

4.2.3 � Improved Exploitation Phase

The improved exploitation phase is: (1) The switch between 
different exploitation behaviors is based on E1 instead of 
E; (2) E in exploitation equations of the standard HHO is 
replaced by G.

E used in Eqs. (12), (13), (15) and (18) is a scalar, which 
makes each element of the rabbit’s position Xrabbit(t) change 
at the same step size. For the improved exploitation phase, a 
multi-dimensional space variable G which makes each ele-
ment of the rabbit’s position change at different step size 
is used to replace E and used for the location update of the 
Harris hawks as well:

where R1 is a D dimension random vector, in which each 
dimension is a random number inside (0,1).

In addition, the function value comparison in the standard 
HHO is changed to the comparison of the dominance rela-
tionship to adapt to the multi-objective optimization prob-
lem. Hence, Eqs. (14) and (17) are changed as:

4.3 � Differential Evolution

Differential evolution [28] has good convergence perfor-
mance. In this subsection, differential evolution is adopted 
to evolve the members in the external archive to enhance the 
convergence performance of the proposed algorithm. For 
each member Ari in external archive, the jth variable of a 
new solution newAri is:

(24)G = 2
(
2R1 − 1

)
exp

[
−

(
2.4t

T

)2
]

(25)X(t + 1) =

{
Y if F(Y) ≺ F(X(t))

Z if F(Z) ≺ F(X(t))

Fig. 3   Behavior of the energy E1 during 500 iterations and two runs
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where Ars1, Ars2 and Ars3 are three members from external 
archive and the indexes s1 ≠ s2 ≠ s3 ≠ i . rand ∈ (0, 1) is a 
real random number. k ∈ {1, 2,… ,D} is a random integer. 
F ∈ [0, 2] and CR ∈ (0, 1) are two control parameters.

4.4 � Constraints Handling

Inequality constraints from Eq. (8) are easy to deal with: 
(1) each generator output power is set within t limited range 
during initialization; (2) during the iteration process, any 
value beyond the boundary will be re-limited within the 
boundary range.

Equality constraint from Eq. (6) is not easy to deal with 
directly. Thus, equality constraint is usually transformed into 
inequality constraint by a small threshold δ, which can be 
expressed as:

where δ is the tolerance parameter of the equality constraint.
After the above conversion, any solution that satisfies 

inequalities (8) and (27) is called a feasible solution, and 
vice versa is an infeasible solution. The constraint violation 
of an infeasible solution is:

In order to acquire feasible solutions, a feasible solution 
dominated constraint processing technology [25] is intro-
duced to handle the infeasible solutions.

In [25], a solution xa is said to constraint dominate (supe-
rior to) a solution xb, if any of the following rules is met.

(1)	 xa is a feasible solution and xb is an infeasible solution;
(2)	 When xa and xb are both feasible solutions, xa domi-

nates xb;
(3)	 xa and xb are both infeasible solutions, but xa has a 

smaller overall constraint violation.

4.5 � Guider Selection Strategy

The single objective Harris hawk algorithm guides the popu-
lation to update through the absolute optimal value (rabbit) 
in the iterative process. However, there is no absolute opti-
mal value for the multi-objective Harris hawk algorithm, 
so it is necessary to select an appropriate individual from 
the archive as the guider (rabbit) to guide the hawk swarm 
to update the positions. In this paper, the ranks, crowding 
distances, and constraint violations of the individuals in the 

(26)

newAr
j

i
=

{
Ar

j

s1
+ F ⋅

(
Ar

j

s2
− x

j

s3

)
if rand ≤ CR or j = k

Ar
j

i
otherwise

.

(27)
N∑
i=1

Pi − PD − PL = h = 0 ⇒ |h(x)| − � ≤ 0

(28)V(x) = max(|h(x)| − �, 0)

external archive are calculated firstly. Then, the individuals 
are assigned a serial number value, the larger serial number 
value is assigned to the individual with the smaller rank 
value, the larger crowding distance and the smaller con-
straint violation value. Finally, the roulette rule is adopted 
to select an individual as the leader from the archive.

4.6 � Solution Procedure of the Proposed MHHO‑DE 
Algorithm for the EED Problem

Based on the above operators, the procedure of the pro-
posed algorithm to solve the bi-objective EED problem is 
described by the following steps:

Step 1: Parameter setting

	 (1.1)	 Specify the cost coefficients, valve point effect 
coefficients, emission coefficients, loss coef-
ficients and output power limits of each ther-
mal power generator, and the total power load 
demand of the system.

	 (1.2)	 Set parameters of the MHHO-DE algorithm such 
as population size NP, archive size NA, the scal-
ing factor F and crossover probability CR.

	 (1.3)	 Specify maximum iteration number T.

Step 2: Initialization

	 (2.1)	 Initialize the modified Harris hawk popula-
tion POPi(i = 1, 2,… , NP) and external archive 
ArEi(i = 1, 2,… , NA) considering variable 
limits. The unknown decision variables of the 
described EED problem are the real power out-
puts of all the generators. These decision vari-
ables constitute an individual of the modified 
Harris hawk population. The initial modified 
Harris hawk population POP is: 

where xi =
[
Pi
1
,Pi

2
,… ,Pi

j
,… ,Pi

N

]
 is the ith indi-

vidual of MHHO-DE population. The jth dimen-
sional variable of individual i is generated 

(29)

POP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
⋮

xi−1
xi
xi+1
⋮

xNP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1
1

P1
2

⋯ P1
N

P2
1

P2
2

⋯ P2
N

⋮ ⋮ ⋮ ⋮

Pi−1
1

Pi−1
2

⋯ Pi−1
N

Pi
1

Pi
2

⋯ Pi
N

Pi+1
1

Pi+1
2

⋯ Pi+1
N

⋮ ⋮ ⋮ ⋮

PNP
1

PNP
2

⋯ PNP
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦NP×N
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according to the upper limit Pi,max
j

 and lower 
limit Pi,min

j
 of the generator j: 

 where rand1 is a uniform number in the range 
(0,1).

		    The generation method of the initial popula-
tion in the external archive ArE is the same as the 
Harris hawk population POP.

	 (2.2)	 Evaluate the individuals in the initial external 
archive ArE. Set fVi =

(
f1
(
xi
)
, f2

(
xi
)
,V

(
xi
))

 
corresponding to the cost objective func-
tion (Eq. (4)), the emission objective function 
(Eq. (5)) and the constraint violation function 
Eq. (28).

	 (2.3)	 Set iteration counter, t = 1.

Step 3: Update

	 (3.1)	 The update of Harris hawk population

	 (3.1.1)	 3.1.1) Select a guider based on Sect. 4.5 
for the modified Harris hawk population.

	 (3.1.2)	 Update the Harris hawk population 
according to Sect. 4.2.

	 (3.1.3)	 Repair
		  If a certain dimension element of an 

individual in the population exceeds the 
boundary, its value is set as the boundary.

    �      (3.1.4)	   �Evaluate the individuals of the new Harris 
hawk swarm newPOP using the objective 
functions [i.e. Eqs. (4) and (5)] and con-
straint violation function [i.e. Eq. (28)]. 
The evaluation vector of the individual i 
is fVi =

(
f1
(
xi
)
, f2

(
xi
)
,V

(
xi
))

.
	       (3.2)    The evolution of external archive

	 (3.2.1)	 Generate a new population newAr by the 
DE algorithm (Sect. 4.3) from the exter-
nal archive.

	 (3.2.2)	 Repair
		  If a certain dimension element of an indi-

vidual in the new population newAr is 
out of its boundary, its value is set as the 
boundary.

		        (3.2.3)	 Evaluate the individuals of new popu-
lation newAr using the objective func-
tions [i.e. Eqs. (4) and (5)] and constraint 
violation function [i.e. Eq.  (28)]. The 
evaluation vector of the individual i is 
fVi =

(
f1
(
xi
)
, f2

(
xi
)
,V

(
xi
))

.
Step 4: Update of members in external archive

(30)Pi
j
= P

i,min
j

+ rand1 ×
(
P
i,max
j

− P
i,min
j

)

	 (4.1)	 Combine the new Harris hawk population new-
POP, the new population newAr and the old 
external archive.

	 (4.2)	 Maintain the external archive based on Sects. 4.1 
and 4.4

The combined individuals are sorted according to their 
ranks, crowding distances and constraint violations. 
Those individuals with smaller rank values, larger crowd-
ing distances, and smaller constraint violations are kept 
in the fixed-size external archive.
Step 5: Stopping condition
If the maximum iteration number T is reached, Stop. Else, 
t = t+1, go to Step 3.
Step 6: Output
Output the final members in the external archive.

Figure 4 is the flowchart about the steps of the MHHO-
DE algorithm for the EED problem.

5 � Simulation Results and Analysis

In this section, the standard IEEE 30-bus 6-unit grid is used 
as the test system in our work, and the system’s single-line 
diagram can be found in [29]. The system load demand is 
283.4 MW. The generators’ parameters including fuel cost 
coefficients [3], emission coefficients [3], valve point effect 
coefficients [30] and generation capacity limits are listed in 
Table 1. The B-coefficients [3] (the standard unit value under 
the system’s reference capacity of 100MVA) of Eq. (7) are:

In addition, to verify the performance of the proposed 
MHHO-DE algorithm, three well-known multi-objective 
algorithms including multi-objective differential evolution 
(MODE) [31], non-dominated sorting genetic algorithm II 
(NSGA-II) [25] and non-dominated Sorting Particle Swarm 
Optimizer (NSPSO) [32] are used as comparison algorithms. 
The constraint processing method introduced in this paper 
is embedded in the three algorithms. The parameter settings 
of the four algorithms including MHHO-DE are listed in  
Table 2.

The experiments were carried out in two steps. First, 
the four algorithms were run one time to acquire extreme 

B =

⎡⎢⎢⎢⎢⎢⎢⎣

0.1382 −0.0299 0.0044 −0.0022 −0.0010 −0.0008

−0.0299 0.0487 −0.0025 0.0004 0.0016 0.0041

0.0044 −0.0025 0.0182 −0.0070 −0.0066 −0.0066

−0.0022 0.0004 −0.0070 0.0137 0.0050 0.0033

−0.0010 0.0016 −0.0066 0.0050 0.0109 0.0005

−0.0008 0.0041 −0.0066 0.0033 0.0005 0.0244

⎤⎥⎥⎥⎥⎥⎥⎦
B0 = [−0.0107 0.0060 − 0.0017 0.0009 0.0002 0.0030]

B00 = 9.8573 × 10−4
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solutions related to the best cost and the best emission. 
Then, the four algorithms were run 30 times to obtain results 
related to the performance of the multi-objective algorithms.

5.1 � Extreme Solutions

In this experiment, all algorithms were run once, and the 
Pareto optimal fronts are shown in Fig. 5. The best cost 

Fig. 4   The flowchart of the pro-
posed MHHO-DE algorithm
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solutions and the best emission solutions are listed in Tables 3 
and 4, respectively, and the best results are shown in bold 
black.

From Fig. 5, it can be seen intuitively that the Pareto front 
obtained by the proposed algorithm is evenly distributed, 
which illustrates the effectiveness of the new crowding dis-
tance proposed in the article. From Tables 3 and 4, it can be 
seen that the power outputs obtained by the four algorithms 
are within their limits, and the violations obtained by the 
four algorithms are within the threshold δ, which illustrates 
the validity of the constraint processing method in this arti-
cle. Furthermore, the proposed algorithm obtains the best 
results with the smallest threshold δ, which shows that the 
algorithm has good optimization performance.

5.2 � Performance Analysis of Multi‑objective 
Optimization

Dissimilar to single-objective optimization algorithms, the 
quality of the solutions obtained by multi-objective optimi-
zation algorithms is generally evaluated from the follow-
ing three aspects [33]: (1) evenness. The solutions should 
be uniformly distributed on the Pareto optimal front. (2) 

Coverage. The coverage of the Pareto optimal front should 
be as large as possible. (3) Convergence. The smaller the 
distance between the obtained Pareto optimal front and the 
true Pareto optimal front, the better.

To evaluate the quality of the solutions obtained by the 
suggested algorithm, three indicators including Spacing 
Metric (SP), Normalized Distance (ND) and Two Set Cov-
erage (SC) used in [33] are applied as metrics in this paper.

In this experiment, all algorithms were run 30 times, and 
the statistical results obtained are presented in Tables 5, 6 
and 7, respectively. (The best results are marked in bold-
face.) In Table 5, the worst SP of MHHO-DE is also better 
than the best SP of other algorithms, which indicates that the 
uniformity of MHHO-DE is much better than the other algo-
rithms. In Table 6, the worst performance of the normalized 
distance of MHHO-DE is the best, although the best nor-
malized distance of NSPSO is the largest, which shows that 
the coverage of the optimal front obtained by MHHO-DE 
is competitive. In Table 7, MHHO-DE dominates 71.61%, 
97.5% and 94.83% of the solutions from MODE, NSGA-II 
and NSPSO, respectively. However, only less than 35.3% of 
solutions of the MHHO-DE are dominated by the other algo-
rithms. This shows that the convergence of MHHO-DE is the 

Table 1   Generators’ parameters in the IEEE 30-bus 6-generator test system

Generator a b c e g Pmin

P1 10 2.00 0.0100 18 0.037 5
P2 10 1.50 0.0120 16 0.038 5
P3 20 1.80 0.0040 14 0.04 5
P4 10 1.00 0.0060 14 0.045 5
P5 20 1.80 0.0040 13 0.042 5
P6 10 1.50 0.0100 13.5 0.041 5

Generator α β γ ζ λ Pmax

P1 4.091 − 5.554 × 10−2 6.490 × 10−4 2.0 × 10−4 2.857 × 10−2 150
P2 2.543 − 6.047 × 10−2 5.638 × 10−4 5.0 × 10−4 3.333 × 10−2 150
P3 4.258 − 5.094 × 10−2 4.586 × 10−4 1.0 × 10−6 8.000 × 10−2 150
P4 5.326 − 3.550 × 10−2 3.380 × 10−4 2.0 × 10−3 2.000 × 10−2 150
P5 4.258 − 5.094 × 10−2 4.586 × 10−4 1.0 × 10−6 8.000 × 10−2 150
P6 6.131 − 5.555 × 10−2 5.151 × 10−4 1.0 × 10−5 6.667 × 10−2 150

Table 2   Parameter settings of the four comparison algorithms

Algorithm Popula-
tion size

Archive size Maximum 
iteration

Threshold δ (MW) Other parameters

MHHO-DE 60 60 10,000 0.0001 Crossover probability CR = 0.9; scaling factor F = 0.5
MODE 60 60 10,000 0.001 Crossover probability CR = 0.9; scaling factor F = 0.5
NSGA-II 60 60 10,000 0.001 Distribution index for crossover is 20; distribution index for 

mutation is 20; mutation probability is 1/6; crossover probabil-
ity is 0.5

NSPSO 60 60 10,000 0.001 c1 and c2 are set to 1; w = 0.4
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best among the four algorithms. In addition, from Tables 5, 
6 and 7, it also can be seen that the robustness of MHHO-
DE is the best because its standard deviation is the smallest.

Based on the above analysis and discussion, it can be 
concluded that the suggested algorithm has terrific perfor-
mances for solving EED problems.
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Fig. 5   Pareto optimal fronts obtained by the four algorithms

Table 3   Best solutions for cost with four algorithms

Algorithm MHHO-DE MODE NSGA-II NSPSO

P1/MW 5.00001 5.3112 5.0035 5.7826
P2/MW 12.4635 12.5238 18.0107 5.0019
P3/MW 83.5398 83.5725 83.5409 84.1108
P4/MW 75.0045 75.1352 74.8251 75.7570
P5/MW 79.7998 79.8949 79.8523 80.5251
P6/MW 29.4750 28.8403 24.0885 34.1010
Fuel cost 635.8329 636.0256 636.1985 637.5509
Emission 0.2267 0.2268 0.2259 0.2295
���
∑N

i=1
P
i
− P

D
− P

L

��� 8 × 10−6 9.1 × 10−4 7 × 10−5 6.7 × 10−4

Table 4   Best solutions for emission with four algorithms

Algorithm MHHO-DE MODE NSGA-II NSPSO

P1/MW 41.0923 39.0196 41.0872 42.8091
P2/MW 46.3663 47.5775 46.3893 48.8199
P3/MW 54.4427 53.6975 54.3927 51.5616
P4/MW 39.0368 39.7713 39.1090 38.7020
P5/MW 54.4472 54.9118 54.2821 53.6348
P6/MW 51.5477 51.8631 51.6762 51.6070
Fuel cost 728.6672 726.8939 728.6946 732.3627
Emission 0.1941785 0.194224 0.1941788 0.194284
���
∑N

i=1
P
i
− P

D
− P

L

��� 9.9 × 10−5 9.9 × 10−4 5 × 10−4 9.6 × 10−4
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6 � Conclusion

In this paper, a hybrid multi-objective optimization algo-
rithm, which is combined with an effective constraint han-
dling technique, is presented to solve the constrained eco-
nomic emission dispatch problem with valve-point effect. 
This algorithm extends and improves the single objective 
HHO, and combines with DE to form a powerful optimizer. 
A new crowding distance is devised to acquire an evenly 
distributed Pareto optimal front. Furthermore, a constraint 
processing method is integrated into the MHHO-DE to 
deal with the strong constraints of the EED problem. The 
experimental results on the IEEE 30-bus 6-uint test system 
show that the suggested algorithm is efficient: (1) a set of 
non-dominated solutions can be obtained in one simulation 
operation; (2) the non-dominated solutions strictly meet the 
various constraint conditions of the EED problem; (3) the 
Pareto optimal front obtained by the developed algorithm 
has excellent convergence and well distribution; (4) the 
given algorithm has excellent robustness. In the future, our 
research work will focus on applying the proposed algo-
rithm to other kind of power systems with renewable energy 

sources due to the successful application of the proposed 
algorithm on the IEEE 30-bus 6-uint system.
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