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Abstract
An improved version of atom search optimization (ASO) algorithm is proposed in this paper. The search capability of ASO 
was improved by using simulated annealing (SA) algorithm as an embedded part of it. The proposed hybrid algorithm was 
named as hASO-SA and used for optimizing nonlinear and linearized problems such as training multilayer perceptron (MLP) 
and proportional-integral-derivative controller design for DC motor speed regulation as well as testing benchmark functions 
of unimodal, multimodal, hybrid and composition types. The obtained results on classical and CEC2014 benchmark func-
tions were compared with other metaheuristic algorithms, including two other SA-based hybrid versions, which showed the 
greater capability of the proposed approach. In addition, nonparametric statistical test was performed for further verification 
of the superior performance of hASO-SA. In terms of MLP training, several datasets were used and the obtained results were 
compared with respective competitive algorithms. The results clearly indicated the performance of the proposed algorithm 
to be better. For the case of controller design, the performance evaluation was performed by comparing it with the recent 
studies adopting the same controller parameters and limits as well as objective function. The transient, frequency and robust-
ness analysis demonstrated the superior ability of the proposed approach. In brief, the comparative analyses indicated the 
proposed algorithm to be successful for optimization problems with different nature.

Keywords  Atom search optimization · Simulated annealing · Multilayer perceptron · DC motor speed control

1  Introduction

Optimization can be described as the process of achieving 
optimal parameters of a given system with a lower cost. 
Development of optimization algorithms has gained an 
incredible attention since the optimization problems can be 
encountered in a variety of fields such as engineering, sci-
ence, economics and business [1–3]. A real-world optimiza-
tion problem may be solved if it can be formulated in terms 
of mathematical form. Various deterministic algorithms are 
available to solve such problems. However, a considerable 
amount of those problems has specific characteristics such 
as non-continuous and non-differentiable nature, too many 
decision variables and objective functions and thus cannot 
be solved effectively using conventional mathematical pro-
gramming approaches [4]. Therefore, alternative methods 
are required in the case of such problems instead of conven-
tional techniques.

Metaheuristic algorithms have gained an incredible atten-
tion among alternative techniques due to their flexible and 
simple structure along with the ability of random search and 
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avoidance of local optima. Therefore, metaheuristic algo-
rithms have been studied extensively as an alternative and 
effective way of tackling such problems [5–8] since they 
are powerful tools to handle previously mentioned prob-
lems. Those types of problems are inspired from real-world 
physical phenomena or biological behavior of species and 
can be categorized into three classes such as physics based, 
evolution based and swarm based [9]. In metaheuristic algo-
rithms, the problem is considered as a black box (although 
those algorithms are derived from nature) and the algorithm 
attempts to solve the problem without concerning the nature 
of the problem. Therefore, they can easily be implemented to 
real-world problems. It is worth to note that some real-world 
optimization problems are subjected to constraints of ine-
quality and/or equality and thus known as constraint optimi-
zation problems and require constraint handling techniques. 
There are different available constraint handling strategies, 
such as famous penalty and multi-objective approaches, that 
can be found in the literature. The readers are referred to 
Refs. [10] and [11] for more details.

Some of the examples of metaheuristic algorithms can be 
listed as squirrel search [12], the ant lion optimizer [13], arti-
ficial ecosystem-based optimization [14], slime mould [15], 
Henry gas solubility optimization [16], Harris hawks opti-
mization [4], Manta ray foraging optimization [9], butterfly 
optimization [17], symbiotic organisms search [18], artifi-
cial bee colony [19], emperor penguins colony [20], sine 
cosine [21] and kidney inspired [22] algorithms. The reason 
of having a variety of metaheuristic algorithms derives from 
No Free Lunch theorem [23]. According to this theorem, 
there is not any optimization algorithm capable of finding 
the optimal solution for every optimization problem. There-
fore, no algorithm can solve all optimization problems, with 
different type and nature, effectively than any other option. 
Instead, each of them can be quite successful for specific set 
of problems. Atom search optimization (ASO) [24] algo-
rithm is one of those algorithms that have been developed 
for tackling specific optimization problems as stated by No 
Free Lunch theorem.

ASO is a recently developed population-based 
metaheuristic algorithm that was inspired from molecular 
dynamics [24] and proposed for dealing a variety of opti-
mization problems [25]. It considers the potential function 
along with the interaction force and geometric constraint. 
ASO has already been successfully implemented to solve a 
variety of problems such as hydrogeologic parameter estima-
tion [24], feature selection [26–28], centralized thermoelec-
tric generation system in heterogeneous temperature differ-
ence [29], dispersion coefficient estimation in groundwater 
[25], peak sidelobe level reduction [30], automatic voltage 
regulator [31], optimal power flow [32], modular multilevel 
converters [33] and modeling fuel cells [34] along with line 
loss and cost minimization of shunt capacitors [35].

Despite the popularity of metaheuristic algorithms, 
there are drawbacks such as local minima stagnation and 
immature convergence. Those are two critical problems 
in metaheuristics which are caused by their randomized 
exploration and exploitation operators and thus need to 
be addressed. Several strategies have been proposed to 
overcome the respective weaknesses of metaheuristic algo-
rithms. Hybridization is an outstanding method among 
the proposed approaches since it provides more effective 
results via synthesizing the best aspects of the algorithms 
which helps exhibiting a more robust behavior and greater 
flexibility against difficult problems [36]. Therefore, it has 
found a place as a demanding trend [37]. Similar to many 
other metaheuristics, original ASO algorithm also suffers 
from premature convergence and local optima stagnation 
[38] and thus requires improvement in order to balance the 
exploration and exploitation. Developing an improved ver-
sion of ASO is feasible although the successful implemen-
tation of it to the problems listed in the previous paragraph 
is a good indication of its ability. Further improvement 
in terms of its capability can be obtained by achieving a 
balance between exploration and exploitation stages. The 
latter would help the algorithm to perform better compared 
to its implementation with the original version. To do so, 
simulated annealing (SA) algorithm [39], a well-known 
algorithm that has good local search capabilities, can be 
used for hybridization. The latter is one of the algorithms 
that was recently hybridized with other metaheuristic algo-
rithms to solve different types of optimization problems 
[40–49].

SA [39] is a stochastic and single solution-based algo-
rithm that simulates the metallurgical process of annealing 
in which high temperature molecules with high energy levels 
move against other molecules relatively easy and tempera-
ture is decreased slowly to reach a steady state condition 
with minimum energy level. Similar to ASO, several appli-
cations of SA algorithm are also available in the literature. 
Some those applications can be listed as solution of cluster-
ing problem [50], multiple non-consecutive processing of 
parts on a machine [51], placement of virtual machine for 
optimum power consumption in data centers [52], optimal 
estimation of solar cell model parameters [53], optimiza-
tion of pressure-swing distillation process [54], minimiza-
tion of the fuel cost and the gas emissions [55], solution for 
a green vehicle routing problem with fuel consumption [56] 
and optimal design of supercritical carbon dioxide compres-
sor [57] along with several structural optimization problems 
[58–61]. SA is an easy to implement metaheuristic algo-
rithm that is strong in terms of local search and requires 
less computation time [62]. Therefore, SA algorithm can 
be interconnected in such a way that a new hybrid model 
can be constructed. In this way, the solution quality of ASO 
algorithm can be improved.
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A crucial idea in the SA, which makes it to be consid-
ered as a hill-climbing technique, is the acceptance of lower 
quality solutions to escape from local optima using a prob-
ability function. Also, SA has only one control parameter to 
set, which is called temperature and usually reduced mono-
tonically over the search. Therefore, SA algorithm requires 
minimum number of evaluations for finding optimal solu-
tions due to having a simple structure with easy implemen-
tation and a strong local search ability [63]. This is also the 
motivation of this paper which adopts SA to overcome the 
previously mentioned drawbacks of ASO algorithm and thus 
obtain a better structure to solve the optimization problems 
of various types.

In light of the fact mentioned above, this paper proposes 
a novel hybrid ASO and SA (hASO-SA) algorithm by con-
sidering the lack of balance between exploration and exploi-
tation stages of ASO and incredible local search ability of 
SA algorithm. The developed hybrid algorithm adopts SA 
algorithm as an embedded part of the ASO algorithm instead 
of running both algorithms one by one. That helps SA to 
operate for worse solutions so that the potential of neighbor-
hood solutions is not neglected. As stated above, the aim 
of this paper is to achieve an improved version of ASO so 
that it can be implemented to various optimization problems 
with greater capability. To do so, eight well-known classical 
and four CEC2014 benchmark functions of unimodal, mul-
timodal, hybrid and composition types, five classification 
data sets for nonlinear multilayer perceptron (MLP) training 
system, and proportional-integral-derivative (PID) controller 
design for linearized DC motor speed control system were 
used as different optimization problems for performance 
evaluation of the proposed hybrid algorithm.

In terms of test functions, the performance evaluations 
were carried out using classical benchmark functions of 
Sphere, Rosenbrock, Step, Quartic, Schwefel, Rastrigin, 
Ackley and Griewank [64] as well as CEC2014 functions 
[65]. The obtained results were compared with six stochastic 
algorithms such as particle swarm optimization (PSO), grav-
itational search (GSA), wind driven optimization (WDO) 
and genetic algorithm (GA) along with SA and original ASO 
algorithms. Moreover, hybrid versions of PSO and cuckoo 
search (CS) algorithms, merged with SA, were also used 
for performance comparison. The proposed hASO-SA algo-
rithm was run with the same swarm size and the maximum 
number of iterations for a fair comparison with the stated 
algorithms. The statistical results obtained for the adopted 
test functions showed that the best results were achieved via 
the proposed algorithm. Further performance validation was 
also carried out using Wilcoxon signed-rank test [66] has 
been used to prove that the capability of the proposed hybrid 
hASO-SA algorithm was not by chance.

Likewise, datasets of Iris, Balloon, XOR, Breast cancer 
and Heart [67] were adopted for MLP training to observe 

the performance of the proposed algorithm for nonlinear 
optimization problems. The obtained results for the latter 
case were compared with the MLP training results that were 
achieved by using grey wolf optimization (GWO), ant colony 
optimization (ACO), probability-based incremental learning 
(PBIL), particle swarm optimization (PSO) and evolutionary 
strategies (ES) algorithms along with original ASO algo-
rithm. All algorithms were run under similar conditions for 
a fair comparison and the lower average and standard devia-
tion of mean square error were achieved via the proposed 
approach which is an indication of better performance.

Similar to benchmark function and MLP training cases, 
PID controller design for DC motor was also performed by 
comparing the obtained results with grey wolf-based PID 
(GWO/PID), sine cosine-based PID (SCA/PID) and atom 
search optimization-based PID (ASO/PID) controllers. The 
reason of using the latter algorithms was because of similar 
set of parameters for both the controller and motor, in addi-
tion to the same objective function, so that a fair compari-
son can be performed. Transient and frequency responses 
showed the proposed method helps in achieving a better 
performing system along with a better robustness. The DC 
motor system also proved the ability of the proposed algo-
rithm to be considerably successful than its counterparts for 
real-world engineering problems. In summary, the compari-
sons for all adopted systems have demonstrated that the pro-
posed hybrid hASO-SA algorithm has better performance 
for a variety of problems having different nature.

1.1 � Previous Works on MLP Training

Artificial neural networks mimic human brain via com-
putational models and broadly used for complex nonlin-
ear problems [68]. The MLP is part of the hidden layered 
feed forward neural networks [69]. It is also an extensively 
adopted neural network and requires training on particular 
application [70]. Deterministic approaches can be found in 
the literature in terms of algorithms used for neural network 
training [71]; however, slow convergence and local optima 
stagnation are the issues that the training process suffers 
from. Therefore, training such structure requires a better 
algorithm in order to overcome the latter issues. To do so, 
several metaheuristic algorithms have been proposed so far. 
Some of those algorithms can be listed as grey wolf [72, 73] 
and improved grey wolf optimization [74], ant lion optimiza-
tion [75], chimp optimization [76], grasshopper optimiza-
tion [77], salp swarm [78] and multiple leader salp swarm 
[79], hybrid Nelder-Mead and dragonfly [80], hybrid particle 
swarm optimization and gravitational search [81], magnetic 
optimization [82] and biogeography-based optimization 
[83] along with hybrid monarch butterfly and artificial bee 
colony optimization [84] algorithms. Novel algorithms that 
can provide further improvement for the MLP training is 
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feasible despite the presented promise of the methods listed 
above. The latter may also be achieved through improve-
ment of existing algorithms instead of development of new 
ones from the scratch. In light of the above fact, this study 
attempts to achieve such a novel algorithm that can perform 
better compared to other available approaches. Therefore, 
the hybridization of ASO algorithm with SA technique is 
proposed in this study to deal with the training MLP which 
can help to achieve a better algorithm for such a purpose.

1.2 � Previous Works on Controller Design for DC 
Motor

The use of DC motors can be found in almost all of the 
industrial applications [85] due to their lower price and 
maintenance cost along with easier control. Robotics, paper 
mills, machine tools and textile industry are a few to name 
the industrial applications of DC motors. Several examples 
of controllers such as PID, FOPID, fuzzy logic or neural net-
works can be found in the literature [86]. Since DC motors 
provide an observable test bed for performance evaluations 
and comparisons, their speed control has been an applica-
tion area for many metaheuristics algorithms as a real-world 
engineering application. There are various examples in terms 
of metaheuristic optimization algorithms for controlling DC 
motors. Some of those examples can be listed as stochastic 
fractal search [87], kidney-inspired [88], teaching–learning-
based optimization [89], particle swarm optimization [90], 
swarm learning process [91], ant colony optimization [92], 
Harris hawks optimization [86], sine cosine [93], grey wolf 
optimization [94], chaotic atom search optimization [95], 
flower pollination [96] and improved sine cosine [97] along 
with genetic [98] and improved genetic [99] algorithms. As 
part of this study, we have implemented the new proposed 
approach for similar purpose as well as to assess the per-
formance quality of the proposed hybrid algorithm for such 
a real-world engineering problem. Similar to the motiva-
tion explained in the previous section, this study aims to 
develop a novel approach that can achieve a more stable 
structure, compared to existing techniques, for the stated 
system in terms of transient and frequency responses as well 
as robustness.

2 � Overview of ASO, SA and Proposed 
hASO‑SA Algorithms

2.1 � ASO Algorithm

ASO is a population-based global optimization tech-
nique inspired by molecular dynamics [25]. Basically, it 
is a mathematical representation of atomic motion which 

behaves according to classical mechanics [100]. According 
to Newton’s second law, relationship of an atomic system 
can be written as in Eq. (1):

where Fi and Gi represent interaction and constraint forces 
that act on ith atom together. The acceleration and the mass 
of atom i is denoted by ai and mi , respectively. In dimension 
d and at time t, the interaction force that acts on ith atom 
due to jth atom can be expressed as in Eq. (2). The latter one 
is a revised version of The Lennard–Jones (L–J) potential 
[101] to prevent the atoms from the case where they cannot 
converge to a specific point.

�(t) is called the depth function and is defined as in Eq. (3) 
where � represents the depth weight and T denotes the maxi-
mum number of iterations. This function is used for arrange-
ment of the repulsion or attraction regions.

hij(t) is expressed as given in Eq. (4) where r is the distance 
between two atoms, hmin is the lower bound, and hmax is 
the upper bound. The latter function helps repulsion, attrac-
tion or equilibrium to occur.

The exploration is improved by having lower limit of 
repulsion ( h = 1.1 ) and upper limit of attraction ( h = 1.24 ). 
To represent the limits as explained previously, the terms 
of g0 and u, provided in Eq. (5), are equal to 1.1 and 1.24, 
respectively.

Drift factor is expressed by g which is used to allow 
the algorithm to drift from exploration to exploitation and 
given as in Eq. (6).

�(t) , given in Eq. (4), denotes the length scale, which repre-
sents the collision diameter, and is defined as follows
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where Kbest denotes an atom population that includes the 
best function values of first K atoms. The function F′ behav-
ior with respect to values of �(t) (corresponding to h values) 
is illustrated in Fig. 1.

The sum of components having random weights in dth 
dimension that act on ith atom (due to other atoms) can be 
expressed as total force and is given as in Eq. (8) where randj 
represents a random number in [0, 1].

In molecular dynamics, atomic motion is greatly affected 
from the geometric constraint. In ASO, this is simplified by 
supposing a covalent bond between each atom and the best 
atom. Therefore, the constraint of atom i can be written as

where xbest(t) represents the best atom position at iteration 
t, whereas bi,best denotes the fixed bond length between the 
best and the ith atoms. Thus, the constraint force can be 
acquired as

where �(t) is the Lagrangian multiplier and defined as in 
Eq. (11).

In the latter, � is the multiplier weight. The acceleration 
of atom i at time t can be written as in Eq. (12) where mi(t) 
is the mass of atom i at time t.
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As the latter equation express, an atom with a bigger 
mass provides a better function fitness value, thus causing a 
reduced acceleration. The mass of atom i can be computed 
as in Eq. (13).

Fitbest(t) represents the atom with minimum fitness value and 
Fitworst(t) denotes the maximum fitness value at iteration t. 
The latter fitness values are expressed as given in Eqs. (15) 
and (16), respectively. Fiti(t) is a representation of function 
fitness value of atom i at iteration t.

The velocity and the position of atom i at iteration 
( t + 1 ) can be expressed as follows in order to simplify the 
algorithm.

Each atom requires to have higher possible interactions 
with many atoms having better fitness values as its K neigh-
bors in order to improve the exploration at the beginning of 
iterations. On the contrary, each atom requires to have fewer 
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Fig. 1   Corresponding F′ func-
tion behavior with different η 
values
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possible interactions with atoms having better fitness val-
ues as its K neighbors to improve the exploitation. Here, K 
represents a time-dependent function and is calculated as in 
Eq. (19) in order to show the gradual decrease with respect 
to number of iterations.

2.2 � SA Algorithm

This algorithm mimics the annealing process in metallurgy 
and classified as a single-based solution method [39]. Basi-
cally, the process is performed by heating and cooling stages 
which consequently helps in generating uniform crystals 
with less defects. The SA starts with an initial value set for 
random solution of Xi and determines a neighborhood solu-
tion of X′

i
 . Then, it computes the fitness value for Xi and X′

i
 . 

If the fitness value of X′

i
 (F(X′

i
 )) is smaller than that of Xi 

(F(Xi)), then SA sets Xi = X′
i
 . Meanwhile, SA may replace 

the solution of Xi by solution of X′
i
 even if the fitness values 

do not have the latter relationship. The replacement for such 
a case depends on the probability p as defined in Eq. (20):

where F and T denote control parameters of fitness function 
and temperature, respectively. The algorithm will not replace 
Xi by X′

i
 if p < rand(0, 1) ; however, a replacement will hap-

pen on the contrary case. The SA algorithm later reduces 
the value of the temperature using the following equation 
where � denotes the cooling coefficient, which is a random 
constant between 0 and 1.

2.3 � Proposed Hybrid hASO‑SA Algorithm

The proposed hASO-SA algorithm is a hybrid version of 
ASO and SA algorithms. The SA is local search metaheuris-
tic algorithm, and it is widely used to solve continuous and 
discrete optimization problems [39]. The ability of escaping 
local minimum via hill-climbing moves is one of the main 
benefits of SA which is useful in terms of searching for a 
global solution. Therefore, a hybrid approach is proposed 
with this work by introducing SA is to assist the ASO in 
terms of avoiding local minimum. Also, it helps increasing 
the level of diversity while searching for optimum solution 
in the search space. The novel hybrid hASO-SA algorithm 
exploits the fast-optimal search capability and hill-climbing 
property of ASO and SA algorithms, respectively, and pro-
posed to solve various optimization problems.

(19)K(t) = N − (N − 2) ×

√
t

T

(20)p = e
−

ΔF

Tk ; ΔF = F
(
X�
i

)
− F

(
Xi

)

(21)Tk+1 = �Tk

A flowchart of the proposed hASO-SA is illustrated in 
Fig. 2. As can be seen from the flowchart, the proposed 
hybrid algorithm starts with defining the parameters of ASO 
and SA algorithms first along with initializing a random set 
of atoms with their velocities and a fitness value set to infin-
ity. Once this achieved, the iterations begin by calculating 
the fitness value for each atom and then the obtained fitness 
value is compared with the best fitness value. In the case of 
better values, the algorithm updates the best solution and 
fitness value and the rest of the steps in the flow chart are 
executed. However, the proposed hybrid algorithm gives a 
chance the current solution even if the current fitness value 
is not better than the best one. In such a case, the algorithm 
generates a new solution in a neighborhood of current solu-
tion and evaluates the newly generated solution based on 
the justification of probability. That means the SA behaves 
as an embedded part of the ASO and operates to justify the 
neighborhood solution in the case of current solution with-
out better fitness values.

Based on the justification, the best solution may or may 
not be updated by the algorithm. In such a scenario, SA is 
nicely operating as part of the ASO only for fitness values 
that are worse than the best one so that any potential neigh-
borhood is not passed directly by just looking at the fitness 
value. It is also worth to note that the hybrid algorithms have 
a disadvantage of requiring more computational time despite 
their better performing ability. However, in the proposed 
algorithm, the fundamental steps of SA technique have been 
embedded into ASO algorithm which consequently reduced 
the computational time considerably than expected.

3 � Experimental Setup and Results

3.1 � Classical and CEC2014 Benchmark Functions

Eight well-known classical and four CEC2014 benchmark 
functions were employed to achieve an extensive perfor-
mance evaluation of the proposed hASO-SA algorithm. 
Those benchmark functions can be assessed under four main 
types such as unimodal and multimodal, hybrid and com-
position functions. Therefore, the performance of various 
optimization algorithms can effectively be measured using 
them. A summary of employed benchmark functions is pro-
vided in Table 1.

The functions from of F1(x) − F4(x) are unimodal func-
tions. They have one global optimum and no local optimum. 
On the other hand, the functions from F5(x) to F8(x) are 
multimodal functions. These ones have considerable number 
of local optima. In addition to the above, hybrid functions 
of F9(x) and F10(x) were also adopted. The variables of the 
latter functions are separated into different subdivisions 
randomly and either unimodal or multimodal functions are 
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Fig. 2   Flowchart for the hASO-SA algorithm
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used to replace those subdivisions. Moreover, composition 
functions are represented by F11(x) and F12(x) in the table. 
Similar to the case in the hybrid functions, the variables 
of those composition functions are also randomly separated 
into different subdivisions; however, those subdivisions are 
constructed by using the basic and hybrid functions. Hybrid 
and composition benchmark functions are more complex 
and challenging than the basic unimodal and multimodal 
benchmark functions, thus presenting more challenging 
optimization problems. The latter two types of benchmark 
functions are specifically suitable for testing the potential 
performance of the algorithms for solving real-world prob-
lems. References [38, 64, 65] provide a detailed description 
of all employed functions.

3.2 � Compared Algorithms

The comparisons were carried out using eight stochastic 
algorithms by utilizing aforementioned test functions. The 
algorithms used for comparison include three popular algo-
rithms such as PSO, GA and SA, along with three of recently 
proposed algorithms such as GSA, WDO and original ASO. 
In addition, further comparative performance evaluations 
were carried out using two additional hybrid algorithms 
which were developed based on SA by using particle swarm 
optimization (hPSO-SA) and cuckoo search (hCS-SA) 
algorithms.

SA is inspired from the certain rate of heating and cool-
ing used in metallurgy for heating materials [39]. This is 
a probabilistic approach that seeks for the global optimum 

of a search space in a fixed amount of time. This algorithm 
has parameters of initial temperature, temperature reduction 
rate and mutation rate and those parameters were set to have 
values of 0.1, 0.98 and 0.5, respectively [24].

GA is an evolutionary algorithm that is inspired from 
biological evolutionary theory [102]. This algorithm tends 
to exceptional in terms of finding good global solutions. 
It adopts selection, crossover and mutation operations to 
achieve high quality solutions. The latter parameters for this 
study were chosen to be Roulette wheel for selection, 0.8 for 
crossover and 0.4 for mutation [24].

PSO is an algorithm that mimics the flocking behavior 
of birds in the sky [103]. It adopts individual and social 
group learning to update the velocities and positions of a 
population. In this way, it searches for the desired goal. This 
algorithm has a good ability in terms of local search. In this 
study, the PSO parameters of cognitive and social constants 
were chosen to be 2 for each. The inertia constant was set to 
decrease linearly from 0.8 to 0.2 [24].

GSA is another algorithm used for comparison which 
is a competitive search algorithm [64]. This algorithm is 
based on the gravitational law and thus makes the agents to 
interact using the motional law. The attraction can lead to 
generation of attractive force and this helps in facilitating 
all agents to move toward the agent with the heavier mass. 
The parameters of this algorithm were set to 100 and 20 
for initial gravitational constant and decreasing coefficient, 
respectively [24].

The last algorithm used for comparison is WDO which 
is inspired from the motion of earth’s atmosphere [104]. In 

Table 1   Details of used classical and CEC2014 benchmark functions

Name Test function D Range Optimum

Sphere F1(x) =
∑D

i=1
x
2
i

30 [−100, 100]D 0

Rosenbrock
F2(x) =

∑D−1

i=1

�
100

�
x
i+1 − x

2
i

�2
+ (x

i
− 1)2

�
30 [−30, 30]D 0

Step F3(x) =
∑D

i=1

�
x
i
+ 0.5

�2 30 [−100, 100]D 0

Quartic F4(x) =
∑D

i=1
ix

4
i
+ random[0, 1) 30 [−1.28, 1.28]D 0

Schwefel
F5(x) = −

∑D

i=1

�
x
i
sin

����xi��
��

30 [−500, 500]D −12, 569.5

Rastrigin F6(x) =
∑D

i=1

�
x
2
i
− 10 cos

�
2�x

i

�
+ 10

� 30 [−5.12, 5.12]D 0

Ackley
F7(x) = −20 exp

�
−0.2

�
1

D

∑D

i=1
x
2
i

�

− exp
�

1

D

∑D

i=1
cos

�
2�x

i

��
+ 20 + e

30 [−32, 32]D 0

Griewank
F8(x) =

1

4000

∑D

i=1
x
2
i
−

D∏
i=1

cos
�

xi√
i

�
+ 1

30 [−600, 600]D 0

Hybrid function 3 ( N = 4) F9(x) 30 [−100, 100]D 1900
Hybrid function 6 ( N = 5) F10(x) 30 [−100, 100]D 2200
Composition function 4 ( N = 5) F11(x) 30 [−100, 100]D 2600
Composition function 5 ( N = 5) F12(x) 30 [−100, 100]D 2700



3897Arabian Journal for Science and Engineering (2021) 46:3889–3911	

1 3

here, each small parcel of air moves by following the New-
ton’s second law. This algorithm has a good global search 
ability and approximates the global optimum by updating the 
velocity and position of each parcel using gradient, Corio-
lis, gravitational and friction forces. The parameter values 
for this study were set to 3, 0.2 and 0.4 for RT coefficient, 
gravitational constant and Coriolis effect, respectively. The 
maximum allowable speed was set to 0.3, whereas the con-
stant in the update equations was 0.4 [24].

In addition of above algorithms, hybrid structures of 
PSO and CS algorithms (hPSO-SA and hCS-SA, respec-
tively) were also merged with SA and used for comparison. 
The PSO algorithm used in hPSO-SA is already mentioned 
briefly in one of the above paragraphs. CS algorithm in hCS-
SA is a population-based optimization algorithm and simu-
lates the parasitic breeding behavior of some cuckoo species 
[105]. Those species lay their eggs on the nests of host birds. 
Depending on the discovery of the replacement of the eggs 
by the host bird, the eggs may be thrown, or the nest may 
be abandoned. In this study, the parameters of CS algorithm 
were chosen as � = 1.5 for Lévy flight and Pa = 0.25 for 
mutation probability [105].

3.3 � Statistical Results and Discussion

The proposed hASO-SA algorithm was run 50 times along 
with a chosen swarm size of 50 and the maximum number 
of iterations of 1000 in order to achieve a fair comparison 
with SA, GA, PSO, GSA, WDO and ASO algorithms [24]. 
The statistical results obtained for the adopted test functions 
using listed algorithms are presented in Table 2 by highlight-
ing the best mean results in bold.

Considering the presented numerical values in the table, 
the proposed hybrid hASO-SA algorithm provided the best 
statistical values compared to other competitive algorithms, 
including original ASO, for functions of F2(x) , F4(x) , F5(x) , 
F9(x) , F10(x) , F11(x) and F12(x) . In addition, it has also found 
the same values as its other closest competitors in functions 
of F3(x) , F6(x) , F7(x) and F8(x) . The proposed hASO-SA 
algorithm is behind the WDO algorithm only for the func-
tion of F1(x) . The results in Table 2 demonstrate the good 
optimizing performance of the proposed hASO-SA com-
pared to its competitive algorithms (including the basic 
ASO) on the benchmark functions, including unimodal, 
multimodal, hybrid and composition functions.

3.4 � Nonparametric Test Analysis

The superiority of an algorithm may generally occur by 
chance, due to stochastic nature, if the comparison is per-
formed based on statistical criteria such as best, mean and 
standard deviation. Because of 50 independent runs, the 
probability of the latter case is low for this study. However, a 

nonparametric statistical test was also performed to compare 
the results of each run and decide on the significance of the 
results. In this work, a nonparametric test named Wilcoxon 
signed-rank test [66] has been used to prove the superior-
ity of the proposed hybrid hASO-SA algorithm. This test is 
performed at 5% significant level for the hASO-SA versus 
other competitive algorithms, and the obtained p values are 
provided in Tables 3 and 4. The p values less than 0.05 
indicate significant difference between the algorithms. The 
column W (winner) in Table 3 and 4 reveals the results of the 
test where the sign of ‘=’ is an indication of no significant 
difference between hASO-SA and the competitive algorithm, 
whereas the signs of ‘+’ and ‘−’ are of significantly better 
and worse performances of hASO-SA, respectively, com-
pared to its competitive algorithms.

The results of Tables 3 and 4 showed that the hASO-SA 
algorithm presents better performance with great effective-
ness with respect to other algorithms. Moreover, the corre-
sponding statistical results for each function in 50 runs are 
listed in Table 5. This table shows the proposed hASO-SA 
algorithm outperforming all other algorithms significantly 
for unimodal, multimodal, hybrid and composition bench-
mark functions.

4 � Application of hASO‑SA in Training MLP

4.1 � MLP

MLP can be regarded as a distinctive class of feedforward 
neural networks. Neurons are organized in one-direction in 
MLPs. MLPs has a layered structure where data transition 
occurs. The structure of MLPs can be imagined as parallel 
layers which are named as input layer, hidden layer and out-
put layer. Figure 3 illustrates an MLP with those three lay-
ers where n denotes the number of input nodes, h is hidden 
layer, and m shows output nodes. The MLP output is calcu-
lated in few steps. Firstly, the weighted sums are calculated 
using Eq. (22) where Wij denotes the connection weight from 
input layer’s ith node to the hidden layer’s jth node, Xi repre-
sents the ith input, and �j is the bias of the jth hidden node.

Secondly, each hidden node’s output is calculated as in 
Eq. (23).

After calculating the outputs of hidden nodes, the final 
outputs are defined as in Eqs.  (24) and (25) where �jk 

(22)sj =

n∑
i=1

(
WijXi

)
− �j, j = 1, 2,… , h

(23)Sj = sigmoid
(
sj
)
=

1

1 + e−sj
, j = 1, 2,… , h
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Table 3   Wilcoxon signed-rank 
test results for hASO-SA versus 
SA, GA, PSO and GSA

Function hASO-SA versus SA hASO-SA versus GA hASO-SA versus PSO hASO-SA versus 
GSA

p value W p value W p value W p value W

F1(x) 4.42E−10 + 5.29E−10 + 7.30E−10 + 6.87E−10 +
F2(x) 7.25E−10 + 7.36E−10 + 7.35E−10 + 7.38E−10 +
F3(x) 2.36E−10 + 1 = 2.84E−08 + 1 =
F4(x) 6.87E−10 + 7.02E−10 + 6.98E−10 + 6.92E−10 +
F5(x) 2.89E−10 + 7.80E−10 + 7.49E−10 + 7.41E−10 +
F6(x) 5.84E−10 + 5.67E−10 + 7.73E−10 + 7.00E−10 +
F7(x) 5.30E−10 + 2.28E−10 + 1.24E−10 + 4.40E−10 +
F8(x) 4.59E−10 + 2.01E−10 + 3.98E−10 + 5.95E−10 +
F9(x) 2.29E−05 + 2.88E−07 + 4.31E−09 + 9.44E−08 +
F10(x) 3.68E−05 + 7.89E−07 + 1.25E−07 + 3.27E−08 +
F11(x) 7.41E−04 + 1.99E−06 + 9.13E−04 + 1.64E−07 +
F12(x) 1.42E−08 + 1.42E−08 + 1.42E−08 + 1.42E−08 +

Table 4   Wilcoxon signed-rank 
test results for hASO-SA versus 
WDO, ASO, hPSO-SA and 
hCS-SA

Function hASO-SA vs WDO hASO-SA vs ASO hASO-SA vs hPSO-
SA

hASO-SA vs hCS-
SA

p value W p value W p value W p value W

F1(x) 6.06E−10 − 6.74E−10 + 6.03E−10 + 6.18E−10 +
F2(x) 6.00E−10 + 7.29E−10 + 7.03E−10 + 7.5058 − 10 +
F3(x) 1 = 1 = 1 = 1 =
F4(x) 7.58E−10 + 7.00E−10 + 6.19E−10 + 6.21E−10 +
F5(x) 7.44E−10 + 7.41E−10 + 6.11E−10 + 6.62E−10 +
F6(x) 5.19E−10 + 1 = 1 = 6.15E−10 +
F7(x) 2.54E−10 − 5.42E−10 + 7.07E−10 − 6.22E−10 +
F8(x) 6.56E−09 + 1 = 6.06E−10 + 1 =
F9(x) 3.52E−07 + 8.23E−05 + 3.17E−05 + 3.57E−05 +
F10(x) 3.27E−08 + 2.78E−06 + 1.72E−06 + 1.72E−06 +
F11(x) 3.36E−07 + 3.64E−07 + 5.87E−07 + 1.77E−08 +
F12(x) 7.47E−10 + 7.54E−10 + 7.55E−10 + 7.49E−10 +

Table 5   Statistical results of Wilcoxon signed-rank test obtained by proposed hASO-SA

Function type hASO-SA 
versus SA

hASO-SA 
versus GA

hASO-SA 
versus PSO

hASO-SA 
versus GSA

hASO-SA 
versus 
WDO

hASO-SA 
versus ASO

hASO-SA 
versus hPSO-
SA

hASO-SA 
versus hCS-
SA

(+∕ = ∕−) (+∕ = ∕−) (+∕ = ∕−) (+∕ = ∕−) (+∕ = ∕−) (+∕ = ∕−) (+∕ = ∕−) (+∕ = ∕−)

Unimodal 4/0/0 3/1/0 4/0/0 3/1/0 2/1/1 3/1/0 3/1/0 3/1/0
Multimodal 4/0/0 4/0/0 4/0/0 4/0/0 3/0/1 2/2/0 2/1/1 3/1/0
Hybrid 2/0/0 2/0/0 2/0/0 2/0/0 2/0/0 2/0/0 2/0/0 2/0/0
Composition 2/0/0 2/0/0 2/0/0 2/0/0 2/0/0 2/0/0 2/0/0 2/0/0
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denotes the connection weight from hidden node j to the 
output node k.

In MLP training, the biases and connection weights are 
playing a critical role. The quality of MLP’s final output 
depends on the biases and weights. Therefore, training an 
MLP means finding optimum values for biases and weights 
which helps in achieving desirable outputs for defined 
inputs.

4.2 � hASO‑SA‑Based MLP Trainer

It is feasible to train MLPs in three different methods using 
metaheuristic methods. The first method includes find-
ing optimal connection weights and biases. In this way, 
metaheuristics help in achieving minimum error for an MLP. 
In this method, the MLP architecture remains as it is during 
the learning process. The second method is about finding an 
appropriate architecture for an MLP using metaheuristics in 
the case of a specific problem. Tuning parameters such as 
learning rate of the gradient-based learning algorithm and 
momentum is the third method that metaheuristics can be 
used.

The first method explained above was adopted to imple-
ment the proposed hASO-SA since the learning algorithm 
is required to minimize the MLP error by achieving the con-
venient weights and biases. An important aspect in MLP 
training is the representation of biases and weights. Three 
methods are available to represent them such as binary, 

(24)ok =

h∑
j=1

(
�jkSj

)
− ��

k
, k = 1, 2,… ,m

(25)Ok = sigmoid
(
ok
)
=

1

1 + e−ok
, k = 1, 2,… ,m

matrix and vector [106]. In this paper, the vector method 
was utilized for representation of biases and weights. The 
objective function should be defined after representation of 
biases and weights in vector form in order to evaluate each 
candidate solution of the algorithm. In this study, the mean 
square error (MSE) was chosen as objective function which 
is formulated as:

where m is the number of outputs, q is the number of training 
samples, dk

i
 is the desired output of the ith input unit when 

the kth training sample is used, and ok
i
 is actual output of the 

ith input unit when the kth training sample appears in the 
input. Figure 4 represents the overall process of MLP train-
ing using proposed hybrid hASO-SA algorithm. As can be 
seen, the hASO-SA algorithm provides MLP with weights/
biases and receives average MSE for all training samples. 
The hASO-SA algorithm iteratively changes the weights and 
biases to minimize average MSE of all training samples.

4.3 � Experimental Setup and Analysis of Results 
on Classification Datasets

Five classification datasets (XOR, Balloon, iris, Heart and 
Breast cancer) was used to benchmark the proposed hASO-
SA algorithm. Those datasets were obtained from [67]. Each 
candidate solution was selected from a range of [−10, 10]D 
randomly in the training algorithm. The population size of 
candidate solutions was chosen to be 200 for Iris, Heart and 
Breast cancer and 50 for XOR and Balloon classification 

(26)E =

q�
k=1

∑m

i=1

�
ok
i
− dk

i

�2
q

Fig. 3   Structure of MLP neural network

Fig. 4   hASO-SA-based MLP trainer
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problems. Maximum number of iterations (generations) is 
250. The datasets were classified as presented in Table 6.

The algorithm was implemented on datasets for 10 times. 
The results that were obtained from those datasets are shown 
from Tables 7, 8, 9, 10 and 11 which provide average (AVE), 
and standard deviation (STD) of the best mean square error 
(MSE) acquired in the last iteration of the algorithm. Obvi-
ously, the lower average and standard deviation of MSE in 
the last iteration is an indication of better performance. The 
performance of the proposed hASO-SA was evaluated by 
comparing with a variety of algorithms such as classical 
ASO, ACO, GWO, PBIL, PSO and ES algorithms which 
was adopted to solve these classification problems [70, 72]. 
Compared algorithms for training an MLP for hASO-SA 
algorithm were acquired from Refs. [70, 72].

The collected datasets, shown in Table 6, have different 
difficulty levels, e.g., Heart dataset is considered to be dif-
ficult, whereas XOR is simple [67]. The large number of 
training samples make the problem less difficult, whereas the 
large number of features causes neural network with larger 
size and hence increases the difficulty of the problem as 
more weights need to be determined.

The results of the considered datasets are provided in the 
following subsections. According to this comprehensive 

Table 6   Classification datasets

Datasets Number of 
test samples

Number of 
attributes

Number 
of training 
samples

Number 
of classes

XOR 8 3 8 2
Balloon 16 4 16 2
Iris 150 4 150 3
Breast cancer 100 9 599 2
Heart 187 22 80 2

Table 7   Experimental results for the XOR classification problem

Training algorithm MSE (AVE ± STD) Classifica-
tion rate 
(%)

hASO-SA (proposed) 2.31E−04 ± 1.63E−04 100.00
ASO 5.72E−03 ± 2.37E−02 100.00
GWO [72] 9.41E−03 ± 2.95E−02 100.00
PSO [70, 72] 8.40E−02 ± 3.59E−02 37.50
ACO [70, 72] 1.80E−01 ± 2.53E−02 62.50
PBIL [70, 72] 3.02E−02 ± 3.97E−02 62.50
ES [70, 72] 1.19E−01 ± 1.16E−02 62.50

Table 8   Experimental results for the Balloon classification problem

Training algorithm MSE (AVE ± STD) Classifica-
tion rate 
(%)

hASO-SA (proposed) 4.66E−16 ± 3.71E−15 100.00
ASO 3.47E−08 ± 1.53E−07 100.00
GWO [72] 9.38E−15 ± 2.81E−14 100.00
PSO [70, 72] 5.85E−04 ± 7.49E−04 100.00
ACO [70, 72] 4.85E−03 ± 7.76E−03 100.00
PBIL [70, 72] 2.49E−05 ± 5.27E−05 100.00
ES [70, 72] 1.91E−02 ± 1.70E−01 100.00

Table 9   Experimental results for the Iris classification problem

Training algorithm MSE (AVE ± STD) Classifica-
tion rate 
(%)

hASO-SA (proposed) 1.67E−02 ± 2.58E−03 91.33
ASO 1.83E−02 ± 2.77E−03 89.33
GWO [72] 2.29E−02 ± 3.20E−03 91.33
PSO [70, 72] 2.29E−01 ± 5.72E−02 37.33
ACO [70, 72] 4.06E−01 ± 5.38E−02 32.66
PBIL [70, 72] 1.16E−01 ± 3.64E−02 86.66
ES [70, 72] 3.14E−01 ± 5.21E−02 46.66

Table 10   Experimental results for the Breast cancer classification 
problem

Training algorithm MSE (AVE ± STD) Classifica-
tion rate 
(%)

hASO-SA (proposed) 1.04E−03 ± 4.68E−05 100.00
ASO 3.47E−03 ± 1.64E−03 99.00
GWO [72] 1.20E−03 ± 7.45E−05 99.00
PSO [70, 72] 3.49E−02 ± 2.47E−03 11.00
ACO [70, 72] 1.35E−02 ± 2.14E−03 40.00
PBIL [70, 72] 3.20E−02 ± 3.07E−03 7.00
ES [70, 72] 4.03E−02 ± 2.47E−03 6.00

Table 11   Experimental results for the Heart classification problem

Training algorithm MSE (AVE ± STD) Classifica-
tion rate 
(%)

hASO-SA (proposed) 8.57E−02 ± 9.46E−03 76.25
ASO 9.52E−02 ± 1.38E−02 73.75
GWO [72] 1.23E−01 ± 7.70E−03 75.00
PSO [70, 72] 1.89E−01 ± 8.94E−03 68.75
ACO [70, 72] 2.28E−01 ± 4.98E−03 0.00
PBIL [70, 72] 1.54E−01 ± 1.82E−02 45.00
ES [70, 72] 1.92E−01 ± 1.52E−02 71.25
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study, the hASO-SA algorithm can be highly recommended 
to be used in MLP training due to its high exploratory behav-
ior. The latter specification provides high local optima avoid-
ance while training MLP. In addition, the proposed hybrid 
hASO-SA algorithm has high exploitative behavior as well 
which helps hASO-SA-based trainer to be able to converge 
rapidly toward the global optimum for different datasets.

4.3.1 � XOR Dataset

This is a well-known nonlinear benchmark classification 
problem. Recognizing the number of 1’s in the input vector 
is the objective of this problem. The output is 1 in the case 
of odd number of input vector consisting of 1 s and 0 for 
even number of 1 s that form the input vector. The MLP with 
3-7-1 structure was used to solve this problem. Numerical 
results are presented in Table 7 which clearly indicates the 
proposed hASO-SA algorithm’s performance to be better in 
solving this problem by avoiding the sub-optimal solutions.

4.3.2 � Balloon Dataset

The Balloon dataset includes 16 instances having 4 attributes 
such as color, age, act and size which are in string format. 
An MLP structure of 4-9-1 was used for classification. The 
acquired results are presented in Table 8 which shows that 
the hASO-SA provides the minimum error. The classifica-
tion rates of all algorithms are the same and is 100%.

4.3.3 � Iris Dataset

This dataset includes 150 samples that can be treated under 
three classes (Virginica, Versicolor and Setosa). Sepal width 
and length along with petal width and length are the four 
features that are present in those samples. An MLP having 
structure of 4-9-3 was used for solving this classification 
problem. The obtained results are provided in Table 9. The 
hASO-SA provides better performance to train MLP-based 
on the average value of the square error and classification 
rate. The comparative results showed the superior perfor-
mance of hASO-SA compared to other algorithms.

4.3.4 � Breast Cancer Dataset

This dataset consists of 9 attributes and 699 instances. The 
attributes include marginal adhesion and uniformity of cell 
shape and size along with clump thickness [107]. The out-
put is 2 for benign cancer, whereas 4 for malignant cancer. 
The MLP structure of 9-19-1 was adopted for classification. 
Table 10 provides the results of this problem. As can be 

seen the hASO-SA provides the best mean square error in 
terms of average value and classification rate which is a clear 
indication of better search ability of the proposed algorithm 
in terms of escaping local optima.

4.3.5 � Heart Dataset

This dataset includes 267 images and was created for diag-
nosing the cardiac tomography images. 22 features were 
extracted from those images to summarize them. The MLP 
with 22-45-1 structure was trained by utilizing 80 instances. 
The condition of a patient can be expressed as normal or not 
normal using binary form of the dataset. Table 11 lists the 
results. The table clearly shows that the proposed hASO-SA 
is capable of providing better results and classification rate 
than other algorithms.

5 � Application of hASO‑SA to PID Controller 
Design in DC Motor Speed Control

5.1 � Speed Control of DC Motor System

DC motors are devices that basically convert the electrical 
energy into mechanical form. The speed control of a DC 
motor is important to perform a specific work. This can be 
achieved either manually by an operator or automatically 
by adopting control devices. Figure 5 illustrates the block 
diagram of a DC motor system. The relationship between the 

Fig. 5   Block diagram of a DC motor

Table 12   DC motor parameters [93–95]

Parameter/specification Value

Ra (armature resistance) 4 × 10−1�

La (armature inductance) 2.7H

J (inertia moment of motor) 4 × 10−4 kg ⋅m2

B (motor friction constant) 2.2 × 10−3 N ⋅m ⋅ s∕rad

Km (motor torque constant) 1.5 × 10−2 N ⋅m∕A

K
b
 (electromotive force constant) 5 × 10−2 V ⋅ s∕rad
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speed of the motor ( � ) and the applied voltage ( Ea ) under 
no load ( TLoad = 0 ) is provided in Eq. (27).

The rest of the parameters for DC motor speed control, 
given in the latter equation, along with the respective values 
used for this work are listed in Table 12 [93–95].

5.2 � DC Motor with PID Controller

PID controllers are the most popular controller type in engi-
neering due to their simple structure and high efficiency. The 
transfer function of a PID controller is provided in Eq. (28) 
where Kp , Ki and Kd are gains of proportional, integral and 
derivative terms, respectively.

The closed loop block diagram of a DC motor with PID 
controller is given in Fig. 6. The closed loop transfer func-
tion of a DC motor having a unit feedback is given as in 
Eq. (29).

Using the parameters listed in Table 12 provides the fol-
lowing transfer function.

5.3 � hASO‑SA‑Based PID Controller Design

The objective function was chosen to be ITAE for this study 
in order to achieve better speed control. The ITAE objective 
function is given by [93–95] as:

(27)GPlant(s) =
�(s)

Ea(s)
=

Km(
Las + Ra

)
(Js + B) + KbKm

(28)GController(s) = Kp +
Ki

s
+ Kds

(29)Tclosed - loop(s) =
�(s)

�ref(s)
=

GPlant(s)GController(s)

1 + GPlant(s)GController(s)

(30)

Tclosed - loop(s) =
15
(
Kds

2 + Kps + Ki

)

1.08s3 + 6.1s2 + 1.63s + 15
(
Kds

2 + Kps + Ki

)

where e(t) denotes the error signal and is equal to �ref − �(t), 
whereas tsim is the simulation time and were chosen to be 2s 
for this study. The upper and lower bounds of the optimiza-
tion problem are also the limits of the controller parameters 
and given in Eq. (32) [93–95].

The application of the proposed hASO-SA algorithm to 
DC motor speed control system is illustrated in Fig. 7. The 
stability of DC motor speed control system increases to the 
highest level after completion of the detailed optimization 
procedure provided in the figure.

In the optimization module provided in Fig. 7, the swarm 
size (number of atoms) and the maximum number of itera-
tions (stopping criteria) were set to be 40 and 30, respec-
tively. The value of the ITAE objective function given in 
Eq.  (31) was calculated for each atom in the swarm by 
integrating the proposed hASO-SA with the DC motor 
system using MATLAB/Simulink environment. The pro-
posed algorithm was run for 25 times, and the PID param-
eters corresponding minimum ITAE value were found to be 
Kp = 18.4258 , Ki = 3.3082 and Kd = 3.1755.

5.4 � Comparative Simulation Results

The proposed hASO-SA-based controller’s performance 
was evaluated by comparing it with the most recent studies 
published in prestigious journals using a variety of analy-
sis. The most convenient approaches chosen for compari-
son were ASO/PID [95], GWO/PID [94] and SCA/PID [93] 
controllers since those approaches adopted the same DC 
motor parameters, ITAE objective function and the limits 
of the controller parameters. PID controller parameters that 
were optimized with different algorithms are presented in 
Table 13.

In addition, the closed loop transfer functions of DC 
motor with the proposed hASO-SA/PID, ASO/PID [95], 
GWO/PID [94] and SCA/PID [93] are given in Eqs. (33), 
(34), (35) and (36), respectively. The analyses of time and 
frequency domain along with robustness were performed 
using the latter equations.

(31)JITAE =

tsim

∫
0

t|e(t)|dt

(32)10−3 ≤ Kp,Ki,Kd ≤ 20

(33)ThASO - SA(s) =
47.63s2 + 276.4s + 49.62

1.08s3 + 53.73s2 + 278s + 49.62

(34)TASO(s) =
36.54s2 + 179.2s + 30.78

1.08s3 + 42.64s2 + 180.8s + 30.78Fig. 6   Block diagram of DC motor with PID controller
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Fig. 7   The procedure of apply-
ing the proposed hASO-SA 
algorithm to DC motor speed 
control
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Based on the simulation results, it can clearly be seen that 
the usage of the hASO-SA algorithm provides significantly 
better transient and frequency responses compared to three 
algorithms from the recent literature. Furthermore, the sug-
gested hASO-SA/PID controller design is more robust to the 
variations in the system parameters than the other competi-
tive algorithms-based controller designs.

5.4.1 � Transient Response Analysis

The step responses of DC motor (normalized speed 
responses) using the proposed hASO-SA/PID, ASO/PID 

(35)TGWO(s) =
13.94s2 + 103.5s + 8.439

1.08s3 + 20.04s2 + 105.1s + 8.439

(36)TSCA(s) =
7.953s2 + 67.52s + 7.89

1.08s3 + 14.05s2 + 69.15s + 7.89

[95], GWO/PID [94] and SCA/PID [93] controllers are 
illustrated in Fig. 8. As can be observed from the figure, the 
speed of DC motor reaches the steady state value quickly 
without any overshoot. This behavior confirms the superior-
ity of the proposed hASO-SA algorithm over ASO, GWO 
and SC algorithms. Also, the comparative results of maxi-
mum overshoot, rise time and settling time for a tolerance 
band of ± 2% are provided in Table 14. Moreover, the ITAE 
objective function values are also given in the table. As can 
be seen from numerical and graphical outcomes, the speed 
response of a DC motor with the proposed hASO-SA/PID 
controller is more stable and has no overshoot.

5.4.2 � Frequency Response Analysis

The Bode diagram of a DC motor speed control system 
provides information about frequency response. The com-
parative Bode plots of the different approaches are given 
in Fig. 9. Gain margin, phase margin and bandwidth of the 
system can be calculated easily from this figure. Important 
parameters of frequency response such as bandwidth, gain 
and phase margin, obtained from Fig. 9, are presented in 
Table 15. The best value is shown in bold. The numeri-
cal values presented in the table clearly show that the pro-
posed hASO-SA/PID-based system has the best frequency 
response.

Table 13   Optimized controller parameters using different algorithms

Algorithm/controller Kp Ki Kd

hASO-SA/PID (proposed) 18.4258 3.3082 3.1755
ASO/PID [95] 11.9437 2.0521 2.4358
GWO/PID [94] 6.8984 0.5626 0.9293
SCA/PID [93] 4.5012 0.5260 0.5302

Fig. 8   The comparison of DC motor step responses

Table 14   Comparison of 
transient response analysis 
results

Algorithm/controller Overshoot (%) Rise time (s) Settling time (s) ITAE value

hASO-SA/PID (proposed) 0.0000 0.0494 0.0866 0.0036
ASO/PID [95] 0.0000 0.0692 0.1535 0.0075
GWO/PID [94] 1.5062 0.1388 0.2052 0.0223
SCA/PID [93] 2.3056 0.2038 0.4899 0.0307

Fig. 9   Comparative Bode diagrams
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5.4.3 � Robustness Analysis

The output of any system may be affected undesirably due to 
unexpected sudden changes. It is crucial to design the system 
from having undesired responses. Therefore, a robustness 
analysis was performed by observing the behavior of the 
system which were altered separately with ±25% for Ra and 
with ±20% for Km . The latter action created four possible 
operating scenarios. The scenarios and their comparative 
time domain performance analysis simulation results are 
presented in Table 16. The best values are shown in bold.

Likewise, the comparative speed step responses for all 
scenarios is depicted from Figs. 10, 11, 12 and 13. It is clear 
from the latter figures that despite the changes occurring in 
the system parameters, the proposed hASO-SA/PID control-
ler has the least rise time and settling time values with no 
overshoot in all scenarios except Scenario I and Scenario II 
with a negligible overshoot percentage while compared to 
other controllers optimized by ASO, GWO and SCA. As can 
be seen from the results listed in the table and demonstrated 
in the figures, the proposed hASO-SA/PID controller has 

Table 15   Comparison of frequency response analysis results

Algorithm/controller Gain 
margin 
(dB)

Phase 
margin 
(deg.)

Bandwidth (Hz)

hASO-SA/PID (proposed) ∞ 180° 44.1802
ASO/PID [95] ∞ 180° 32.9113
GWO/PID [94] ∞ 180° 14.9018
SCA/PID [93] ∞ 180° 10.1347

Table 16   Performance comparisons for parametric uncertainty

Scenario Parameter changes Algorithm/Controller Overshoot (%) Rise time (s) Settling time (s)

Scenario I Ra = 0.300

Km = 0.012

hASO-SA/PID (proposed) 0.1083 0.0614 0.1066
ASO/PID [95] 0.0000 0.0872 0.1936
GWO/PID [94] 1.5195 0.1683 0.2471
SCA/PID [93] 2.1514 0.2447 0.5618

Scenario II Ra = 0.300

Km = 0.018

hASO-SA/PID (proposed) 0.0549 0.0411 0.0718
ASO/PID [95] 0.0000 0.0569 0.1198
GWO/PID [94] 1.8415 0.1173 0.1731
SCA/PID [93] 2.9696 0.1733 0.4787

Scenario III Ra = 0.500

Km = 0.012

hASO-SA/PID (proposed) 0.0000 0.0618 0.1089
ASO/PID [95] 0.0000 0.0881 0.2107
GWO/PID [94] 0.9547 0.1706 0.2547
SCA/PID [93] 1.3036 0.2492 0.3573

Scenario IV Ra = 0.500

Km = 0.018

hASO-SA/PID (proposed) 0.0000 0.0413 0.0729
ASO/PID [95] 0.0000 0.0573 0.1257
GWO/PID [94] 1.4479 0.1185 0.1767
SCA/PID [93] 2.3664 0.1755 0.4326

Fig. 10   Comparative speed responses for Scenario I

Fig. 11   Comparative speed responses for Scenario II
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not affected from the change of the parameters. Also, the 
proposed hASO-SA/PID has better robustness performance 
compared to ASO/PID [95], GWO/PID [94] and SCA/PID 
[93] controllers.

6 � Conclusion

A novel hybrid metaheuristic algorithm based on ASO 
and SA algorithms was proposed in this work by embed-
ding the SA technique into ASO algorithm. The specific 
configuration helped improving search capability of ASO 
without costing considerably longer computational time. 
Several optimization problems with different nature were 
utilized to observe the performance of the proposed hybrid 
hASO-SA algorithm. Classical benchmark functions of 
Sphere, Rosenbrock, Step, Quartic, Schwefel, Rastrigin, 
Ackley and Griewank as well as CEC2014 test functions, 
were adopted for initial assessment of the algorithm. 

Those functions are of unimodal, multimodal, hybrid and 
composition types and help effectively measuring the 
performance of the proposed algorithm. The performance 
comparisons were carried out with PSO, GA, GSA and 
WDO along with SA and original ASO, using respective 
test functions, in order to demonstrate the superiority of 
the proposed algorithm. Moreover, SA-based hybrid ver-
sions of PSO (hPSO-SA) and CS (hCS-SA) algorithms 
were also used to provide a stronger comparison. The 
statistical results obtained from those benchmark func-
tions clearly showed the greater capability of the proposed 
hASO-SA, compared to the algorithms listed above, in 
terms of achieving values for the metrics of the best, mean 
and standard deviation. Apart from those statistical val-
ues, a nonparametric test named Wilcoxon signed-rank test 
was also adopted to prove the superiority of the proposed 
hybrid hASO-SA algorithm was not by chance.

Further assessment was performed by using the pro-
posed algorithm for MLP training, as a nonlinear system, in 
order to observe the ability of the proposed algorithm for an 
optimization problem with different nature. To do so, Bal-
loon, Iris, XOR, Heart and Breast cancer datasets were used 
since they have different difficulty levels, and, similar to the 
previous case, the performance of the algorithm was com-
pared with other metaheuristics of ASO, GWO, PSO, ACO, 
ES and PBIL algorithms. The results from those datasets 
showed the proposed hASO-SA algorithm to be better com-
pared to the listed algorithms since it provided the lowest 
average and standard deviation of the best mean square error.

A PID controller design for DC motor speed control was 
also performed as a final evaluation process as it is a widely 
used test bed for performance assessment of the algorithms. 
The obtained hASO-SA/PID controller was compared with 
other algorithms-based PID controllers such as ASO/PID, 
GWO/PID and SCA/PID controllers since those studies 
adopted the same parameters for DC motor and the limits 
of the controller as well as the same objective function. The 
speed response of DC motor has found to be more stable 
with no overshoot compared to the same system with dif-
ferent algorithms. In addition, the frequency response was 
also found to be the best among the competitive algorithms. 
Moreover, the system presented better robustness, in the case 
of the changes occurring in the system parameters with the 
implementation of the proposed hybrid algorithm.

In conclusion, the implementation of the proposed hASO-
SA algorithm to problems with different nature showed that 
this algorithm is a powerful technique for various optimi-
zation problems. The proposed hybrid algorithm also has 
the potential to provide better performance characteristics 
in several other optimization problems of different types for 
future studies. Some of those applications can be listed as 
feature selection and photovoltaic cell parameter estimation 

Fig. 12   Comparative speed responses for Scenario III

Fig. 13   Comparative speed responses for Scenario IV



3908	 Arabian Journal for Science and Engineering (2021) 46:3889–3911

1 3

along with controller design for automatic voltage regulator 
and magnetic ball suspension systems.
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